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Cryptographic Foundations

• Theory of cryptography is one of the most successful areas of 
theoretical computer science

• Principled protocols for a variety of cryptographic tasks, including 
private-key encryption, public-key encryption, pseudorandom 
generation, zero-knowledge proofs, secure multi-party computation, 
homomorphic encryption, indistinguishability obfuscation etc.

• These protocols are often built out of a small number of basic 
primitives, such as one-way functions, trapdoor functions and 
oblivious transfer, for each of which there are many candidate 
constructions based on computational hardness of natural problems 
(such as Factoring, lattice problems, Planted Constraint Satisfaction)



Some Fundamental Questions that Remain

• Can assumptions be reduced even further? Can public-key encryption 
be based on one-way functions, and one-way functions on NP ≠ P? 
There is a rich theory of black-box reductions, but how much does 
this tell us?

• Standard assumptions for tasks such as indistinguishability 
obfuscation? Much progress recently, but we still don’t have a clear 
picture

• More generally, how much can we bridge complexity theory and 
cryptography? By this we mean using assumptions that are about 
standard complexity classes, or about problems that play important 
roles in complexity theory



Impagliazzo’s Five Worlds

NP is worst-
case hard

NP is average-
case hard

One-way functions 
exist

Public-key crypto 
exists

ALGORITHMICA HEURISTICA PESSILAND MINICRYPT CRYPTOMANIA



World Annihilation?

• Current proof techniques cannot properly distinguish between 
Algorithmica and Cryptomania: we might live in a world where 
everything is easy or we might live in a world where problems are 
generically hard

• However, we could hope to simplify the picture by ruling out 
intermediate worlds



A Dream Scenario for Foundations of Crypto

• Minimal Foundations for Cryptography: For each cryptographic 
primitive, find complexity-theoretic hardness assumptions that are 
both necessary and sufficient, in both classical and post-quantum 
worlds

• These hardness assumptions should relate to natural complexity-
theoretic problems. Average-case hardness assumptions ok, though 
worst-case hardness assumptions would be better

• Potential way to attack longstanding open problems, eg., annihilating 
Impagliazzo’s worlds



The Role of Meta-Complexity

• Which computational problems to consider when working toward the 
dream scenario?

• For standard combinatorial NP-hard problems, it seems hard to come 
up with natural distributions for which hardness can be connected to 
crypto primitives

• For structured problems such as Factoring or LWE, it is unclear 
whether their hardness gives a characterization of any given crypto 
primitive

• Most suitable problems seem to be meta-complexity problems



What is Meta-Complexity?

• Complexity of computational problems that are themselves about 
complexity, eg., the Minimum Circuit Size Problem (MCSP) and the 
problem K of determining the Kolmogorov complexity of a string

• These problems seem both hard to solve and hard to understand

• In some sense, these problems are about measuring the inherent 
randomness/lack of structure in an object, which does seem relevant 
to cryptography

• A nice feature of these problems is that the uniform distribution is a 
candidate hard distribution



Meta-Complexity Problems

• MCSP: Given the truth table of a Boolean function F, and a parameter s, 
does F have Boolean circuits of size s?

• K: Given a string x and a parameter s, does x have Kolmogorov complexity 
at most s?

• K(x) = min{|p|: U(p, ε) = x} (where U is a universal Turing machine we fix in advance)

• Kt: Given a string x and a parameter s, does x have time t-bounded 
Kolmogorov complexity at most s (where t is a polynomially bounded 
function we fix in advance)?

• Kt(x) = min{|p|: U(p, ε) outputs x within t(|x|) steps}

• Kt: Given a string x and a parameter s, is Kt(x) [Levin84] at most s?
• Kt(x) = min{|p|+log(t): U(p, ε) outputs x within t steps}



Meta-Complexity Problems 
(Parameterized Versions)

• MCSP[s]: Given the truth table of a Boolean function F, does F have 
Boolean circuits of size s?

• K[s]: Given a string x, does x have Kolmogorov complexity at most s?
• K(x) = min{|p|: U(p, ε) = x} (where U is a universal Turing machine we fix in 

advance)

• Kt[s]: Given a string x, does x have time t-bounded Kolmogorov 
complexity at most s (where t is a polynomially bounded function we 
fix in advance)?

• Kt(x) = min{|p|: U(p, ε) outputs x within t(|x|) steps}

• Kt[s]: Given a string x, is Kt(x) [Levin84] at most s?
• Kt(x) = min{|p|+log(t): U(p, ε) outputs x within t steps}



Questions

• What is the complexity of these problems? Are they hard for natural 
complexity classes? Are they hard unconditionally for weak models of 
computation?

• How do these problems relate to each other?

• How is the complexity of these problems relevant to cryptography, 
learning theory, circuit complexity, proof complexity, etc.?



Computational Problems about Complexity

• MCSP: Given the truth table of a Boolean function F, and a parameter s, 
does F have Boolean circuits of size s?

