Trust Dies in Darkness: Shedding Light on
Samsung’s TrustZone Cryptographic Design

000

TELAVIV NUO'011IIN
UNIVERSITY QYIN'TN

Alon Shakevsky, Eyal Ronen, Avishai Wool
Tel Aviv University

4 Pitfalls of
cryptographic APls =

Extended paper: https://eprint.iacr.org/2022/208.pdf

Agenda

Introduction

Keymaster
TA Analysis

Implications

Background and motivation

Recovering hardware-protected keys

Breaking higher-level protocols

Main takeaways from our research

The need for Trusted Execution Environments (TEES)

o fido

ALLIANCE

Designed using resources from Flaticon.com

The need for Trusted Execution Environments (TEES)

o fido

ALLIANCE

G Pay

Designed using resources from Flaticon.com

Proprietary TrustZone Operating Systems (TZOS)

The implementation of the TrustZone OS is left to vendors.
Samsung devices have one of the following three TZOS:
e Qualcomm Secure Execution Environment (QSEE)

e Kinibi by Trustonic

e TEEGRIS by Samsung

Such vendors maintain secrecy around their Qua ICOAN\,\
implementation and design of TZOSs and TAs. °
TRUSTONIC

SAMSUNG

Research questions

1. Does the hardware-based protection of cryptographic keys remain secure
even when the Normal World is compromised?
2. How does the cryptography design of this protection affect the security of

various protocols that rely on its security?

Designed using resources from Flaticon.com

ARM TrustZone - Attack Mode

Secure World

Normal World
ELO o -
Usermode Application 1 Application 2
EL1 l'l Android Kernel
Kernelmode
EL2 [Hypervisor }
EL3

Trusted App 1 Trusted App 2

TZOS kernel

Designed using resources from Flaticon.com

ARM TrustZone - Attack Mode

Normal World

ELO
Usermode Application 1 Application 2 &

EL1 Android Kernel
Kernelmode

EL2 ‘ Hypervisor }

Secure World

Trusted App 1 Trusted App 2

TZOS kernel

. —

Designed using resources from Flaticon.com

Android Hardware-Backed Keystore flow

Keymaster TA in
TrustZone

Request key generation

B

Request attestation for B

Generate key
B = wrap(key)

cert

< Generate attestation ce%

(e.g., encrypt/sign)

Request operation for B

key = unwrap(B)
result = operation(key)

result

Designed using resources from Flaticon.com

Android Hardware-Backed Keystore flow

Plaintext key material

: Keymaster TA in never leaves the TZOS
Android
TrustZone

Request key generation

B .| Generate key ﬁ

B = wrap(key)

Request attestation for B

< Generate attestation ce%

cert

Request operation for B
(e.g., encrypt/sign)

key = unwrap(B)
result = operation(key)

result

Designed using resources from Flaticon.com

Agenda

Introduction

Background and motivation

Keymaster
TA Analysis

Recovering hardware-protected keys

Implications

Breaking higher-level protocols

Main takeaways from our research

Key Blob Encryption

The Keymaster TA encrypts key material inside blobs.

HDK = KDF(REK, salt)

T

/

AES-GCM

Encrypted blob

Key Blob Encryption

The Keymaster TA encrypts key material inside blobs.

HDK = KDF(REK,(sal)

T

/

AES-GCM

Encrypted blob

Key Blob Encryption

The Keymaster TA encrypts key material inside blobs.

HDK = KDF(REK,(sal)

T

/

AES-GCM

Encrypted blob

KDF versions of key blobs in Samsung devices

Samsung devices are MDFPP CC certified.
The salt value is the SHA256 digest of the concatenation of the values (assuming

the Application ID is “id” and the Application Data is “data”):

v20-s9 blob v20-s10 blob

"MDFPP HW Keymaster HEK v1500"
root_of trust root_of trust

"D" "ID" "D"

"\X02\x00\x00\x00" "X02\x00\x00\x00" "\X02\x00\x00\x00"

"id" "id" "id"

"DATA" "DATA" "DATA"

"\X04\x00\x00\x00" "X04\x00\x00\x00" "\X04\x00\x00\x00"

"data" "data" "data"

integrity_flags integrity_flags

hek_randomness

KDF versions of key blobs in Samsung devices

Samsung devices are MDFPP CC certified.
The salt value is the SHA256 digest of the concatenation of the values (assuming

the Application ID is “id” and the Application Data is “data”):

v20-s9 blob v20-s10 blob

"MDFPP HW Keymaster HEK v1500"
root_of trust root_of trust

"D" "ID" "D"

