Four Attacks and a Proof for Telegram

RWC 2022
April 14, 2022

Martin R. Albrecht, Lenka Marekova, Kenneth G. Paterson, Igors Stepanovs

Royal Holloway, University of London; ETH Zirich

Based on the paper to appear at IEEE S&P 2022.
More information at: https://mtpsym.github.io/

https://mtpsym.github.io/

Background

Monthly active users in Jan 2022: Collective Information Security in Large-Scale
According to Statista 2022 Urban Protests: the Case of Hong Kong
2 WhatsApp 2000 - 10 . L
~n Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and
WeChat 19263 - 1 06 Lenka Marekova, Royal Holloway, University of London

&) FB Messenger 988 - 106

Telegram was the predominant messaging application

« 6
@ QQ 574 - 10 used in the Hong Kong protests in 2019-2020.
6
8 SnaPChat 597 - 10 Telegram was perceived to provide more security than its competitors.
&) Telegram 550 - 10°

Important advantages of Telegram:

- Support of public and private group chats for up to 200’000 people (Signal up to 1’'000; WhatsApp up to 256).

- Pseudonimity: can use a pseudonym, not revealing phone number to others (not supported in Signal and WhatsApp).

- Other features: anonymous polls; disappearing messages; timed or scheduled messages; ability to delete messages sent by others.

Common use cases: large public groups up to
50’000 members, and small private groups.

Cloud Chats and Secret Chats

Group communication

Cloud Chats

v

Secret Chats

X

1-on-1 communication

v

v

Type of encryption

client-server

end-to-end

Enabled by default?

v

X

“Q: Why are you not using X? (insert solution)

While other ways of achieving the same cryptographic goals,
undoubtedly, exist, we feel that the present solution is both
robust and also succeeds at our secondary task of beating
unencrypted messengers in terms of delivery time and stability.”

Telegram FAQ (https://core.telegram.org/techfaq)

Why not use TLS ? z ?
instead of MTProto?

The MTProto protocol — Telegram’s equivalent of the TLS record protocol.

Cloud Chats encrypt and authenticated messages using MTProto.
Secret Chats add another layer of MTProto encryption, i.e. messages are double-encrypted.

The MTProto protocol is not well-studied:
2013: Telegram launched with MTProto 1.0.

2016: Jakobsen and Orlandi showed that MTProto 1.0 is not CCA-secure.
2017: Telegram released MTProto 2.0 that addressed the security concerns.

2017: Susanka and Kokes reported an attack based on improper validation in the Android client.

2018: Kobeissi reported input validation bugs in Telegram’s Windows Phone client.

2020: Miculan and Vitacolonna proved MTProto 2.0 secure in a symbolic model, assuming ideal building blocks.

The focus in the literature has been on the Secret Chats.
We focus on the security of the Cloud Chats.

https://core.telegram.org/techfaq

The Design of MTProto 2.0 64 bits 64 bits 96 bits 32 bits 12-1024 bytes
MAC (mk, p) payload p: |server_salt session_id|msg_seq_-no msg_length|msg_data padding

msg_key < SHA-256(mk||p)[64 : 192]
Return msg_key

Infinite Garble Extension (IGE) mode:

my

MTPROTO.ENCRYPT

KDF(kk, msg_key) p .
(kko, kky) < kk [i
ko < SHA-256(msg_key||kkq)
k1 < SHA-256(kk, ||msg_key) MAC |¢—mk | | [E A Ep Ex
k < kol||k1 ; Return k
kk et —>0
\4 Y Y
v E|IV A4 3 & ¢

» KDF —»|SE.Enc

v
msg_key c

The Design of MTProto 2.0

MAC(mk, p)

msg_key < SHA-256(mk||p)[64 : 192]

Return msg_key

payload p:

64 bits 64 bits 96 bits

32 bits 12-1024 bytes

server_salt session_id

msg_seq_no msg_length{msg_data padding

MTPROTO.ENCRYPT

Infinite Garble Extension (IGE) mode:

my

Y
Cr-1 —DEB

Y

Ex

A/ \ 4 A4
C1 c2 Ct

Used to encrypt messages
from client to server.

