
Universal Reductions
Reductions relative to stateful oracles

Benjamin Chan

Joint work with Cody Freitag & Rafael Pass

Cornell Tech
November 10 2022

Suppose we had a weak OWF f

f

We want to build a strong OWF f’

∀ A,
Pr[A inverts f] < 3/4

∀ A,
Pr[A inverts f] = negl(.)f’

How do we prove the security of f’?

How do we prove the security of f’? By security reduction.

Suppose ∃ some A that inverts f’ with 1/poly probability:

A f’

f

Then ∃ A’ that inverts f with probability >3/4:

A’

Suppose ∃ some A that inverts f’ with 1/poly probability:

A f’

How do we prove the security of f’? By security reduction.

Suppose ∃ some A that inverts f’ with 1/poly probability:

A f’

Contradiction! (with the weak one-wayness of f)

How do we prove the security of f’? By security reduction.

f

Then ∃ A’ that inverts f with probability >3/4:

A’

Suppose ∃ some A that inverts f’ with 1/poly probability:

A f’

Contradiction! (with the weak one-wayness of f)

How do we prove the security of f’? By security reduction.

Observe:
This proof is only useful
“in the real world”
if our model for attackers
correctly captures the
behavior of “real-life”
adversaries!f

Then ∃ A’ that inverts f with probability >3/4:

A’

Suppose ∃ some A that inverts f’ with 1/poly probability:

A f’

Contradiction! (with the weak one-wayness of f)

How do we prove the security of f’? By security reduction.

f

Then ∃ A’ that inverts f with probability >3/4:

A’

Extended Physical
Church Turing
Hypothesis:
All “real-life” attackers are
captured by PPT (resp.
QPT) Turing Machines

f

Then RA inverts f with probability >3/4:

RA

A f’

Contradiction! (with the weak one-wayness of f)

How do we prove the security of f’? By security reduction.

Classically, we can write
black-box reductions RA:
R queries A many times

Suppose ∃ some PPT A that inverts f’ with 1/poly probability:

f

Then RA inverts f with probability >3/4:

RA

A f’

Contradiction! (with the weak one-wayness of f)

How do we prove the security of f’? By security reduction.

say we want to invert y = f(x):
A(~, ~, y, ~, ~)
A(y, ~, ~, ~, ~)
A(~, y, ~, ~, ~)
A(~, ~, y, ~, ~)
A(~, ~, ~, y, ~)

Suppose ∃ some PPT A that inverts f’ with 1/poly probability:

Classically, we can write
black-box reductions RA:
R queries A many times

Suppose ∃ some PPT A that inverts f’ with nonnegl probability:

f

Then RA inverts f with probability >3/4:

RA

A f’

Contradiction! (with the weak one-wayness of f)

How do we prove the security of f’? By security reduction.

say we want to invert y = f(x):
A(~, ~, y, ~, ~)
A(y, ~, ~, ~, ~)
A(~, y, ~, ~, ~)
A(~, ~, y, ~, ~)
A(~, ~, ~, y, ~)

Takeaway:
RA utilizes many

independent copies of A!

Classically, we can write
black-box reductions RA:
R queries A many times

Suppose ∃ some PPT A that inverts f’ with nonnegl probability:

f

Then RA inverts f with probability >3/4:

RA

A f’

Contradiction! (with the weak one-wayness of f)

How do we prove the security of f’? By security reduction.

say we want to invert y = f(x):
A(~, ~, y, ~, ~)
A(y, ~, ~, ~, ~)
A(~, y, ~, ~, ~)
A(~, ~, y, ~, ~)
A(~, ~, ~, y, ~)

Takeaway:
RA utilizes many

independent copies of A!

This is possible because
we model A as an

algorithm, which can be
copied and run again.

Classically, we can write
black-box reductions RA:
R queries A many times

What if we can’t run A many times?

