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Background
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Telegram was the predominant messaging application
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Important advantages of Telegram:

- Support of public and private group chats for up to 200’000 people (Signal up to 1’'000; WhatsApp up to 256).

- Pseudonimity: can use a pseudonym, not revealing phone number to others (not supported in Signal and WhatsApp).

- Other features: anonymous polls; disappearing messages; timed or scheduled messages; ability to delete messages sent by others.

Common use cases: large public groups up to
50’000 members, and small private groups.



Cloud Chats and Secret Chats
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“Q: Why are you not using X? (insert solution)

While other ways of achieving the same cryptographic goals,
undoubtedly, exist, we feel that the present solution is both
robust and also succeeds at our secondary task of beating
unencrypted messengers in terms of delivery time and stability.”

Telegram FAQ (https://core.telegram.org/techfaq)

Why not use TLS ? z ?
instead of MTProto?

The MTProto protocol — Telegram’s equivalent of the TLS record protocol.

Cloud Chats encrypt and authenticated messages using MTProto.
Secret Chats add another layer of MTProto encryption, i.e. messages are double-encrypted.

The MTProto protocol is not well-studied:
2013: Telegram launched with MTProto 1.0.

2016: Jakobsen and Orlandi showed that MTProto 1.0 is not CCA-secure.
2017: Telegram released MTProto 2.0 that addressed the security concerns.

2017: Susanka and Kokes reported an attack based on improper validation in the Android client.

2018: Kobeissi reported input validation bugs in Telegram’s Windows Phone client.

2020: Miculan and Vitacolonna proved MTProto 2.0 secure in a symbolic model, assuming ideal building blocks.

The focus in the literature has been on the Secret Chats.
We focus on the security of the Cloud Chats.
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Four Attacks Against Telegram

We found 4 weaknesses in MTProto.

Reported to Telegram on April 16, 2021.
Telegram acknowledged receipt soon after.
Acknowledged the behaviours on June 8, 2021.
Agreed on disclosure on July 16, 2021.

No security or bugfix releases except for
immediate post-release crash fixes.

Did not wish to issue security advisories
at the time of patching.

Did not commit to release dates for specific fixes.

Fixes were rolled out as part of regular updates:

7.8.1 for Android
7.8.3 for iOS
2.8.8 for Desktop
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1. Attack against IND-CPA security. / Theoretical.
2. Message reordering attack. / Technically trivial; easy to exploit.

3. Timing side-channel attacks against clients. / Plaintext recovery; infeasible in practice.
4. Timing side-channel attack against servers. / MitM on key exchange; infeasible in practice.

Telegram awarded a bug bounty for
side-channel attacks and overall analysis.
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Timing Side-Channel Attacks Against Clients
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prior to verifying its hash msg_key.
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Our attack highlights the brittle design.
Stems from using Encrypt-and-MAC.
Operates with a decryption key on untrusted data.

Would be safer to protect integrity of ciphertext.

attack fails because server_salt, session_id are secret.
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“Publishing the server code doesn’t guarantee privacy, because
- unlike with the client-side code - there’s no way to verify that
the same code is run on the servers. [..]

We attack Telegram’s key exchange. So why not publish the server code anyway, even if it is only a

publicity stunt? 3 years ago | learnt that an authoritarian regime
[..] was looking for a way to obtain Telegram’s server code. Their

o) 4 : .
plan was to launch their own equally convenient local app and
RSA Enc(pk m) then to shut down all other social media in the country.”
; > I“::::::::: Pavel Durov (https://t.me/durovschat/515221)
"
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Telegram uses textbook RSA encryption. After RSA decryption but before SHA-1 verification,
m := SHA-1(data)||datal|padding Telegram parses m to validate its format

and might omit the computation of SHA-1.

We recover data by solving noisy linear equations via lattice reduction.

Can use data to recover server_salt and session_id.
Can use data to run a MitM attack against the (encrypted) DH exchange.

The attack is infeasible in practice because:

- The timing side-channel is very small.
- Recovering session_id requires additional computation.
- The key exchange would time out before MitM can be completed.
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Future Work

Large parts of Telegram’s design remain unstudied:

Secret chats (including encrypted voice and video calls).
The key exchange.

Multi-user security.
Forward secrecy.

Telegram Passport.

Bot APIs. Thanks!
The higher-level message processing. More information at:
Control messages. https://mtpsym.github.io/

Encrypted CDNs.
Cloud storage.

These are pressing topics for future work.
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