
Trust Dies in Darkness: Shedding Light on
Samsung’s TrustZone Cryptographic Design

Alon Shakevsky, Eyal Ronen, Avishai Wool
Tel Aviv University

Extended paper: https://eprint.iacr.org/2022/208.pdf

Agenda

Introduction
Background and motivation

Keymaster
TA Analysis

Recovering hardware-protected keys

Implications
Breaking higher-level protocols

Discussion
Main takeaways from our research

The need for Trusted Execution Environments (TEEs)

Designed using resources from Flaticon.com

The need for Trusted Execution Environments (TEEs)

Designed using resources from Flaticon.com

Proprietary TrustZone Operating Systems (TZOS)

The implementation of the TrustZone OS is left to vendors.
Samsung devices have one of the following three TZOS:
● Qualcomm Secure Execution Environment (QSEE)
● Kinibi by Trustonic
● TEEGRIS by Samsung

Such vendors maintain secrecy around their
implementation and design of TZOSs and TAs.

Research questions

1. Does the hardware-based protection of cryptographic keys remain secure
even when the Normal World is compromised?

2. How does the cryptography design of this protection affect the security of
various protocols that rely on its security?

Designed using resources from Flaticon.com

ARM TrustZone - Attack Model

Designed using resources from Flaticon.com

ARM TrustZone - Attack Model

Designed using resources from Flaticon.com

Android Hardware-Backed Keystore flow

Designed using resources from Flaticon.com

Android Hardware-Backed Keystore flow

Designed using resources from Flaticon.com

Plaintext key material
never leaves the TZOS

Agenda

Introduction
Background and motivation

Keymaster
TA Analysis

Recovering hardware-protected keys

Implications
Breaking higher-level protocols

Discussion
Main takeaways from our research

Key Blob Encryption

The Keymaster TA encrypts key material inside blobs.

Key Blob Encryption

The Keymaster TA encrypts key material inside blobs.

Key Blob Encryption

The Keymaster TA encrypts key material inside blobs.

KDF versions of key blobs in Samsung devices

Samsung devices are MDFPP CC certified.
The salt value is the SHA256 digest of the concatenation of the values (assuming
the Application ID is “id” and the Application Data is “data”):

KDF versions of key blobs in Samsung devices

Samsung devices are MDFPP CC certified.
The salt value is the SHA256 digest of the concatenation of the values (assuming
the Application ID is “id” and the Application Data is “data”):

IV Reuse Attack (v15/v20-s9)

● The Android client can control the salt -> key reuse

IV Reuse Attack (v15/v20-s9)

● The Android client can control the salt -> key reuse
● The Android client can control the IV -> IV reuse
● AES-GCM + key reuse + iv reuse -> decryption

IV Reuse Attack (v15/v20-s9)

● The Android client can control the salt -> key reuse
● The Android client can control the IV -> IV reuse
● AES-GCM + key reuse + iv reuse -> decryption

%ORE�%

%ORE�$
8QNQRZQ�NH\�$

.QRZQ�NH\�%

([WUDFW�,9�DQG�VDOW LPSRUW.H\�.H\VWRUH�$3,

.%

(�+'.��,9��;25�.$

(�+
'.

��,9
��;2

5�.% .H\�$

.$

.QRZQ�NH\�%

5HPLQGHU
5(.� �'HYLFH�XQLTXH�KDUGZDUH�NH\
+'.� �.')�5(.��VDOW�
%� �$(6�*&0�+'.��,9��NH\�

IV Reuse Attack (v15/v20-s9)

● The Android client can control the salt -> key reuse
● The Android client can control the IV -> IV reuse
● AES-GCM + key reuse + iv reuse -> decryption

%ORE�%

%ORE�$
8QNQRZQ�NH\�$

.QRZQ�NH\�%

([WUDFW�,9�DQG�VDOW LPSRUW.H\�.H\VWRUH�$3,

.%

(�+'.��,9��;25�.$

(�+
'.

��,9
��;2

5�.% .H\�$

.$

.QRZQ�NH\�%

5HPLQGHU
5(.� �'HYLFH�XQLTXH�KDUGZDUH�NH\
+'.� �.')�5(.��VDOW�
%� �$(6�*&0�+'.��,9��NH\�

IV Reuse Attack (v15/v20-s9)

● The Android client can control the salt -> key reuse
● The Android client can control the IV -> IV reuse
● AES-GCM + key reuse + iv reuse -> decryption

%ORE�%

%ORE�$
8QNQRZQ�NH\�$

.QRZQ�NH\�%

([WUDFW�,9�DQG�VDOW LPSRUW.H\�.H\VWRUH�$3,

.%

(�+'.��,9��;25�.$

(�+
'.

��,9
��;2

5�.% .H\�$

.$

.QRZQ�NH\�%

5HPLQGHU
5(.� �'HYLFH�XQLTXH�KDUGZDUH�NH\
+'.� �.')�5(.��VDOW�
%� �$(6�*&0�+'.��,9��NH\�

IV Reuse Attack (v15/v20-s9)

● The Android client can control the salt -> key reuse
● The Android client can control the IV -> IV reuse
● AES-GCM + key reuse + iv reuse -> decryption

%ORE�%

%ORE�$
8QNQRZQ�NH\�$

.QRZQ�NH\�%

([WUDFW�,9�DQG�VDOW LPSRUW.H\�.H\VWRUH�$3,

.%

(�+'.��,9��;25�.$

(�+
'.

