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Proprietary TrustZone Operating Systems (TZOS)

The implementation of the TrustZone OS is left to vendors.
Samsung devices have one of the following three TZOS:
e Qualcomm Secure Execution Environment (QSEE)

e Kinibi by Trustonic

e TEEGRIS by Samsung

Such vendors maintain secrecy around their Qua ICOAN\,\
implementation and design of TZOSs and TAs. °
TRUSTONIC

SAMSUNG



Research questions

1. Does the hardware-based protection of cryptographic keys remain secure
even when the Normal World is compromised?
2. How does the cryptography design of this protection affect the security of

various protocols that rely on its security?

Designed using resources from Flaticon.com
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Android Hardware-Backed Keystore flow

Keymaster TA in
TrustZone

Request key generation

B

Request attestation for B

Generate key
B = wrap(key)

cert

< Generate attestation ce%

(e.g., encrypt/sign)

Request operation for B

key = unwrap(B)
result = operation(key)

result
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Android Hardware-Backed Keystore flow

Plaintext key material

: Keymaster TA in never leaves the TZOS
Android
TrustZone

Request key generation

B .| Generate key ﬁ
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HDK = KDF(REK, salt)
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KDF versions of key blobs in Samsung devices

Samsung devices are MDFPP CC certified.
The salt value is the SHA256 digest of the concatenation of the values (assuming

the Application ID is “id” and the Application Data is “data”):

v20-s9 blob v20-s10 blob

"MDFPP HW Keymaster HEK v1500"
root_of trust root_of trust

"D" "ID" "D"

"\X02\x00\x00\x00" "X02\x00\x00\x00" "\X02\x00\x00\x00"

"id" "id" "id"

"DATA" "DATA" "DATA"

"\X04\x00\x00\x00" "X04\x00\x00\x00" "\X04\x00\x00\x00"

"data" "data" "data"

integrity_flags integrity_flags

hek_randomness
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Bypassing Authentication and Confirmation

The Keymaster TA can be used to enforce restrictions on the use of
cryptographic keys to prevent misuse of the keys without the user's consent or
knowledge

o

Android Protected Confirmation

Biometric login for my app

Log in using your biometric credential

Images from Android Developers Blog


https://android-developers.googleblog.com/
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Downgrade Attack

e V20-s10 has randomized salt —> setting the IV is not enough

v20-s10 blob
.
e Latent code allows creation of v15 blobs root_of_trust
=
e A privileged attacker can exploit this to force all new blobs "XO2X00X00L00"

e
to version v15

"DATA"

"\x04\x00\x00\x00"
"data"

G integrity _flags
hek_randomness
. Keymaster TA in
Request key generation
KM_EKEY BLOB_ENC VER =15

B, a v15 key blob B = wrap(key)

Generate key ﬁ
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Bypassing FIDO2 WebAuthn
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Bypassing FIDO2 WebAuthn Demo #1

beyondl: /data/local/tmp # ./gdbserver --attach :1337 $(pidof android.hardware.keymaster@u.0-service)
Attached; pid = 5196

Listening on port 1337

(a) Attaching a GDB debugger to the Keymaster HAL process
Breakpoint 2, in nwd_generate_key () from
intercepted request to nwd_generate_key
old key parameters to new buffer
Ox7759c24060
= Ox7759c24000
add new parameter (KM_EKEY_BLOB_ENC_VER, 15)

switch to new parameters - this forces the generation of a v15 blob
Breakpoint 4, in nwd_generate_key () from

dump the key blob that the keymaster returned

start Ox7759c3b2860, end Ox7759c3bud2, len 252

dumped to result.bin

(b) During registration, the GDB script performs the downgrade attack



Bypassing FIDO2 WebAuthn Demo #2

EOE - 2PEEE - 2AEDSE - = 2240 @ % [:
Registered FIDO Key e FIDO Authentication i €  Checkout i €  Checkout
User Information User Information @ User Information
did: 1 did: 1 STRONGKEY did: 1
sid: 1 sid: 1 uid: 187
uid: 187 uid: 187 username: fido
username: fido username: fido Tellaro T100 9,995 givenName familyName: Demo Demo
email: demo@test email: demo@test
userMobileNumber: 123454321 userMobileNumber: 123454321
Transaction Information
FIDO Registration Information FIDO Authentication Information Tellaro E1000 19,995 —
did: 1 did: 1 e | txdate: Mon Aug 16 22:40:31 GMT+03:00 2021
uid: 187 uid: 187 nonce: eJOvaQ4EjJvuAzaqk92BMw
displayName: Demo Demo rpid: strongkey.com challenge: 9tqlvUuRYv_NGIYvFNa7djH1bpclONrx
rpid: strongkey.com credentialld 4snMXSRKdjl
credentialld D6AG808656EF7118-46C1436FCBABBOS0-939FB @ ng?w(iloud 995/year
D6A6808656EF7118-46C1436FCBABB050-939FB 0C7FB4F23B4-68627EB3E7DBACCA uantity:
0C7FBAF23B4-68627EB3E7DBACCA createDate: Mon Aug 16 22:39:52 GMT+03:00 SEERTXEAYEOADIDETAILCS
createDate: Mon Aug 16 22:39:42 GMT+03:00 2021 :
zozwl : n Tellaro Cloud  11,940/year FIDO Authenticator References
counter
eMbdLle: (s DIGITAL SIGNATURE DETAILS... FIDO Protocol: FID02_0
[TRUSTED_EXECUTION_ENVIRONMENT] AUTHENTICATOR DATA DETAILS... RPI'D strongkely comM N 54048
Authorization Time: Mon Aug 16 22 3
s CLIENT DATA JSON DETAILS... GMT+03:00 2021
SEND SECURITY KEY REGISTRATION Total Price: $995 User Eresent: true
CLIENT DATA JSON DETAILS... E-MAIL... User Verified: true

Used for this transaction: true
AUTHENTICATOR DATA DETAILS...