Used to encrypt messages
from server to client.

KDF(kk, msg_key) P
(kko, kk1) + kk i
ko < SHA-256(msg_key||kkq)
k1 < SHA-256(kk, ||msg_key) MAC [«—mk
k < kol||k1 ; Return k
kk
v k| IV —
» KDF —»SE.Enc
A 4
msg_key c
32 bits 96 bits 1088 bits
<+—> < > < >
kko (288 bits) kki (288 bits) mk (256 bits)
T raw g% ovalue (2048-bit long)
kkq (288 bits) kkq (288 bits) mk (256 bits)
+—> < > < > <
32 bits 96 bits 1024 bits

64 bits

The Design of MTProto 2.0

MAC(mk, p)

payload p:

msg_key < SHA-256(mk||p)[64 : 192]

Return msg_key

KDF(kk, msg_key)
(kko, kk1) < kk
ko < SHA-256(msg_key

lkko)

k1 < SHA-256(kk, ||msg_key)

k < kol||k1 ; Return k

SHA-256 compression function

11256(Hi_1,x;) = H,'_l-ll‘-SHACAL-Z(xi, H,‘_l)

Xi
/ block

cipher

SHACAL-2(x;, Hi_1)

64 bits 64 bits 96 bits

32 bits

12-1024 bytes

server_salt session_id

msg_seq_no msg_length{msg_data

padding

MTPROTO.ENCRYPT

P
MAC [e— mk

kk

v k| IV A4

» KDF —»|SE.Enc

Infinite Garble Extension (IGE) mode:

mi my

)
S

1V, —»4 D
>
\4 \4
C1 C2

Used to encrypt messages
from client to server.

Used to encrypt

my

Y
Cr-1 —DEB

Y

Ex

messages

from server to client.

i 1 msg_key c
32 bits 96 bits 1088 bits R
<+—> < > - < >
kko (288 bits) kk, (288 bits) mk (256 bits)
C T raw ¢* value (2048-bit long) |]
kkq (288 bits) kkq (288 bits) mk (256 bits)
+—> < > < > <
64 bits 32 bits 96 bits 1024 bits

Four Attacks Against Telegram

We found 4 weaknesses in MTProto.

Reported to Telegram on April 16, 2021.
Telegram acknowledged receipt soon after.
Acknowledged the behaviours on June 8, 2021.
Agreed on disclosure on July 16, 2021.

No security or bugfix releases except for
immediate post-release crash fixes.

Did not wish to issue security advisories
at the time of patching.

Did not commit to release dates for specific fixes.

Fixes were rolled out as part of regular updates:

7.8.1 for Android
7.8.3 for iOS
2.8.8 for Desktop

64 bits 64 bits

96 bits 32 bits

12-1024 bytes

server_salt session_id

msg_seq_-no msg_length

msg_data

padding

MTPROTO.ENCRYPT

MAC

p
4— mk
kk

v k|| IV S

» KDF —»|SE.Enc

v
msg_key

1. Attack against IND-CPA security. / Theoretical.
2. Message reordering attack. / Technically trivial; easy to exploit.

3. Timing side-channel attacks against clients. / Plaintext recovery; infeasible in practice.
4. Timing side-channel attack against servers. / MitM on key exchange; infeasible in practice.

Telegram awarded a bug bounty for
side-channel attacks and overall analysis.

Four Attacks Against Telegram

We found 4 weaknesses in MTProto.

Reported to Telegram on April 16, 2021.
Telegram acknowledged receipt soon after.
Acknowledged the behaviours on June 8, 2021.
Agreed on disclosure on July 16, 2021.

No security or bugfix releases except for
immediate post-release crash fixes.