Maybe A is your “next door neighbor” who happens to break f’:

f

A
But you only have “interactive access” to when trying to break f:

f’

R A

Cody

What if we can’t run A many times?

f

A
But you only have “interactive access” to when trying to break f:

f’

R A

Cody

Suppose A can only be accessed interactively.

Maybe A is your “next door neighbor” who happens to break f’:

You have no clue how
A works.

f

A
But you only have “interactive access” to when trying to break f:

f’

R A

Cody

You don’t know A’s
code…

Suppose A can only be accessed interactively.

Maybe A is your “next door neighbor” who happens to break f’:

You have no clue how
A works.

f

A
But you only have “interactive access” to when trying to break f:

f’

R A

Cody

You don’t know A’s
code… You can’t “copy” A

Suppose A can only be accessed interactively.

Maybe A is your “next door neighbor” who happens to break f’:

You have no clue how
A works.

f

A
But you only have “interactive access” to when trying to break f:

f’

R A

Cody

You have no clue how
A works.

You don’t know A’s
code… You can’t “copy” A

Suppose A can only be accessed interactively.
No “rewinding” A

Maybe A is your “next door neighbor” who happens to break f’:

Maybe A is your “next door neighbor” who happens to break f’:

f

A
But you only have “interactive access” to when trying to break f:

f’

R A

Cody

You don’t know A’s
code… You can’t “copy” A

Suppose A can only be accessed interactively.
No “rewinding” A

A might have
access to “cosmic

resources” as far as
you’re concerned

You have no clue how
A works.

Maybe A is your “next door neighbor” who happens to break f’:

f

A
But you only have “interactive access” to when trying to break f:

f’

R A

Cody

You have no clue how
A works.

You don’t know A’s
code… You can’t “copy” A

Suppose A can only be accessed interactively.
No “rewinding” A

A might have
access to “cosmic

resources” as far as
you’re concerned

Claim: we need to revisit
classical proofs!

A
Cody

(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

Looking forward, even just sending Cody
multiple queries…

A
Cody

(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

Looking forward, even just sending Cody
multiple queries…

…might break down, since Cody is stateful.

A
Cody

(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

…might break down, since Cody is stateful.

A stateful adversary will remember that they’ve already answered a query.
“That’s enough winning for today!”

Looking forward, even just sending Cody
multiple queries…

A
Cody

(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

…might break down, since Cody is stateful.

Looking forward, we will assume that the adversary wins “repeatedly” when
given fresh challenges. But even this is non-trivial to exploit.

Looking forward, even just sending Cody
multiple queries…

“Stateful attackers” are already well motivated:

Quantum computers break existing proof techniques:

● No-cloning theorem: cannot copy quantum advice.
● Can’t be “rewound” when playing interactive security games

“Stateful attackers” are already well motivated:

Quantum computers break existing proof techniques:

● No-cloning theorem: cannot copy quantum advice.
● Can’t be “rewound” when playing interactive security games

Theoretically:

● We prefer a theory of cryptography that makes as few assumptions as possible!
● Can we get by without assuming that attackers are PPT (or QPT)?

We propose a reduction-based
theory of computational cryptography

with minimal assumptions on
 the Nature of real-world attackers.

This Talk:

Next up: Defining Universal Reductions

After that: Feasibility and Impossibility Results

Defining Universal Reductions

A ↔ Nat
“Attacker”

uniform PPT
“Nature”
nonuniform any choice of runtime
Stateful

“Augmented Adversary” (A, Nat)

A new model of attacker: “Augmented Adversaries”

A ↔ Nat
“Attacker”

uniform PPT
“Nature”
nonuniform any choice of runtime
Stateful

“Augmented Adversary” (A, Nat)

Some unknown power in the
cosmos to which we only have

“interactive access”

A new model of attacker: “Augmented Adversaries”

A ↔ Nat
“Attacker”

uniform PPT
“Nature”
nonuniform any choice of runtime
Stateful

“Augmented Adversary” (A, Nat)

