Universal Reductions Reductions relative to stateful oracles

Benjamin Chan

Cornell Tech November 10 2022

Joint work with Cody Freitag & Rafael Pass

Suppose we had a weak OWF f

We want to build a strong OWF **f**'

$$\forall$$
 A,
Pr[A inverts f] = negl(.)

How do we prove the security of **f**?

Suppose \exists some A that inverts f' with 1/poly probability:

Suppose \exists some A that inverts f' with 1/poly probability:

Then $\exists A'$ that inverts **f** with probability >3/4:

Suppose \exists some A that inverts f' with 1/poly probability:

Then $\exists A'$ that inverts **f** with probability >3/4:

Suppose \exists some A that inverts f' with 1/poly probability:

f' _____ A

Then $\exists A'$ that inverts **f** with probability >3/4:

Observe:

This proof is only useful "in the real world" if our model for attackers correctly captures the behavior of "real-life" adversaries!

Suppose \exists some A that inverts f' with 1/poly probability:

f _____ Δ'

Then $\exists A'$ that inverts **f** with probability >3/4:

Extended Physical Church Turing Hypothesis: All "real-life" attackers are captured by PPT (resp. QPT) Turing Machines

Suppose **∃** some **PPTA** that inverts **f**' with **1**/poly probability:

Suppose **B** some **PPTA** that inverts **f**' with **1/poly** probability:

Suppose **3** some **PPTA** th

Then R^A inverts f with prob

Takeaway: **R**^A utilizes many independent copies of **A**!

This is possible because we model **A** as an algorithm, which can be copied and run again.

Classically, we can write black-box reductions R^A: R queries A many times

ability:

say we want to invert $\mathbf{y} = \mathbf{f}(\mathbf{x})$: $A(\sim, \sim, \mathbf{y}, \sim, \sim)$ $A(\mathbf{y}, \sim, \sim, \sim, \sim)$ $A(\sim, \mathbf{y}, \sim, \sim, \sim)$ $A(\sim, \sim, \mathbf{y}, \sim, \sim)$ $A(\sim, \sim, \mathbf{y}, \sim, \sim)$

What if we can't run A many times?

What if we can't run A many times?

Maybe A is your "next door neighbor" \mathbb{S} who happens to break f': $f' \longrightarrow \mathcal{C} \\ Cody$ You have no clue how \mathbb{S} works. But you only have "interactive access" to \mathbb{S} when trying to break f:

Suppose A can only be accessed interactively. No "rewinding" Maybe Δ is your "next door neighbor" who happens to break f': might have access to "cosmic You have no clue how resources" as f Claim: we need to revisit brks. you're concer classical proofs! But you only have "interactive access" to when trying to break f:

...might break down, since Cody is stateful.

...might break down, since Cody is stateful.

A stateful adversary will remember that they've already answered a query. "That's enough winning for today!"

...might break down, since Cody is stateful.

Looking forward, we will assume that the adversary *wins "repeatedly" when given fresh challenges*. But even this is non-trivial to exploit.

"Stateful attackers" are already well motivated:

Quantum computers break existing proof techniques:

- No-cloning theorem: cannot copy quantum advice.
- Can't be "rewound" when playing interactive security games

"Stateful attackers" are already well motivated:

Quantum computers break existing proof techniques:

- No-cloning theorem: cannot copy quantum advice.
- Can't be "rewound" when playing interactive security games

Theoretically:

- We prefer a theory of cryptography that makes as few assumptions as possible!
- Can we get by without assuming that attackers are PPT (or QPT)?

This Talk:

We propose a reduction-based theory of computational cryptography with minimal assumptions on the Nature of real-world attackers.

Next up: Defining Universal Reductions *After that*: Feasibility and Impossibility Results

Defining Universal Reductions

A new model of attacker: "Augmented Adversaries"

A new model of attacker: "Augmented Adversaries"

Augmented Security Game

$C \leftrightarrow A \leftrightarrow Nat$

"Challenger" "Attacker" uniform **PPT** uniform **PPT** outputs "win"/"lose" "Nature" nonuniform any choice of runtime

Augmented Security Game

$C \leftrightarrow A \leftrightarrow Nat$

"Challenger" "Attacker" uniform **PPT** uniform **PPT** outputs "win"/"lose" "Nature" nonuniform any choice of runtime

Observe: the attacker can alter the state of Nature during the interaction. This is intentional and a key property of our definition. *Note*: all communication is classical (and **C**/**A** are PPT) because we want universal reductions to work in a PPT world!

Robust winning: "winning repeatedly"

Recall: We want adversaries that win "repeatedly" when given fresh challenges.

 $C \leftrightarrow A \leftrightarrow Nat(\rho)$

"Challenger" "Attacker" uniform **PPT** uniform **PPT** outputs "win"/"lose" "Nature" nonuniform any choice of runtime

Interaction prefix ρ:

a transcript of messages previously sent to Nat before the beginning of execution, including coins flipped by Nat. Robust winning: "winning repeatedly"

$\mathbf{C} \leftrightarrow \mathbf{A} \leftrightarrow \mathbf{Nat}(\rho)$

"Challenger" "Attacker" uniform **PPT** uniform **PPT** outputs "win"/"lose" "Nature" nonuniform any choice of runtime

Definition: (A, Nat) has **robust advantage** a(.) for C, if \forall interaction prefixes ρ , $\forall \lambda$: Pr[(A, Nat(ρ)) wins C] $\geq a(\lambda)$

Interaction prefix ρ:

a transcript of messages previously sent to Nat before the beginning of execution, including coins flipped by Nat.