Did not wish to issue security advisories

at the time of patching.

Did not commit to release dates for specific fixes.

Fixes were rolled out as part of regular updates:

7.8.1 for Android
7.8.3 for iOS
2.8.8 for Desktop

64 bits 64 bits 96 bits 32 bits 12-1024 bytes
server_salt session_id|msg_seq_no msg_length|msg_data padding
MTPROTO.ENCRYPT
D 1. IND-CPA attack
Co 3 MTPEnc(El
I p—-
MAC |&—mk ¢z ¢ MTPEnc(p) i
kk Client expects ¢; be an encryption of ACK.
¢ Otherwise, it re-encrypts the payload.
ElITV —Y
» KDF —»|SE.Enc
\ 4
msg_key c

1. Attack against IND-CPA security. / Theoretical.
2. Message reordering attack. / Technically trivial; easy to exploit.
3. Timing side-channel attacks against clients. / Plaintext recovery; infeasible in practice.

4. Timing side-channel attack against servers. / MitM on key exchange; infeasible in practice.

Telegram awarded a bug bounty for
side-channel attacks and overall analysis.

Four Attacks Against Telegram

We found 4 weaknesses in MTProto.

Reported to Telegram on April 16, 2021.
Telegram acknowledged receipt soon after.
Acknowledged the behaviours on June 8, 2021.
Agreed on disclosure on July 16, 2021.

No security or bugfix releases except for
immediate post-release crash fixes.

Did not wish to issue security advisories

at the time of patching.

Did not commit to release dates for specific fixes.

Fixes were rolled out as part of regular updates:

7.8.1 for Android
7.8.3 for iOS
2.8.8 for Desktop

64 bits 64 bits

96 bits

32 bits 12-1024 bytes

server_salt session_id|msg_seq_no msg_length|msg_data

padding

\

)

MTPROTO.ENCRYPT

p
MAC |&— mk
kk
v k|| IV S
» KDF —»|SE.Enc
v
msg_key c

1. Attack against IND-CPA security. / Theoretical.
2. Message reordering attack. / Technically trivial; easy to exploit.

3. Timing side-channel attacks against clients. / Plaintext recovery; infeasible in practice.

4. Timing side-channel attack against servers. / MitM on key exchange; infeasible in practice.

Telegram awarded a bug bounty for
side-channel attacks and overall analysis.

! w Same metadata, fresh padding.
1. IND-CPA attack

A
N
N

\\\ Co <3 MTPEnC@
‘ -
Co &8 MTPEnc@

1
N
il ll||||
3 Il||

Client expects ¢; be an encryption of ACK.
Otherwise, it re-encrypts the payload.

Four Attacks Against Telegram 64 bits 64 bits 96 bits 32 bits 12-1024 bytes

server_salt session_id|msg_seq_no msg_length|msg_data padding
\)
MTPROTO.ENCRYPT ! w Same metadata, fresh padding.
We found 4 weaknesses in MTProto. AN
Reported to Telegram on April 16, 2021. J2 \\\ 1. IND-CPA attack
Telegram acknowledged receipt soon after. \\ o 5 MTPEnc(p
Acknowledged the behaviours on June 8, 2021. . 4
Agreed on disclosure on July 16, 2021. i < C1 '
N lI|||I
No security or bugfix releases except for MAC < mk Co <3 MTPEnc@ G
immediate post-release crash fixes.
Did not wish to issue security advisories kk Client expects ¢; be an encryption of ACK.
at the time of patching. Otherwise, it re-encrypts the payload.
Did not commit to release dates for specific fixes. ¢ k“ IV v Birthday-bound collision in msg_key causes
Fixes were rolled out as part of regular updates: » KDF SE.Enc the first 2 blocks of co, c3 be the same.

7.8.1 for Android IND-CPA thus breaks privacy of ¢;.