A classic attacker
that uses Nature

to break some scheme

Some unknown power in the
cosmos to which we only have

“interactive access”

C ↔ A ↔ Nat
“Attacker”

uniform PPT
“Nature”
nonuniform any choice of runtime

“Challenger”
uniform PPT

outputs “win”/“lose”

Augmented Security Game

C ↔ A ↔ Nat
“Attacker”

uniform PPT
“Nature”
nonuniform any choice of runtime

“Challenger”
uniform PPT

outputs “win”/“lose”

Augmented Security Game

Observe: the attacker can
alter the state of Nature
during the interaction.
This is intentional and a key
property of our definition.

Note: all communication is
classical (and C/A are PPT)
because we want universal
reductions to work in a PPT
world!

C ↔ A ↔ Nat(⍴)
“Attacker”

uniform PPT
“Nature”
nonuniform any choice of runtime

“Challenger”
uniform PPT

outputs “win”/“lose”

Robust winning: “winning repeatedly”

Interaction prefix ⍴:

a transcript of messages previously

sent to Nat before the beginning of

execution, including coins flipped by

Nat.

Recall: We want adversaries that win “repeatedly” when given fresh challenges.

C ↔ A ↔ Nat(⍴)
“Attacker”

uniform PPT
“Nature”
nonuniform any choice of runtime

“Challenger”
uniform PPT

outputs “win”/“lose”

Robust winning: “winning repeatedly”

Definition: (A, Nat) has robust advantage
a(.) for C, if ∀ interaction prefixes ⍴, ∀λ:
Pr[(A, Nat(⍴)) wins C] ≥ a(λ)

Interaction prefix ⍴:

a transcript of messages previously

sent to Nat before the beginning of

execution, including coins flipped by

Nat.

Universal Reductions

Suppose (A, Nat) has robust advantage a(·) for C

f(x)

f-1(f(x))C’ A’

C A
Then (A’, Nat) has robust advantage ε(·,a(·)) for C’.

Nat

Nat

∃ an ε-universal reduction from C to C’ if ∀ PPT A, ∃ PPT A’ s.t. ∀Nat:

Universal Reductions

Suppose (A, Nat) has robust advantage a(·) for C

f(x)

f-1(f(x))C’ A’

C A
Then (A’, Nat) has robust advantage ε(·,a(·)) for C’.

Nat

Nat

∃ an ε-universal reduction from C to C’ if ∀ PPT A, ∃ PPT A’ s.t. ∀Nat:

A’ can now use the fact that
(A, Nat) wins “on demand”.

This is the central notion in our paper.

Universal Reductions

Suppose (A, Nat) has robust advantage a(·) for C

f(x)

f-1(f(x))C’ A’

C A
Then (A’, Nat) has robust advantage ε(·,a(·)) for C’.

Nat

Nat

∃ an ε-universal reduction from C to C’ if ∀ PPT A, ∃ PPT A’ s.t. ∀Nat:

A’ can now use the fact that
(A, Nat) wins “on demand”.

This is the central notion in our paper.

Are Universal Reductions universal? Certainly, universal reductions imply reductions w.r.t. (nu)PPT, (nu)QPT.

Quick Comparisons

Relativized Reductions

● A relativized reduction gives attackers AO access to some arbitrary oracle O
● O is modeled as a (perhaps uncomputable) function
● Universal reductions can be viewed as relativized reductions for stateful,

interactive oracles O (in contrast to a non-interactive, stateless oracle).

Universal Composability [Canetti00]

● Universal reductions are syntactically similar to UC with unbounded
environments

● Semantically very different: our notion is reduction-based & computational.
(For instance, UC security proofs can rewind the environment [e.g. CLP10])

What can we do with universal reductions?

Warmup: a basic feasibility result

Thm 1. Classical 1-shot straight-line black-box reductions imply universal reductions.