"\X02\x00\x00\x00" "X02\x00\x00\x00" "\X02\x00\x00\x00"

"id" "id" "id"

"DATA" "DATA" "DATA"

"\X04\x00\x00\x00" "X04\x00\x00\x00" "\X04\x00\x00\x00"

"data" "data" "data"

integrity_flags integrity_flags

hek_randomness

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse
e The Android client can control the IV -> IV reuse
e AES-GCM + key reuse + iv reuse -> decryption

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse
-> |V reuse
-> decryption

e The Android client can control the IV
e AES-GCM + key reuse + iv reuse

Unknown key A

Extract IV and salt ﬁﬂ

Blob A

Reminder

REK = Device-unique hardware key
HDK = KDF(REK, salt)
B = AES-GCM(HDK, IV, key)

Known key B

Blob B

Key A

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse
e The Android client can control the IV -> IV reuse
e AES-GCM + key reuse + iv reuse -> decryption

Known key B

|

Extract IV and salt ﬁ, importKey Keystore API ﬁ

-

Unknown key A

_ BlobA y,

Key A

Reminder
REK = Device-unique hardware key
HDK = KDF(REK, salt)
B = AES-GCM(HDK, 1V, key) Known key B
Blob B

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse
e The Android client can control the IV -> 1V reuse

e AES-GCM + key reuse + iv reuse

Unknown key A

-> decryption

-

Known key B

l

Extract IV and salt ﬁ_.

importKey Keystore API ﬁ

Blob A

o

Reminder

REK = Device-unique hardware key
HDK = KDF(REK, salt)
B = AES-GCM(HDK, IV, key)

Known key B
Blob B

Key A

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse
-> |V reuse
-> decryption

e The Android client can control the IV
e AES-GCM + key reuse + iv reuse

Unknown key A

Known key B

|

Extract IV and salt ﬁq

importKey Keystore API ﬁ

Blob A

Reminder

REK = Device-unique hardware key
HDK = KDF(REK, salt)
B = AES-GCM(HDK, IV, key)

(

N

Known key B

Blob B

W,

Key A

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse
-> |V reuse
-> decryption

e The Android client can control the IV
e AES-GCM + key reuse + iv reuse

Unknown key A

Extract IV and salt ﬁq

Blob A

Reminder

REK = Device-unique hardware key
HDK = KDF(REK, salt)
B = AES-GCM(HDK, IV, key)

Known key B

Blob B

Key A

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse
-> |V reuse
-> decryption

e The Android client can control the IV
e AES-GCM + key reuse + iv reuse

Unknown key A

Extract IV and salt ﬁq

Blob A

Reminder

REK = Device-unique hardware key
HDK = KDF(REK, salt)
B = AES-GCM(HDK, IV, key)

Known key B

Blob B

Key A

Bypassing Authentication and Confirmation

The Keymaster TA can be used to enforce restrictions on the use of
cryptographic keys to prevent misuse of the keys without the user's consent or
knowledge

o

Android Protected Confirmation

Biometric login for my app

Log in using your biometric credential

Images from Android Developers Blog

https://android-developers.googleblog.com/

Downgrade Attack

e V20-s10 has randomized salt —> setting the IV is not enough 120-510 blob

root_of_trust

"D"
"\x02\x00\x00\x00"
mig"

"DATA"
"\x04\x00\x00\x00"
"data"

integrity_flags
hek_randomness

Downgrade Attack

e V20-s10 has randomized salt —> setting the |V is not enough v20-510 blob
e Latent code allows creation of v15 blobs

root_of_trust

"D"
"\x02\x00\x00\x00"
"

"DATA"
"\x04\x00\x00\x00"
"data"

integrity _flags
hek_randomness

Downgrade Attack

e V20-s10 has randomized salt —> setting the IV is not enough

v20-s10 blob
.
e Latent code allows creation of v15 blobs root_of_trust
=
e A privileged attacker can exploit this to force all new blobs "XO2X00X00L00"

e
to version v15

"DATA"

"\x04\x00\x00\x00"
"data"

G integrity _flags
hek_randomness
. Keymaster TA in
Request key generation
KM_EKEY BLOB_ENC VER =15

B, a v15 key blob B = wrap(key)