7.8.3 for iOS
2.8.8 for Desktop

v
msg_key c

1. Attack against IND-CPA security. / Theoretical.

2. Message reordering attack. / Technically trivial; easy to exploit.

3. Timing side-channel attacks against clients. / Plaintext recovery; infeasible in practice.

4. Timing side-channel attack against servers. / MitM on key exchange; infeasible in practice.

Telegram awarded a bug bounty for
side-channel attacks and overall analysis.

Four Attacks Against Telegram

We found 4 weaknesses in MTProto.

Reported to Telegram on April 16, 2021.
Telegram acknowledged receipt soon after.
Acknowledged the behaviours on June 8, 2021.
Agreed on disclosure on July 16, 2021.

No security or bugfix releases except for
immediate post-release crash fixes.

Did not wish to issue security advisories

at the time of patching.

Did not commit to release dates for specific fixes.

Fixes were rolled out as part of regular updates:

7.8.1 for Android
7.8.3 for iOS
2.8.8 for Desktop

64 bits

64 bits

96 bits

32 bits 12-1024 bytes

server_salt session_id

msg_seq_no msg_length{msg_data

padding

\

)

MTPROTO.ENCRYPT

p
MAC |&— mk
kk
v k|| IV S
» KDF —»|SE.Enc
v
msg_key c

1. Attack against IND-CPA security. / Theoretical.
2. Message reordering attack. / Technically trivial; easy to exploit.
3. Timing side-channel attacks against clients. / Plaintext recovery; infeasible in practice.

4. Timing side-channel attack against servers. / MitM on key exchange; infeasible in practice.

Telegram awarded a bug bounty for
side-channel attacks and overall analysis.

! w Same metadata, fresh padding.
1. IND-CPA attack

A
N
N

\\\ Co <3 MTPEnC@
‘ -
Co &8 MTPEnc@

1
N
il ll||||
3 Il||

Client expects ¢; be an encryption of ACK.
Otherwise, it re-encrypts the payload.

Birthday-bound collision in msg_key causes
the first 2 blocks of ¢q, co be the same.

IND-CPA thus breaks privacy of ¢;.

2. Message reordering attack

mo,my M1, mq,Mmo
< % ::::::::::::
mi,mo

Timing Side-Channel Attacks Against Clients

Cl C2 Ci—1 Ci

——
Y
| o m;
i \ \ l/
server_salt session_idmsg_seq_no msg_length|msg_data padding
64 bits 64 bits 96 bits 32 bits

3 official clients (Android; Desktop; i0S)
ran a sanity check on a decrypted payload
prior to verifying its hash msg_key.

I * A . . . Ssupplied by attacker
Timing Side-Channel Attacks Against Clients If (msg_length > lengty then ... | Android

Cl C) Ci—1 Ci Outcome of comparison depends on 32 bits on msg_length.

‘ If comparison fails: two conditional jumps added.

——
Y
o m;
i \ \ l/
server_salt session_idmsg_seq_no msg_length|msg_data padding
64 bits 64 bits 96 bits 32 bits

3 official clients (Android; Desktop; i0S)
ran a sanity check on a decrypted payload
prior to verifying its hash msg_key.

I * A . . . Ssupplied by attacker
Timing Side-Channel Attacks Against Clients If (msg_length > lengty then ... | Android

Cl C) Ci—1 Ci Outcome of comparison depends on 32 bits on msg_length.

If comparison fails: two conditional jumps added.
‘ If (msg_length > 22%) then ... // Desktop

Outcome of comparison depends on & bits on msg_length.
? If comparison fails: MAC verification is omitted.

>
Y
mj

[\l | l

server_salt session_idmsg_seq_no msg_length|msg_data padding

64 bits 64 bits 96 bits 32 bits

3 official clients (Android; Desktop; i0S)
ran a sanity check on a decrypted payload
prior to verifying its hash msg_key.

