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Suppose we had a weak OWF f 

f

We want to build a strong OWF f’ 

∀ A, 
Pr[A inverts f] < 3/4

∀ A, 
Pr[A inverts f] = negl(.)f’
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Contradiction! (with the weak one-wayness of f) 

How do we prove the security of f’? By security reduction.

Observe:
This proof is only useful 
“in the real world”
if our model for attackers 
correctly captures the 
behavior of “real-life” 
adversaries!f
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Suppose ∃ some A  that inverts f’ with 1/poly probability: 

A f’

Contradiction! (with the weak one-wayness of f) 

How do we prove the security of f’? By security reduction.

f

Then ∃ A’ that inverts f with probability >3/4:

A’ 

Extended Physical 
Church Turing 
Hypothesis:
All “real-life” attackers are 
captured by PPT (resp. 
QPT) Turing Machines
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Suppose ∃ some PPT A  that inverts f’ with nonnegl probability: 

f

Then RA inverts f with probability >3/4:

RA 

A f’

Contradiction! (with the weak one-wayness of f) 

How do we prove the security of f’? By security reduction.

say we want to invert y = f(x):
A(~, ~, y, ~, ~)
A(y, ~, ~, ~, ~)
A(~, y, ~, ~, ~)
A(~, ~, y, ~, ~)
A(~, ~, ~, y, ~)

Takeaway:
RA utilizes many 

independent copies of A!

This is possible because 
we model A as an 

algorithm, which can be 
copied and run again.

Classically, we can write 
black-box reductions RA:
R queries A many times
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Maybe A is your “next door neighbor”          who happens to break  f’:

f

A 
But you only have “interactive access” to          when trying to break f:

f’

R A 

Cody

You have no clue how   
A works.

You don’t know    A’s 
code… You can’t “copy” A

Suppose A can only be accessed interactively.
No “rewinding”  A

A might have 
access to “cosmic 

resources” as far as 
you’re concerned

Claim: we need to revisit 
classical proofs!
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…might break down, since Cody is stateful.
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“That’s enough winning for today!”

Looking forward, even just sending Cody
multiple queries…



A 
Cody

(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

…might break down, since Cody is stateful.

Looking forward, we will assume that the adversary wins “repeatedly” when 
given fresh challenges. But even this is non-trivial to exploit.

Looking forward, even just sending Cody
multiple queries…
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“Stateful attackers” are already well motivated:

Quantum computers break existing proof techniques:

● No-cloning theorem: cannot copy quantum advice.
● Can’t be “rewound” when playing interactive security games

Theoretically:

● We prefer a theory of cryptography that makes as few assumptions as possible!
● Can we get by without assuming that attackers are PPT (or QPT)?



We propose a reduction-based 
theory of computational cryptography

with minimal assumptions on
 the Nature of real-world attackers.

This Talk:



Next up: Defining Universal Reductions

After that: Feasibility and Impossibility Results
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A new model of attacker: “Augmented Adversaries”

A ↔  Nat
“Attacker”

uniform PPT
“Nature”
nonuniform any choice of runtime
Stateful

“Augmented Adversary” (A, Nat)

A classic attacker
that uses Nature

to break some scheme

Some unknown power in the 
cosmos to which we only have 

“interactive access”
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C ↔ A ↔  Nat
“Attacker”

uniform PPT
“Nature”
nonuniform any choice of runtime

“Challenger”
uniform PPT

outputs “win”/“lose”

Augmented Security Game

Observe: the attacker can 
alter the state of Nature
during the interaction.
This is intentional and a key 
property of our definition.

Note: all communication is 
classical (and C/A are PPT) 
because we want universal 
reductions to work in a PPT 
world!
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nonuniform any choice of runtime

“Challenger”
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Robust winning: “winning repeatedly”

Interaction prefix ⍴: 

a transcript of messages previously 

sent to Nat before the beginning of 

execution, including coins flipped by 

Nat.