> Corollaries: Witness Indistinguishability/PRG Length Extension/PRFs/SKE/Commitments from PRGs

> A straightforward argument, since a 1-shot reduction uses Nature once.

Warmup: a basic feasibility result

Thm 1. Classical 1-shot straight-line black-box reductions imply universal reductions.

> A straightforward argument, since a 1-shot reduction uses Nature once.

What about problems that have classical reductions
invoking the attacker multiple times?

> Corollaries: Witness Indistinguishability/PRG Length Extension/PRFs/SKE/Commitments from PRGs

Unfortunately, not all is possible…

Thm 2 (Impossibility of Hardness Amplification):
There is no universal black-box reduction from the OWF security of gn(x1…xn) = (g(x1), … , g(xn))
to the OWF security of g(x) that uses only black-box access to g, and that works for any function g.

Thm 3 (Impossibility of a Goldreich-Levin-Style Theorem):
There is no universal black-box reduction from the security of the hardcore predicate h(x,r) = <x,r>
w.r.t. f(x, r) = (g(x), r) to the OWF security of g that uses only black-box access to g and that works
for any function g.

Thm 2 (Impossibility of Hardness Amplification):
There is no universal black-box reduction from the OWF security of gn(x1…xn) = (g(x1), … , g(xn))
to the OWF security of g(x) that uses only black-box access to g, and that works for any function g.

Thm 3 (Impossibility of a Goldreich-Levin-Style Theorem):
There is no universal black-box reduction from the security of the hardcore predicate h(x,r) = <x,r>
w.r.t. f(x, r) = (g(x), r) to the OWF security of g that uses only black-box access to g and that works
for any function g.

Let’s go over the intuition of the proofs to
understand universal reductions better.

Unfortunately, not all is possible…

Recall: classical Hardness Amplification

Strong OWF Inverter
y1, … , yn

Let g be a weak OWF. Then gn = (g(x
1

), … , g(x
n
)) is a strong OWF.

x1, … , xn

Recall: classical Hardness Amplification

Strong OWF Inverter
y1, … , yn

Let g be a weak OWF. Then gn = (g(x
1

), … , g(x
n
)) is a strong OWF.

x1, … , xn

Proof: Suppose gn is not a strong OWF…

Pr[win] = small

Recall: classical Hardness Amplification

Strong OWF Inverter

Let g be a weak OWF. Then gn = (g(x
1

), … , g(x
n
)) is a strong OWF.

Proof: Suppose gn is not a strong OWF…

Pr[win] = small

y = g(x)

x

Sends many queries
with the same y = g(x)
embedded in random
locations

weak OWF inverter

Pr[invert] = large

(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

(y, ~, ~, ~, ~)

repeat!

Strong OWF Invertery = g(x)

x

Sends many queries
with the same y = g(x)
embedded in random
locations

weak OWF inverter
(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

(y, ~, ~, ~, ~)

repeat!

Can we write a universal reduction?

Strong OWF Invertery = g(x)

x

Sends many queries
with the same y = g(x)
embedded in random
locations

weak OWF inverter
(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

(y, ~, ~, ~, ~)

repeat!

Can we write a universal reduction?

Suppose gn is not a strong OWF…

NatA
“Robust winning”

Strong OWF Invertery = g(x)

x

Sends many queries
with the same y = g(x)
embedded in random
locations

weak OWF inverter
(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

(y, ~, ~, ~, ~)

repeat!

Can we write a universal reduction?

Suppose gn is not a strong OWF…

NatA
Consider the following (A, Nat):

● A forwards messages

● Nat keeps a list Seen of previously
processed subqueries yi

● Nat on seeing (y1, y2, …, yn),

○ If any yi ∈ Seen, Nat replies “reject”

○ Else, Nat replies with correct
preimage with desired Pr.