CBOR ATTESTATION DETAILS... e p— Submit Transaction ID DETAIL..
JSON ATTESTATION DETAILS... RAW ID DETAIL..
USER HANDLE DETAIL..

AUTHENTICATE AUTHENTICATOR DATA DETAILS..

CLIENT DATA JSON DETAILS..

AACIIN NETAN

] O < ] @] < ] (@] < ] (@] <

(c) Registration success (d) Authentication success (e) Checkout example (f) Re-authentication success



Responsible Disclosure

e We reported our IV reuse attack on S9 to Samsung in May 2021
o According to Samsung, the list of patched devices includes: S9, J3 Top, J7 Top, J7 Duo,
TabS4, Tab-A-S-Lite, A6 Plus, A9S

SVE-2021-21948 (CVE-2021-25444): IV reuse in Keymaster TA

Severity: High

Affected versions: 0(8.1), P(9.0), Q(10.0)

Reported on: May 25, 2021

Disclosure status: Privately disclosed.

An IV reuse vulnerability in keymaster prior to SMR AUG-2021 Release 1 allows decryption of custom keyblob with privileged process.
The patch prevents reusing IV by blocking addition of custom IV.



Responsible Disclosure

e We reported our IV reuse attack on S9 to Samsung in May 2021
o According to Samsung, the list of patched devices includes: S9, J3 Top, J7 Top, J7 Duo,

TabS4, Tab-A-S-Lite, A6 Plus, A9S
e We reported the downgrade attack on S10, S20 and S21 in July 2021

SVE-2021-21948 (CVE-2021-25444): IV reuse in Keymaster TA

Severity: High

Affected versions: 0(8.1), P(9.0), Q(10.0)

Reported on: May 25, 2021

Disclosure status: Privately disclosed.

An IV reuse vulnerability in keymaster prior to SMR AUG-2021 Release 1 allows decryption of custom keyblob with privileged process.

The patch prevents reusing IV by blocking addition of custom IV.
SVE-2021-22658 (CVE-2021-25490): Downgrade attack in Keymaster TA

Severity: High

Affected versions: P(9.0), Q(10.0), R(11.0)

Reported on: July 16, 2021

Disclosure status: Privately disclosed.

Akeyblob downgrade attack in keymaster prior to SMR Oct-2021 Release 1 allows attacker to trigger IV reuse vulnerability with privileged process.

The patch removes the legacy implementation for minor keyblob.



Samsung Patch #1

In August 2021 Samsung assigned CVE-2021-25444 with High severity and
released a patch that removes the option to add a custom IV from the API.

* swd_get iv(KM_PARAM_SET *par int swd get iv(KM_PARAM_SET *par, ASN1 OCTET_STRING *iv)
1int8 t buf[KM_IV_LEN DEFAULT];

t struct blob b;

it ret = 0, is_enc_pw_key = 0;
b.data = buf;
b.len = si
if (parvu& (km g

is_enc

LOGD("%s IV", && is enc pw key ) ? "custom" : "generated");

t == 1 && i pu
if (ret == 1 && is_enc_pw_key == 1)

->data, iv->length)) {

n b RAND bytes() failed");
' rn -1;

) bytes(b.data, b.len))

wd get iv() failed");
NULL ;




Samsung Patch #2

In October 2021 Samsung assigned CVE-2021- 25490 with High severity and
released a patch that completely removes the legacy key blob implementation.

u1nt32 t clid_size, appd_size;
t struct blob **set;
51ze t len;

t cbd_buf[CRYPTO_BOUNDING | BUFF _LEN]
blob cbd = { cbd buf,
blob app data_size = { NU
blob clientfidfsize = NULL
blob integrity = { NULL, 0 }
blob _rot = *rot;

st struct blob *salt seq 2 0[] =

context_salt 2 0, & rot, NULL,
&client_id_size, client_id, NULL,
&app,data size, app data, &integrity, ukdm,

size t salt_seq len_2 0 = sizeof(salt_seq 2 0) / sizeof(salt_seq 2 0[0

if (blob_ver == KM_KEY_BLOB_ENC_VER) {
set = salt_seq_ 2.0;
len = salt seq len 2 0;

"invalid blob ver: %d",
=1
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The Gap in Composability

X

Key attestation does not commit to Closed vendor-specific
the cryptographic method implementation
Including encryption method in Uniform open-standard by Google for

attestation certificate the Keymaster HAL and TA
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Conclusions

Vendors including Samsung and Qualcomm maintain secrecy around their
implementation and design of TZOSs and TAs.

Through our analysis we unveiled severe cryptographic design flaws

We show how to exploit the design flaws to break higher level protocols

All of those issues could have been avoided with an open-standard design
Using the fragile AES-GCM deserves discussion - after decades of |V reuses
in real-world systems

e Pitfalls of
cryptographic APIs  —
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