Recall: We want adversaries that win “repeatedly” when given fresh challenges.



C ↔ A ↔  Nat(⍴)
“Attacker”

uniform PPT
“Nature”
nonuniform any choice of runtime

“Challenger”
uniform PPT

outputs “win”/“lose”

Robust winning: “winning repeatedly”

Definition: (A, Nat) has robust advantage 
a(.) for C, if ∀ interaction prefixes ⍴, ∀λ:
Pr[(A, Nat(⍴)) wins C] ≥ a(λ)

Interaction prefix ⍴: 

a transcript of messages previously 

sent to Nat before the beginning of 

execution, including coins flipped by 

Nat.
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Universal Reductions

Suppose (A, Nat) has robust advantage a(·) for C 

f(x)

f-1(f(x))C’ A’ 

C A 
Then (A’, Nat) has robust advantage ε(·,a(·)) for C’.

Nat 

Nat 

∃ an ε-universal reduction from C to C’ if  ∀ PPT A, ∃ PPT A’ s.t.  ∀Nat:

A’ can now use the fact that 
(A, Nat) wins “on demand”.

This is the central notion in our paper.

Are Universal Reductions universal? Certainly, universal reductions imply reductions w.r.t. (nu)PPT, (nu)QPT.



Quick Comparisons

Relativized Reductions

● A relativized reduction gives attackers AO access to some arbitrary oracle O
● O is modeled as a (perhaps uncomputable) function 
● Universal reductions can be viewed as relativized reductions for stateful, 

interactive oracles O (in contrast to a non-interactive, stateless oracle).

Universal Composability [Canetti00]

● Universal reductions are syntactically similar to UC with unbounded 
environments

● Semantically very different: our notion is reduction-based & computational.
(For instance, UC security proofs can rewind the environment [e.g. CLP10])



What can we do with universal reductions?



Warmup: a basic feasibility result

Thm 1. Classical 1-shot straight-line black-box reductions imply universal reductions.

> Corollaries: Witness Indistinguishability/PRG Length Extension/PRFs/SKE/Commitments from PRGs

> A straightforward argument, since a 1-shot reduction uses Nature once.



Warmup: a basic feasibility result

Thm 1. Classical 1-shot straight-line black-box reductions imply universal reductions.

> A straightforward argument, since a 1-shot reduction uses Nature once.

What about problems that have classical reductions 
invoking the attacker multiple times?

> Corollaries: Witness Indistinguishability/PRG Length Extension/PRFs/SKE/Commitments from PRGs



Unfortunately, not all is possible…

Thm 2 (Impossibility of Hardness Amplification): 
There is no universal black-box reduction from the OWF security of gn(x1…xn) = (g(x1), … , g(xn)) 
to the OWF security of g(x) that uses only black-box access to g, and that works for any function g. 

Thm 3 (Impossibility of a Goldreich-Levin-Style Theorem): 
There is no universal black-box reduction from the security of the hardcore predicate h(x,r) = <x,r> 
w.r.t. f(x, r) = (g(x), r) to the OWF security of g that uses only black-box access to g and that works 
for any function g.
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Thm 3 (Impossibility of a Goldreich-Levin-Style Theorem): 
There is no universal black-box reduction from the security of the hardcore predicate h(x,r) = <x,r> 
w.r.t. f(x, r) = (g(x), r) to the OWF security of g that uses only black-box access to g and that works 
for any function g.

Let’s go over the intuition of the proofs to 
understand universal reductions better.

Unfortunately, not all is possible…
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Recall: classical Hardness Amplification

Strong OWF Inverter

Let g be a weak OWF. Then gn = (g(x
1

), … , g(x
n
)) is a strong OWF.

Proof: Suppose gn is not a strong OWF…

Pr[win] = small

y = g(x)

x

Sends many queries 
with the same y = g(x) 
embedded in random 
locations

weak OWF inverter

Pr[invert] = large

(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

(y, ~, ~, ~, ~)

repeat!
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Strong OWF Invertery = g(x)

x

Sends many queries 
with the same y = g(x) 
embedded in random 
locations

weak OWF inverter
(~, ~, y, ~, ~)

(~, ~, ~, y, ~)

(y, ~, ~, ~, ~)

repeat!