Timing Side-Channel Attacks Against Clients

Cl C2

Ci—1

Ci

l—>

Y
mj
[\l |
server_salt session_idmsg_seq_no msg_length|msg_data padding
64 bits 64 bits 96 bits 32 bits | l

3 official clients (Android; Desktop; i0S)
ran a sanity check on a decrypted payload
prior to verifying its hash msg_key.

Iy bytes

. Ssupplied by attacker
If (msg_length > length) then ... / Android

Outcome of comparison depends on 32 bits on msg_length.
If comparison fails: two conditional jumps added.

If (msg_length > 22%) then ... // Desktop
Outcome of comparison depends on & bits on msg_length.
If comparison fails: MAC verification is omitted.

If not (12 < ¢ — msg_length < 1024) then ... / iOS

Outcome of comparison depends on 32 bits on msg_length.
If comparison fails: MAC verification takes a shorter input.

I * A . . . Ssupplied by attacker
Timing Side-Channel Attacks Against Clients If (msg_length > lengty then ... | Android

Cl Co i i Outcome of comparison depends on 32 bits on msg_length.
If comparison fails: two conditional jumps added.

If (msg_length > 22%) then ... // Desktop
Outcome of comparison depends on & bits on msg_length.
If comparison fails: MAC verification is omitted.

If not (12 < ¢ — msg_length < 1024) then ... / iOS

Outcome of comparison depends on 32 bits on msg_length.
If comparison fails: MAC verification takes a shorter input.

Plaintext Recovery Attacks Against SSH

Martin R. Albrecht, Kenneth G. Paterson and Gaven J. Watson

Assume we know contents of m; and m;_1.
Want to learn the contents of m;.

Set co := (¢; D mi_1) ®my.

Get mo — (”mh1 D Ci—l) D cy.

Infer bits of ms from timing side-channel.
Derive the corresponding bits of m.

[\l |
server_salt session_idmsg_seq_no msg_length|msg_data padding

64 bits 64 bits 96 bits 32 bits | v J
¢ bytes

3 official clients (Android; Desktop; i0S)
ran a sanity check on a decrypted payload
prior to verifying its hash msg_key.

I * A . . . Ssupplied by attacker
Timing Side-Channel Attacks Against Clients If (msg_length > lengty then ... | Android

Cl Co i i Outcome of comparison depends on 32 bits on msg_length.
If comparison fails: two conditional jumps added.
‘ If (msg_length > 22%) then ... // Desktop
Outcome of comparison depends on & bits on msg_length.
If comparison fails: MAC verification is omitted.

If not (12 < ¢ — msg_length < 1024) then ... / iOS

Outcome of comparison depends on 32 bits on msg_length.
If comparison fails: MAC verification takes a shorter input.

Plaintext Recovery Attacks Against SSH

Martin R. Albrecht, Kenneth G. Paterson and Gaven J. Watson

Assume we know contents of m; and m;_1.
Want to learn the contents of m;.

—> | Set co :=(¢; Dmy;_1) D my.

Get mo — (”mh1 D Ci—l) D cy.

Infer bits of ms from timing side-channel.
Derive the corresponding bits of m.

(\(\ The attack fails because server_salt, session_id are secret.

server_salt session_idmsg_seq_no msg_length|msg_data padding

64 bits 64 bits 96 bits 32 bits | v J
¢ bytes

3 official clients (Android; Desktop; i0S)
ran a sanity check on a decrypted payload
prior to verifying its hash msg_key.

Timing Side-Channel Attacks Against Clients

Cl

2

[

\l

Ci—1

If

.

If

. Ssupplied by attacker
(msg_length > length) then ... / Android

Outcome of comparison depends on 32 bits on msg_length.
If comparison fails: two conditional jumps added.

(msg_length > 224) then ... // Desktop
Outcome of comparison depends on & bits on msg_length.
If comparison fails: MAC verification is omitted.

not (12 < ¢ — msg_length < 1024) then ... J iOS
Outcome of comparison depends on 32 bits on msg_length.
If comparison fails: MAC verification takes a shorter input.