○ Finally, add each yi to Seen

Strong OWF Invertery = g(x)

x

Sends many queries
with the same y = g(x)
embedded in random
locations

weak OWF inverter
(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

(y, ~, ~, ~, ~)

repeat!

Can we write a universal reduction?

Suppose gn is not a strong OWF…

NatA

Since Nat is stateful,
if it previously saw y, it can ignore
future correlated queries
(e.g. that contain y.)

Consider the following (A, Nat):

● A forwards messages

● Nat keeps a list Seen of previously
processed subqueries yi

● Nat on seeing (y1, y2, …, yn),

○ If any yi ∈ Seen, Nat replies “reject”

○ Else, Nat replies with correct
preimage with desired Pr.

○ Finally, add each yi to Seen

Strong OWF Invertery = g(x)

x

Sends many queries
with the same y = g(x)
embedded in random
locations

weak OWF inverter
(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

(y, ~, ~, ~, ~)

repeat!

Can we write a universal reduction?

Suppose gn is not a strong OWF…

NatA

Since Nat is stateful,
if it previously saw y, it can ignore
future correlated queries
(e.g. that contain y.)

Only the first query
will be useful!

Consider the following (A, Nat):

● A forwards messages

● Nat keeps a list Seen of previously
processed subqueries yi

● Nat on seeing (y1, y2, …, yn),

○ If any yi ∈ Seen, Nat replies “reject”

○ Else, Nat replies with correct
preimage with desired Pr.

○ Finally, add each yi to Seen

Strong OWF Invertery = g(x)

x

Sends many queries
with the same y = g(x)
embedded in random
locations

weak OWF inverter
(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

(y, ~, ~, ~, ~)

repeat!

Can we write a universal reduction?

Suppose gn is not a strong OWF…

NatA

Only the first query
will be useful!

Observe:
(A, Nat) is still robustly winning!

Probability a fresh challenge

coincides with “Seen” strings is tiny

Consider the following (A, Nat):

● A forwards messages

● Nat keeps a list Seen of previously
processed subqueries yi

● Nat on seeing (y1, y2, …, yn),

○ If any yi ∈ Seen, Nat replies “reject”

○ Else, Nat replies with correct
preimage with desired Pr.

○ Finally, add each yi to Seen

Strong OWF Invertery = g(x)

x

Sends many queries
with the same y = g(x)
embedded in random
locations

weak OWF inverter
(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

(y, ~, ~, ~, ~)

repeat!

Can we write a universal reduction?

Suppose gn is not a strong OWF…

NatA

Only the first query
will be useful!

Observe:
(A, Nat) is still robustly winning!

Probability a fresh challenge

coincides with “Seen” strings is tiny

Consider the following (A, Nat):

● A forwards messages

● Nat keeps a list Seen of previously
processed subqueries yi

● Nat on seeing (y1, y2, …, yn),

○ If any yi ∈ Seen, Nat replies “reject”

○ Else, Nat replies with correct
preimage with desired Pr.

○ Finally, add each yi to Seen

In the full proof, we show that any reduction –
not just Yao’s– that is black-box in g will have to

send correlated queries to (A, Nat).
Thus, similarly broken!

Indeed,
Hardness amplification is possible for

specific one-way functions!

Theorem 4 (Informal):
Let f be a re-randomizable OWF. Then Yao’s reduction is a universal reduction.

> Rerandomizability helps us fool Nature into thinking that it is always playing “fresh
instances” of the security game.

Theorem 4 (Informal):
Let f be a re-randomizable OWF. Then Yao’s reduction is a universal reduction.

> Rerandomizability helps us fool Nature into thinking that it is always playing “fresh
instances” of the security game.

Writing universal reductions requires new techniques!

Indeed,
Hardness amplification is possible for

specific one-way functions!

Theorem 4 (Informal):
Let f be a re-randomizable OWF. Then Yao’s reduction is a universal reduction.

> Rerandomizability helps us fool Nature into thinking that it is always playing “fresh
instances” of the security game.