• In NP; unknown if NP-complete

• K: Given a string x and a parameter s, does x have Kolmogorov complexity 
at most s? 

• Uncomputable

• Kt: Given a string x and a parameter s, does x have time t-bounded 
Kolmogorov complexity at most s (where t is a polynomially bounded 
function we fix in advance)? 

• In NP; unknown if NP-complete

• Kt: Given a string x and a parameter s, is Kt(x) at most s? 
• In EXP; complete for EXP with respect to poly-size reductions [ABKvMR06]



Some Historical Landmarks

• Pre-history: [Trakhtenbrot84] surveyed how meta-complexity was a focus 
of research in the Soviet world from as early as the 1950s

• Natural Proofs:  the “natural proofs” barrier of Razborov and Rudich [RR97] 
indicated deep links between meta-complexity, cryptography and proof 
complexity

• The Minimum Circuit Size Problem: first defined and studied by Kabanets
and Cai [KC00]

• Power from Random Strings: [ABKvMR06] showed that natural variants of 
Kolmogorov complexity are complete for standard classes such as PSPACE
and EXP

• Learning from Natural Proofs: [CIKK16] showed how to get learning 
algorithms for a circuit class C from natural proofs useful against C
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Meta-Complexity and Crypto

• The existence of one-way functions (OWFs) turns out to be closely 
related to the average-case complexity of meta-complexity problems

• The first such connection is implicit in the “Natural Proofs” paper of 
Razborov and Rudich [RR97] 

• They implicitly show that if OWFs exist, then for each  ε > 0, 
MCSP[2εn] is zero-error hard on average over the uniform distribution



Average-Case Complexity of MCSP

• There is a natural distribution on inputs to MCSP, namely the uniform 
distribution

• However, under this distribution, MCSP[s] is highly biased (since most 
Boolean functions are hard) for any reasonable s

• Hence we adopt a zero-error notion of average-case complexity
• We say MCSP[s] is average-case hard if for any sequence of polynomial-size 

Boolean circuits that, on each input, either answer correctly or output ‘?’, 
there is a negligible fraction of inputs on which a non-’?’ answer is given

• Proposition [HS17]: MCSP[2εn] is average-case hard iff natural proofs 
against SIZE(2εn) do not exist



Natural Proofs: Main Theorem of [RR97]

Functions in 
SIZE(2εn)

Hard 
functions

Q (decidable 
in poly size)

Natural
proof 
against 
SIZE(2εn)

Lemma [GGM86]: If one-way functions exist, then for each ε > 0 there is 
pseudorandom function family in SIZE(2εn) against SIZE(2O(n))

Q distinguishes random from pseudorandom, 
and is poly-time computable. Contradiction!

Pseudorandom 
functions



OWFs and Hardness of MCSP

• [RR97] result shows that OWFs imply average-case hardness of MCSP

• Could there be a converse? If so, zero-error average-case hardness  of 
MCSP would be a characterizing hardness assumption for OWFs, and 
we would make progress toward our dream scenario

• In [S20], I showed that this is the case if a certain “Universality 
Conjecture” about pseudorandom sets supported on easy functions 
holds. This would yield a very clean picture, with equivalences 
between hardness of MCSP for various size parameters, existence of 
OWFs and impossibility of learning circuits over the uniform dist

• However, status of the conjecture is unclear



The Liu-Pass Breakthrough

• Liu and Pass [LP20] obtained an unconditional characterization of 
one-way functions by hardness of a meta-complexity problem!

• They work with (the function version of) Kt rather than with MCSP, 
and crucially use bounded-error average-case hardness rather than 
zero-error average-case hardness

• We say that Kt is mildly average-case hard to compute if any 
probabilistic poly-time algorithm A fails to compute Kt on at least an 
inverse polynomial fraction of instances

• Theorem [LP20]: There is poly bounded t such that Kt is mildly 
average-case hard to compute iff OWFs exist



The Liu-Pass Construction

• The construction of OWF f is very direct: Given p of length n and an 
integer r in [n], f(p,r) = (Ut(p|r, ε) , r), where p|r is the r-bit prefix of p

• Intuitively, we just run the r-bit prefix of the input program for t steps 
and output the answer together with r 

• To show that mild average-case hardness of Kt implies that f is a weak 
OWF, suppose that some probabilistic poly time algorithm A inverts f
on almost all instances

• We can compute the Kt complexity of x for almost all instances x by running 
the inversion algorithm on (x,r) for all r in [n], and outputting the minimum r 
for which the inversion algorithm succeeds



The Liu-Pass Construction

• The construction of OWF f is very direct: Given p of length n and an 
integer r in [n], f(p,r) = (Ut(p|r, ε) , r), where p|r is the r-bit prefix of p

• Intuitively, we just run the r-bit prefix of the input program for t steps 
and output the answer together with r 

• To show that Kt is mildly average-case hard if f is an OWF, use [HILL99] 
to construct PRG G based on f and use a presumed average-case 
algorithm for Kt to break G

• This is not straightforward because the average-case algorithm is bounded-
error – some work is needed to make sure the generator is “entropy-
preserving”



Takeaways from Liu-Pass 

• Proof of principle that standard crypto primitives can be characterized 
by complexity assumptions on natural problems

• Raises the question of whether average-case hardness of other meta-
complexity problems is also connected to crypto?