Can we write a universal reduction?

Suppose gn is not a strong OWF…

NatA

Only the first query 
will be useful!

Observe: 
(A, Nat) is still robustly winning!

Probability a fresh challenge 

coincides with “Seen” strings is  tiny

Consider the following (A, Nat):

● A forwards messages

● Nat keeps a list Seen of previously 
processed subqueries yi

● Nat on seeing (y1, y2, …, yn), 

○ If any yi ∈ Seen, Nat replies “reject”

○ Else, Nat replies with correct 
preimage with desired Pr. 

○ Finally, add each yi to Seen

In the full proof, we show that any reduction – 
not just Yao’s– that is black-box in g will have to 

send correlated queries to (A, Nat).
Thus, similarly broken!
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Theorem 4 (Informal): 
Let f be a re-randomizable OWF. Then Yao’s reduction is a universal reduction.

> Rerandomizability helps us fool Nature into thinking that it is always playing “fresh 
instances” of the security game.

Writing universal reductions requires new techniques!

Indeed,
Hardness amplification is possible for 

specific one-way functions!

for now, let’s try to climb a different mountain…



Briefly: Restricting Nature

Can we get non-trivial results by imposing constraints on Nature?



Nat

A 
It may be presumptuous to 
think that C or A can influence 
the future behavior of Nat.

C 

Small Games, Large World
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1
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...but has a short term memory, and behaves independently of prior interactions?

What if Nat evolves over time (# of queries it has received)...



Time-Evolving Windowed Natures

Theorem 5 (informal): Time-Evolving k-window Natures.
Suppose the behavior of “Nature” depends only on the number of messages it has seen, and the 
last k messages it has seen. Then classical non-adaptive straightline black-box reductions imply 
universal reductions w.r.t. this Nature.

We can think of (A, Nat) as a sequence of attackers A
1

  A
2

  A
3

  … 

How do we turn a “sequence of attackers” that must be 
queried in order into a single “restartable” adversary?
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Time-Evolving Windowed Natures

Theorem 5 (informal): Time-Evolving k-window Natures.
Suppose the behavior of “Nature” depends only on the number of messages it has seen, and the 
last k messages it has seen. Then classical non-adaptive straightline black-box reductions imply 
universal reductions w.r.t. this Nature.

RC’ A
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A
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5

A*
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A*

classic 
non-adaptive 
reduction

Goal: emulate some “classical restartable” 

A* in the view of R

q
1

q
2

q
3

q
4

q
5

Send each query 

to a random Ai Nature is going to reply 

to queries out of order 

as it evolves

A
1

, A
2

, A
3

…

> Allowed since order of 

q
1

 … q
5

 doesn’t matter, 

by nonadaptivity.



Time-Evolving Windowed Natures

Theorem 5 (informal): Time-Evolving k-window Natures.
Suppose the behavior of “Nature” depends only on the number of messages it has seen, and the 
last k messages it has seen. Then classical non-adaptive straightline black-box reductions imply 
universal reductions w.r.t. this Nature.

RC’ A
1

A
2

A
3

A*
A*
A*
A*
A*

classic 
non-adaptive 
reduction

Goal: emulate some “classical restartable” 

A* in the view of R

q
1

q
2

q
3

q
4

q
5 ...

A
m

Reduce collision 

probability by 

choosing from a 

long sequence of 

attackers!

A
4



In conclusion: alot to unpack.

Yet, at the same time, new techniques are clearly necessary.

● PRGs from OWFs?
● MPC?

We have hope for a “future-proof” notion of cryptography…

Takeaway: we can write meaningful security proofs w.r.t. stateful attackers!



Universal Reductions:
An Unexplored Universe.

Thank You!