Writing universal reductions requires new techniques!

Indeed,
Hardness amplification is possible for

specific one-way functions!

for now, let’s try to climb a different mountain…

Briefly: Restricting Nature

Can we get non-trivial results by imposing constraints on Nature?

Nat

A
It may be presumptuous to
think that C or A can influence
the future behavior of Nat.

C

Small Games, Large World

A

C
1

A

C
2

A

C
3

A

C
4

A

C
5

...but has a short term memory, and behaves independently of prior interactions?

What if Nat evolves over time (# of queries it has received)...

Time-Evolving Windowed Natures

Theorem 5 (informal): Time-Evolving k-window Natures.
Suppose the behavior of “Nature” depends only on the number of messages it has seen, and the
last k messages it has seen. Then classical non-adaptive straightline black-box reductions imply
universal reductions w.r.t. this Nature.

We can think of (A, Nat) as a sequence of attackers A
1

 A
2

 A
3

 …

How do we turn a “sequence of attackers” that must be
queried in order into a single “restartable” adversary?

Time-Evolving Windowed Natures

Theorem 5 (informal): Time-Evolving k-window Natures.
Suppose the behavior of “Nature” depends only on the number of messages it has seen, and the
last k messages it has seen. Then classical non-adaptive straightline black-box reductions imply
universal reductions w.r.t. this Nature.

RC’ A
1

A
2

A
3

A
4

A
5

(A, Nat)

A*
A*
A*
A*
A*

classic
non-adaptive
reduction

q
1

q
2

q
3

q
4

q
5

Time-Evolving Windowed Natures

Theorem 5 (informal): Time-Evolving k-window Natures.
Suppose the behavior of “Nature” depends only on the number of messages it has seen, and the
last k messages it has seen. Then classical non-adaptive straightline black-box reductions imply
universal reductions w.r.t. this Nature.

RC’ A
1

A
2

A
3

A
4

A
5

(A, Nat)

A*
A*
A*
A*
A*

classic
non-adaptive
reduction

Goal: emulate some “classical restartable”

A* in the view of R

q
1

q
2

q
3

q
4

q
5

Time-Evolving Windowed Natures

Theorem 5 (informal): Time-Evolving k-window Natures.
Suppose the behavior of “Nature” depends only on the number of messages it has seen, and the
last k messages it has seen. Then classical non-adaptive straightline black-box reductions imply
universal reductions w.r.t. this Nature.

RC’ A
1

A
2

A
3

A
4

A
5

A*
A*
A*
A*
A*

classic
non-adaptive
reduction

Goal: emulate some “classical restartable”

A* in the view of R

q
1

q
2

q
3

q
4

q
5

Send each query

to a random Ai Nature is going to reply

to queries out of order

as it evolves

A
1

, A
2

, A
3

…

> Allowed since order of

q
1

 … q
5

 doesn’t matter,

by nonadaptivity.

Time-Evolving Windowed Natures

Theorem 5 (informal): Time-Evolving k-window Natures.
Suppose the behavior of “Nature” depends only on the number of messages it has seen, and the
last k messages it has seen. Then classical non-adaptive straightline black-box reductions imply
universal reductions w.r.t. this Nature.

RC’ A
1

A
2

A
3

A*
A*
A*
A*
A*

classic
non-adaptive
reduction

Goal: emulate some “classical restartable”

A* in the view of R

q
1

q
2

q
3

q
4

q
5 ...

A
m

Reduce collision

probability by

choosing from a

long sequence of

attackers!

A
4

In conclusion: alot to unpack.

Yet, at the same time, new techniques are clearly necessary.

● PRGs from OWFs?
● MPC?

We have hope for a “future-proof” notion of cryptography…

Takeaway: we can write meaningful security proofs w.r.t. stateful attackers!

Universal Reductions:
An Unexplored Universe.

Thank You!