• Yields some non-trivial robustness results for the Kt problem
• The functional version and the decision versions for s = n-O(log(n)) are 

equivalent in complexity



How about MCSP?

• It would be very interesting to show an analogue of [LP20] for MCSP 

• One challenge with working with MCSP is that circuit size is not 
known to be tightly concentrated around its expectation, and the 
tight concentration of time-bounded Kolmogorov complexity plays a 
crucial role in [LP20] 

• In [RS21], we consider the MKTP problem, which is a Kolmogorov 
version of MCSP [Allender01]

• Theorem [RS21]: MKTP is mildly hard on average iff there are OWFs in 
NC0



How about MCSP?

• Theorem [RS21]: MKTP is mildly hard on average iff there are OWFs in 
NC0

• We crucially use the fact that “typical” strings are computed from 
their shortest programs in a small amount of time, which then allows 
us to exploit the randomizing polynomials machinery of [AIK06] 

• We also derive OWFs in NC0 from exponential average-case hardness 
of MCSP, and a partial converse as well, but we don’t get an 
equivalence in this case

• Moreover, we give fine-grained equivalences enabling us to get OWFs 
with almost maximal hardness from plausible meta-complexity 
assumptions



The Case of Kt

• Kt is complete for EXP, and hence we might not expect its average-
case complexity to be related to crypto

• Somewhat surprisingly, the mild average-case hardness of Kt also 
turns out to be equivalent to OWFs [RS21, LP21] !

• Intuitively, the reason is that “typical” strings are produced from their optimal 
programs in polynomial time, and hence the average-case complexity of Kt
and the average-case complexity of Kpoly behave similarly

• [LP21] build on earlier work of [ABKvMR06] to show that zero-error
average-case hardness of Kt is equivalent to EXP ≠ BPP!



A Different Approach to Characterizing OWFs

• [LP20] and approaches that build on it use hardness assumptions 
tailored to a specific distribution, i.e., the uniform distribution. Can 
similar results be shown for other distributions?

• Theorem [IRS22] : The following are equivalent
• OWFs exist
• Kolmogorov complexity is hard to ω(log(n))-additively approximate over some 

samplable distribution
• Kolmogorov complexity is hard to n1-ε-multiplicatively approximate over some 

samplable distribution for some ε > 0

• Note that Kolmogorov complexity is uncomputable in the worst case, 
yet its average-case complexity characterizes OWFs!



OWFs from Samplers

• The approach in [IRS22] departs fundamentally from the approach in 
[LP20, LP21, RS21]

• In the earlier line of work, the OWF is tailored to the parameters of the meta-
complexity problem, and the security of the OWF follows from the average-
case hardness assumption over the uniform distribution

• In [IRS22], the OWF is defined based on the sampler for the hard distribution, 
and the security of the OWF corresponds to the parameters of the meta-
complexity problem

• The latter approach shows that meta-complexity problems are very 
robust in terms of average-case complexity, when considering 
hardness with respect to samplable distributions



An Equivalence for MCSP

• Theorem [IRS22]: For any ε > 0, OWFs exist iff Circuit Size is hard to                        
N3ε-multiplicatively approximate over some Nε-locally samplable
distribution

• Our techniques seem to require that the meta-complexity notion is 
“stronger” than the sampler in terms of computational power
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Connecting i0 and MCSP

• Theorem [IKV18, KMNPRY14]: If MCSP in ZPP and iO exists, then SAT
in ZPP

• Note that NP-hardness of MCSP is a long-standing open problem –
the theorem above shows that MCSP is “effectively” NP-complete if 
iO exists



Secret Sharing and the Quest for NP-
Completeness

• Theorem [H22]: The “partial function” version of MCSP is NP-
complete

• Partial function version: the truth table is allowed to have ? in 
addition to 0 and 1

• Proof of theorem relies heavily on results about monotone secret 
sharing
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Open Problems

• It would be interesting to have characterizations of other crypto 
notions using meta-complexity, eg., public-key crypto or XiO

• Are there characterizations of OWFs or other crypto primitives based 
on worst-case complexity of natural computational problems?

• Are there examples of other natural average-case hard problems, 
perhaps even combinatorial ones, that characterize OWFs? This 
would be analogous to Karp’s theory of NP-completeness

• Explore other applications of iO and other crypto assumptions in 
complexity theory



Open Problems

• Might it be possible to build practical cryptosystems from minimal 
assumptions?

• Does the meta-complexity perspective lead to new possibilities for 
post-quantum crypto?

• There has been a lot of recent work on connections between TFNP
and crypto – can we identify any interesting and relevant meta-
complexity problems in TFNP?
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