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Proprietary TrustZone Operating Systems (TZOS)

The implementation of the TrustZone OS is left to vendors.
Samsung devices have one of the following three TZOS:
● Qualcomm Secure Execution Environment (QSEE)
● Kinibi by Trustonic
● TEEGRIS by Samsung

Such vendors maintain secrecy around their
implementation and design of TZOSs and TAs.



Research questions

1. Does the hardware-based protection of cryptographic keys remain secure 
even when the Normal World is compromised?

2. How does the cryptography design of this protection affect the security of 
various protocols that rely on its security?

Designed using resources from Flaticon.com



ARM TrustZone - Attack Model

Designed using resources from Flaticon.com



ARM TrustZone - Attack Model

Designed using resources from Flaticon.com



Android Hardware-Backed Keystore flow

Designed using resources from Flaticon.com
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Plaintext key material
never leaves the TZOS
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the Application ID is “id” and the Application Data is “data”):
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Bypassing Authentication and Confirmation

The Keymaster TA can be used to enforce restrictions on the use of 
cryptographic keys to prevent misuse of the keys without the user's consent or 
knowledge

Images from Android Developers Blog

https://android-developers.googleblog.com/
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Downgrade Attack

● V20-s10 has randomized salt –> setting the IV is not enough
● Latent code allows creation of v15 blobs
● A privileged attacker can exploit this to force all new blobs

to version v15
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Responsible Disclosure

● We reported our IV reuse attack on S9 to Samsung in May 2021
○ According to Samsung, the list of patched devices includes: S9, J3 Top, J7 Top, J7 Duo, 

TabS4, Tab-A-S-Lite, A6 Plus, A9S



Responsible Disclosure

● We reported our IV reuse attack on S9 to Samsung in May 2021
○ According to Samsung, the list of patched devices includes: S9, J3 Top, J7 Top, J7 Duo, 

TabS4, Tab-A-S-Lite, A6 Plus, A9S
● We reported the downgrade attack on S10, S20 and S21 in July 2021



Samsung Patch #1

In August 2021 Samsung assigned CVE-2021-25444 with High severity and 
released a patch that removes the option to add a custom IV from the API. 



Samsung Patch #2

In October 2021 Samsung assigned CVE-2021- 25490 with High severity and 
released a patch that completely removes the legacy key blob implementation.
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Conclusions

● Vendors including Samsung and Qualcomm maintain secrecy around their 
implementation and design of TZOSs and TAs.

● Through our analysis we unveiled severe cryptographic design flaws
● We show how to exploit the design flaws to break higher level protocols
● All of those issues could have been avoided with an open-standard design
● Using the fragile AES-GCM deserves discussion - after decades of IV reuses 

in real-world systems
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