��,9
��;2

5�.% .H\�$

.$

.QRZQ�NH\�%

5HPLQGHU
5(.� �'HYLFH�XQLTXH�KDUGZDUH�NH\
+'.� �.')�5(.��VDOW�
%� �$(6�*&0�+'.��,9��NH\�

IV Reuse Attack (v15/v20-s9)

● The Android client can control the salt -> key reuse
● The Android client can control the IV -> IV reuse
● AES-GCM + key reuse + iv reuse -> decryption

%ORE�%

%ORE�$
8QNQRZQ�NH\�$

.QRZQ�NH\�%

([WUDFW�,9�DQG�VDOW LPSRUW.H\�.H\VWRUH�$3,

.%

(�+'.��,9��;25�.$

(�+
'.

��,9
��;2

5�.% .H\�$

.$

.QRZQ�NH\�%

5HPLQGHU
5(.� �'HYLFH�XQLTXH�KDUGZDUH�NH\
+'.� �.')�5(.��VDOW�
%� �$(6�*&0�+'.��,9��NH\�

IV Reuse Attack (v15/v20-s9)

● The Android client can control the salt -> key reuse
● The Android client can control the IV -> IV reuse
● AES-GCM + key reuse + iv reuse -> decryption

%ORE�%

%ORE�$
8QNQRZQ�NH\�$

.QRZQ�NH\�%

([WUDFW�,9�DQG�VDOW LPSRUW.H\�.H\VWRUH�$3,

.%

(�+'.��,9��;25�.$

(�+
'.

��,9
��;2

5�.% .H\�$

.$

.QRZQ�NH\�%

5HPLQGHU
5(.� �'HYLFH�XQLTXH�KDUGZDUH�NH\
+'.� �.')�5(.��VDOW�
%� �$(6�*&0�+'.��,9��NH\�

Bypassing Authentication and Confirmation

The Keymaster TA can be used to enforce restrictions on the use of
cryptographic keys to prevent misuse of the keys without the user's consent or
knowledge

Images from Android Developers Blog

https://android-developers.googleblog.com/

Downgrade Attack

● V20-s10 has randomized salt –> setting the IV is not enough

Downgrade Attack

● V20-s10 has randomized salt –> setting the IV is not enough
● Latent code allows creation of v15 blobs

Downgrade Attack

● V20-s10 has randomized salt –> setting the IV is not enough
● Latent code allows creation of v15 blobs
● A privileged attacker can exploit this to force all new blobs

to version v15

$QGURLG .H\PDVWHU�7$�LQ
7UXVW=RQH

*HQHUDWH�NH\�

%� �ZUDS�NH\��%��D�Y���NH\�EORE

5HTXHVW�NH\�JHQHUDWLRQ�
.0B(.(<B%/2%B(1&B9(5� ����

Agenda

Introduction
Background and motivation

Keymaster
TA Analysis

Recovering hardware-protected keys

Implications
Breaking higher-level protocols

Discussion
Main takeaways from our research

Bypassing FIDO2 WebAuthn

Designed using resources from Flaticon.com

Bypassing FIDO2 WebAuthn

Designed using resources from Flaticon.com

Bypassing FIDO2 WebAuthn

Designed using resources from Flaticon.com

Bypassing FIDO2 WebAuthn

Designed using resources from Flaticon.com

Bypassing FIDO2 WebAuthn Demo #1

Bypassing FIDO2 WebAuthn Demo #2

Responsible Disclosure

● We reported our IV reuse attack on S9 to Samsung in May 2021
○ According to Samsung, the list of patched devices includes: S9, J3 Top, J7 Top, J7 Duo,

TabS4, Tab-A-S-Lite, A6 Plus, A9S

Responsible Disclosure

● We reported our IV reuse attack on S9 to Samsung in May 2021
○ According to Samsung, the list of patched devices includes: S9, J3 Top, J7 Top, J7 Duo,

TabS4, Tab-A-S-Lite, A6 Plus, A9S
● We reported the downgrade attack on S10, S20 and S21 in July 2021

Samsung Patch #1

In August 2021 Samsung assigned CVE-2021-25444 with High severity and
released a patch that removes the option to add a custom IV from the API.

Samsung Patch #2

In October 2021 Samsung assigned CVE-2021- 25490 with High severity and
released a patch that completely removes the legacy key blob implementation.

Agenda

Introduction
Background and motivation

Keymaster
TA Analysis

Recovering hardware-protected keys

Implications
Breaking higher-level protocols

Discussion
Main takeaways from our research

Low-Level Cryptographic Issues

Low-Level Cryptographic Issues

The Gap in Composability

The Gap in Composability

Conclusions

● Vendors including Samsung and Qualcomm maintain secrecy around their
implementation and design of TZOSs and TAs.

● Through our analysis we unveiled severe cryptographic design flaws
● We show how to exploit the design flaws to break higher level protocols

Conclusions

● Vendors including Samsung and Qualcomm maintain secrecy around their
implementation and design of TZOSs and TAs.

● Through our analysis we unveiled severe cryptographic design flaws
● We show how to exploit the design flaws to break higher level protocols
● All of those issues could have been avoided with an open-standard design

Conclusions

● Vendors including Samsung and Qualcomm maintain secrecy around their
implementation and design of TZOSs and TAs.

● Through our analysis we unveiled severe cryptographic design flaws
● We show how to exploit the design flaws to break higher level protocols
● All of those issues could have been avoided with an open-standard design
● Using the fragile AES-GCM deserves discussion - after decades of IV reuses

in real-world systems

Any questions?

Designed using resources from Flaticon.comExtended paper: https://eprint.iacr.org/2022/208.pdf