Generate key ﬁ

Agenda

Introduction

Background and motivation

Keymaster
TA Analysis

Recovering hardware-protected keys

Implications

Breaking higher-level protocols

Main takeaways from our research

Bypassing FIDO2 WebAuthn

FIDO2
Assertion

Assertion
Bypass

Verify certificate,
associate the
public key with the use

Generate Challenge| |

Verify assertion A,
if successful
the user is signed-in

Trusted Server

Registration Request

=R 2

Request key generation
(attacker downgrades to
v15 blob)

e—|

Keymaster TA in
TrustZone

Generate (Pub, Priv)

Bauth Bauth = wrap(Pub, Priv)
Request attestation for Bauth
k| Create attestation
cert cert certificate chain for blob

Authentication Request

Request user consent then

Ask to sign challenge with B

Challenge

-]

Sign Challenge with Priv in
secure hardware

Authentication Request

Challenge

Attacker forges assertions by signing
C using Priv (recovered from the IV
reuse attack on Bauth) and successfully
logs in (from Android or another device)

er registration,

Designed using resources from Flaticon.com

Bypassing FIDO2 WebAuthn

Trusted Server Android Keymaster TA in
TrustZone

Registration Request Request key generation
—— (attacker downgrades to
v15 blob) | Generate (Pub, Priv)
BautH Bauth = wrap(Pub, Priv)

Request attestation for Bauth

Veri i k— Create attestation
erify c:_em icate, cert cert certificate chain for blob
associate the
\ public key with the use /
Authentication Request Request user consent then
Generate Challenge] | Ask to sign challenge with B | Sign Challenge with Priv in
FIDO2 Challenge secure hardware
Assertion A A

Verify assertion A,
if successful
the user is signed-in

Authentication Request

Challenge

er registration,
Attacker forges assertions by signing
C using Priv (recovered from the IV
- reuse attack on Bauth) and successfully
logs in (from Android or another device)

Assertion
Bypass

Designed using resources from Flaticon.com

Bypassing FIDO2 WebAuthn

Verify certificate,
associate the
public key with the use

Trusted Server Android Keymaster TA in
TrustZone

Registration Request Request key generation
—— (attacker downgrades to
v15 blob) | Generate (Pub, Priv)
BautH Bauth = wrap(Pub, Priv)

Request attestation for Bauth

k| Create attestation
ob

cert cert certificate chain for bl

FIDO2
Assertion

Generate Challenge| |

Verify assertion A,
if successful
the user is signed-in

secure hardware

Challenge with Priv irﬁ

Authentication Request Request user consent then
Ask to sign challenge with B .
| Sign
Challenge
A A

J

Assertion
Bypass

Authentication Request

Challenge
er registration,

Attacker forges assertions by signing
C using Priv (recovered from the IV
reuse attack on Bauth) and successfully
logs in (from Android or another device)

Designed using resources from Flaticon.com

Bypassing FIDO2 WebAuthn

Trusted Server Android Keymaster TA in
TrustZone

Registration Request Request key generation
—— (attacker downgrades to
v15 blob) | Generate (Pub, Priv)
BautH Bauth = wrap(Pub, Priv)

Request attestation for Bauth

k| Create attestation
ob

Verify certificate, cert cert certificate chain for bl

associate the
public key with the use

Authentication Request Request user consent then

Generate Challenge] | Ask to sign challenge with B | Sign Challenge with Priv in
FIDO2 Challenge secure hardware
Assertion) i A A
Verify assertion A,
if successful
the user is signed-in
(Authentication Request
Challenge

er registration,
Attacker forges assertions by signing
C using Priv (recovered from the IV
- reuse attack on Bauth) and successfully
logs in (from Android or another device)

Assertion
Bypass

Designed uging resources from Flaticon.com

Bypassing FIDO2 WebAuthn Demo #1

beyondl: /data/local/tmp # ./gdbserver --attach :1337 $(pidof android.hardware.keymaster@u.0-service)
Attached; pid = 5196