Plaintext Recovery Attacks Against SSH

Martin R. Albrecht, Kenneth G. Paterson and Gaven J. Watson

Assume we know contents of m; and m;_1.
Want to learn the contents of m;.

Set co := (¢; D mi_1) ®my.

Get mo — (”mh1 D Ci—l) D cy.

Infer bits of ms from timing side-channel.
Derive the corresponding bits of m.

The

server_salt session_id

msg_seq_no msg_length

msg_data

padding

64 bits 64 bits

3 official clients (Android; Desktop; i0S)
ran a sanity check on a decrypted payload
prior to verifying its hash msg_key.

96 bits 32 bits

\

)

Iy bytes

Our attack highlights the brittle design.
Stems from using Encrypt-and-MAC.
Operates with a decryption key on untrusted data.

Would be safer to protect integrity of ciphertext.

attack fails because server_salt, session_id are secret.

Timing Side-Channel Attack Against Servers

We attack Telegram’s key exchange.

) 4

RSA.Enc(pk, m)

4 h

Telegram uses textbook RSA encryption.
m := SHA-1(data)||datal|padding

Timing Side-Channel Attack Against Servers

We attack Telegram’s key exchange.

—
RSA.Enc(pk, m) .
-_—
Telegram uses textbook RSA encryption. After RSA decryption but before SHA-1 verification,
m := SHA-1(data)||datal|padding Telegram parses m to validate its format

and might omit the computation of SHA-1.

Timing Side-Channel Attack Against Servers

We attack Telegram’s key exchange.

—
RSA.Enc(pk, m) .
-_—
Telegram uses textbook RSA encryption. After RSA decryption but before SHA-1 verification,
m := SHA-1(data)||datal|padding Telegram parses m to validate its format

and might omit the computation of SHA-1.

We recover data by solving noisy linear equations via lattice reduction.

Can use data to recover server_salt and session_id.
Can use data to run a MitM attack against the (encrypted) DH exchange.

The attack is infeasible in practice because:

- The timing side-channel is very small.
- Recovering session_id requires additional 2%¢ computation.
- The key exchange would time out before MitM can be completed.

Timing Side-Channel Attack Against Servers

“Publishing the server code doesn’t guarantee privacy, because
- unlike with the client-side code - there’s no way to verify that
the same code is run on the servers. [..]

We attack Telegram’s key exchange. So why not publish the server code anyway, even if it is only a

publicity stunt? 3 years ago | learnt that an authoritarian regime
[..] was looking for a way to obtain Telegram’s server code. Their

o) 4 : .
plan was to launch their own equally convenient local app and
RSA Enc(pk m) then to shut down all other social media in the country.”
; > I“::::::::: Pavel Durov (https://t.me/durovschat/515221)
"
.4 «
Telegram uses textbook RSA encryption. After RSA decryption but before SHA-1 verification,
m := SHA-1(data)||datal|padding Telegram parses m to validate its format

and might omit the computation of SHA-1.

We recover data by solving noisy linear equations via lattice reduction.

Can use data to recover server_salt and session_id.
Can use data to run a MitM attack against the (encrypted) DH exchange.

The attack is infeasible in practice because:

- The timing side-channel is very small.
- Recovering session_id requires additional computation.
- The key exchange would time out before MitM can be completed.

264

https://t.me/durovschat/515221

Future Work

Large parts of Telegram’s design remain unstudied:

Secret chats (including encrypted voice and video calls).
The key exchange.

Multi-user security.
Forward secrecy.

Telegram Passport.

Bot APIs. Thanks!
The higher-level message processing. More information at:
Control messages. https://mtpsym.github.io/

Encrypted CDNs.
Cloud storage.

These are pressing topics for future work.

https://mtpsym.github.io/