Listening on port 1337

(a) Attaching a GDB debugger to the Keymaster HAL process
Breakpoint 2, in nwd_generate_key () from
intercepted request to nwd_generate_key
old key parameters to new buffer
Ox7759c24060
= Ox7759c24000
add new parameter (KM_EKEY_BLOB_ENC_VER, 15)

switch to new parameters - this forces the generation of a v15 blob
Breakpoint 4, in nwd_generate_key () from

dump the key blob that the keymaster returned

start Ox7759c3b2860, end Ox7759c3bud2, len 252

dumped to result.bin

(b) During registration, the GDB script performs the downgrade attack

Bypassing FIDO2 WebAuthn Demo #2

EOE - 2PEEE - 2AEDSE - = 2240 @ % [:
Registered FIDO Key e FIDO Authentication i € Checkout i € Checkout
User Information User Information @ User Information
did: 1 did: 1 STRONGKEY did: 1
sid: 1 sid: 1 uid: 187
uid: 187 uid: 187 username: fido
username: fido username: fido Tellaro T100 9,995 givenName familyName: Demo Demo
email: demo@test email: demo@test
userMobileNumber: 123454321 userMobileNumber: 123454321
Transaction Information
FIDO Registration Information FIDO Authentication Information Tellaro E1000 19,995 —
did: 1 did: 1 e | txdate: Mon Aug 16 22:40:31 GMT+03:00 2021
uid: 187 uid: 187 nonce: eJOvaQ4EjJvuAzaqk92BMw
displayName: Demo Demo rpid: strongkey.com challenge: 9tqlvUuRYv_NGIYvFNa7djH1bpclONrx
rpid: strongkey.com credentialld 4snMXSRKdjl
credentialld D6AG808656EF7118-46C1436FCBABBOS0-939FB @ ng?w(iloud 995/year
D6A6808656EF7118-46C1436FCBABB050-939FB 0C7FB4F23B4-68627EB3E7DBACCA uantity:
0C7FBAF23B4-68627EB3E7DBACCA createDate: Mon Aug 16 22:39:52 GMT+03:00 SEERTXEAYEOADIDETAILCS
createDate: Mon Aug 16 22:39:42 GMT+03:00 2021 :
zozwl : n Tellaro Cloud 11,940/year FIDO Authenticator References
counter
eMbdLle: (s DIGITAL SIGNATURE DETAILS... FIDO Protocol: FID02_0
[TRUSTED_EXECUTION_ENVIRONMENT] AUTHENTICATOR DATA DETAILS... RPI'D strongkely comM N 54048
Authorization Time: Mon Aug 16 22 3
s CLIENT DATA JSON DETAILS... GMT+03:00 2021
SEND SECURITY KEY REGISTRATION Total Price: $995 User Eresent: true
CLIENT DATA JSON DETAILS... E-MAIL... User Verified: true

Used for this transaction: true
AUTHENTICATOR DATA DETAILS...

CBOR ATTESTATION DETAILS... e p— Submit Transaction ID DETAIL..
JSON ATTESTATION DETAILS... RAW ID DETAIL..
USER HANDLE DETAIL..

AUTHENTICATE AUTHENTICATOR DATA DETAILS..

CLIENT DATA JSON DETAILS..

AACIIN NETAN

] O <] @] <] (@] <] (@] <

(c) Registration success (d) Authentication success (e) Checkout example (f) Re-authentication success

Responsible Disclosure

e We reported our IV reuse attack on S9 to Samsung in May 2021
o According to Samsung, the list of patched devices includes: S9, J3 Top, J7 Top, J7 Duo,
TabS4, Tab-A-S-Lite, A6 Plus, A9S

SVE-2021-21948 (CVE-2021-25444): IV reuse in Keymaster TA

Severity: High

Affected versions: 0(8.1), P(9.0), Q(10.0)

Reported on: May 25, 2021

Disclosure status: Privately disclosed.

An IV reuse vulnerability in keymaster prior to SMR AUG-2021 Release 1 allows decryption of custom keyblob with privileged process.
The patch prevents reusing IV by blocking addition of custom IV.

Responsible Disclosure

e We reported our IV reuse attack on S9 to Samsung in May 2021
o According to Samsung, the list of patched devices includes: S9, J3 Top, J7 Top, J7 Duo,

TabS4, Tab-A-S-Lite, A6 Plus, A9S
e We reported the downgrade attack on S10, S20 and S21 in July 2021

SVE-2021-21948 (CVE-2021-25444): IV reuse in Keymaster TA

Severity: High

Affected versions: 0(8.1), P(9.0), Q(10.0)

Reported on: May 25, 2021

Disclosure status: Privately disclosed.

An IV reuse vulnerability in keymaster prior to SMR AUG-2021 Release 1 allows decryption of custom keyblob with privileged process.

The patch prevents reusing IV by blocking addition of custom IV.
SVE-2021-22658 (CVE-2021-25490): Downgrade attack in Keymaster TA

Severity: High

Affected versions: P(9.0), Q(10.0), R(11.0)

Reported on: July 16, 2021

Disclosure status: Privately disclosed.

Akeyblob downgrade attack in keymaster prior to SMR Oct-2021 Release 1 allows attacker to trigger IV reuse vulnerability with privileged process.

The patch removes the legacy implementation for minor keyblob.

Samsung Patch #1

In August 2021 Samsung assigned CVE-2021-25444 with High severity and
released a patch that removes the option to add a custom IV from the API.

* swd_get iv(KM_PARAM_SET *par int swd get iv(KM_PARAM_SET *par, ASN1 OCTET_STRING *iv)
1int8 t buf[KM_IV_LEN DEFAULT];

t struct blob b;

it ret = 0, is_enc_pw_key = 0;
b.data = buf;
b.len = si
if (parvu& (km g

is_enc

LOGD("%s IV", && is enc pw key) ? "custom" : "generated");

t == 1 && i pu
if (ret == 1 && is_enc_pw_key == 1)

->data, iv->length)) {

n b RAND bytes() failed");
' rn -1;

) bytes(b.data, b.len))

wd get iv() failed");
NULL ;

Samsung Patch #2

In October 2021 Samsung assigned CVE-2021- 25490 with High severity and
released a patch that completely removes the legacy key blob implementation.

u1nt32 t clid_size, appd_size;
t struct blob **set;
51ze t len;

t cbd_buf[CRYPTO_BOUNDING | BUFF _LEN]
blob cbd = { cbd buf,
blob app data_size = { NU
blob clientfidfsize = NULL
blob integrity = { NULL, 0 }
blob _rot = *rot;

st struct blob *salt seq 2 0[] =

context_salt 2 0, & rot, NULL,
&client_id_size, client_id, NULL,
&app,data size, app data, &integrity, ukdm,

size t salt_seq len_2 0 = sizeof(salt_seq 2 0) / sizeof(salt_seq 2 0[0

if (blob_ver == KM_KEY_BLOB_ENC_VER) {
set = salt_seq_ 2.0;
len = salt seq len 2 0;

"invalid blob ver: %d",
=1

Agenda

Introduction

Background and motivation

Keymaster
TA Analysis

Recovering hardware-protected keys

Implications

Breaking higher-level protocols

Main takeaways from our research

Low-Level Cryptographic Issues

X

X

X

X

Allowing client to set IV

Allowing client to set
encryption version

Latent code in security-
critical application

Encryption version
persists across
"upgrades”

Low-Level Cryptographic Issues

X

X

X

X

Allowing client to set IV

Allowing client to set
encryption version

Latent code in security-
critical application

Encryption version
persists across
"upgrades”

Using random IV

Disallowing choice
encryption version

Reducing attack surface
in security-critical
application

Always using the latest
encryption version

The Gap in Composability

X

Key attestation does not commit to
the cryptographic method

X

Closed vendor-specific
implementation

The Gap in Composability

X

Key attestation does not commit to Closed vendor-specific
the cryptographic method implementation
Including encryption method in Uniform open-standard by Google for

attestation certificate the Keymaster HAL and TA

Conclusions

e Vendors including Samsung and Qualcomm maintain secrecy around their
implementation and design of TZOSs and TAs.

e Through our analysis we unveiled severe cryptographic design flaws

e We show how to exploit the design flaws to break higher level protocols

e Pitfalls of
cryptographic APIs —

Conclusions

e Vendors including Samsung and Qualcomm maintain secrecy around their
implementation and design of TZOSs and TAs.

e Through our analysis we unveiled severe cryptographic design flaws

e We show how to exploit the design flaws to break higher level protocols

e All of those issues could have been avoided with an open-standard design

e Pitfalls of
cryptographic APIs —

Conclusions

Vendors including Samsung and Qualcomm maintain secrecy around their
implementation and design of TZOSs and TAs.

Through our analysis we unveiled severe cryptographic design flaws

We show how to exploit the design flaws to break higher level protocols

All of those issues could have been avoided with an open-standard design
Using the fragile AES-GCM deserves discussion - after decades of |V reuses
in real-world systems

e Pitfalls of
cryptographic APIs —

Any questions?

Extended paper: https://eprint.iacr.org/2022/208.pdf

Designed using resources from Flaticon.com