Universal Reductions

 \exists an ϵ -universal reduction from C to C' if \forall PPT A, \exists PPT A' s.t. \forall Nat: Suppose (A, Nat) has robust advantage a(·) for C

$$C \longrightarrow A \longrightarrow Nat$$

Then (A', Nat) has robust advantage ε(·,a(·)) for C'.

C'
$$\xrightarrow{f(x)}$$
 A' \longrightarrow Nat

Universal Reductions

This is the central notion in our paper.

- \exists an ϵ -universal reduction from C to C' if \forall PPT A, \exists PPT A' s.t. \forall Nat:
- Suppose (A, Nat) has robust advantage a(•) for C

Universal Reductions

This is the central notion in our paper.

- \exists an ϵ -universal reduction from C to C' if \forall PPT A, \exists PPT A' s.t. \forall Nat:
- Suppose (A, Nat) has robust advantage a(•) for C

Are Universal Reductions universal? Certainly, universal reductions imply reductions w.r.t. (nu)PPT, (nu)QPT.

Quick Comparisons

Relativized Reductions

- A *relativized reduction* gives attackers A^O access to some arbitrary oracle O
- O is modeled as a (perhaps uncomputable) function
- Universal reductions can be viewed as *relativized reductions* for *stateful, interactive oracles* O (in contrast to a *non-interactive, stateless* oracle).

Universal Composability [Canetti00]

- Universal reductions are *syntactically* similar to UC with unbounded environments
- Semantically very different: our notion is reduction-based & computational. (For instance, UC security proofs can rewind the environment [e.g. CLP10])

What can we do with universal reductions?

Warmup: a basic feasibility result

<u>Thm 1.</u> Classical 1-shot straight-line black-box reductions imply universal reductions.

- > A straightforward argument, since a 1-shot reduction uses Nature once.
- > <u>Corollaries</u>: Witness Indistinguishability/PRG Length Extension/PRFs/SKE/Commitments from PRGs

Warmup: a basic feasibility result

Thm 1. Classical 1-shot straight-line black-box reductions imply universal reductions.

> A straightforward argument, since a 1-shot reduction uses Nature once.

> <u>Corollaries</u>: Witness Indistinguishability/PRG Length Extension/PRFs/SKE/Commitments from PRGs

What about problems that have classical reductions invoking the attacker multiple times?

Unfortunately, not all is possible...

<u>Thm 2</u> (Impossibility of Hardness Amplification):

There is no universal black-box reduction from the OWF security of $g^n(x_1...x_n) = (g(x_1), ..., g(x_n))$ to the OWF security of g(x) that uses only black-box access to g, and that works for any function g.

Thm 3 (Impossibility of a Goldreich-Levin-Style Theorem):

There is no universal black-box reduction from the security of the hardcore predicate $h(x,r) = \langle x,r \rangle$ w.r.t. f(x, r) = (g(x), r) to the OWF security of g that uses only black-box access to g and that works for any function g.

Unfortunately, not all is possible...

<u>Thm 2</u> (Impossibility of Hardness Amplification):

There is no universal black-box reduction from the OWF security of $g^n(x_1...x_n) = (g(x_1), ..., g(x_n))$ to the OWF security of g(x) that uses only black-box access to g, and that works for any function g.

Thm 3 (Impossibility of a Goldreich-Levin-Style Theorem):

There is no universal black-box reduction from the security of the hardcore predicate $h(x,r) = \langle x,r \rangle$ w.r.t. f(x, r) = (g(x), r) to the OWF security of g that uses only black-box access to g and that works for any function g.

> Let's go over the intuition of the proofs to understand universal reductions better.

Recall: classical Hardness Amplification

Let g be a weak OWF. Then $g^n = (g(x_1), \dots, g(x_n))$ is a strong OWF.

Recall: classical Hardness Amplification

Let g be a weak OWF. Then $g^n = (g(x_1), ..., g(x_n))$ is a strong OWF. *Proof:* Suppose g^n is not a strong OWF...

Recall: classical Hardness Amplification

Let g be a weak OWF. Then $g^n = (g(x_1), ..., g(x_n))$ is a strong OWF. *Proof:* Suppose g^n is not a strong OWF...

Suppose gⁿ is not a strong OWF...

Suppose gⁿ is not a strong OWF...

Suppose gⁿ is not a strong OWF...

Since Nat is stateful.

future correlated queries

(e.g. that contain **y**.)

if it previously saw y, it can ignore

Suppose gⁿ is not a strong OWF...

Since Nat is stateful.

future correlated queries

(e.g. that contain **y**.)

if it previously saw y, it can ignore

Suppose gⁿ is not a strong OWF...

Observe:

(A, Nat) is still robustly winning!

coincides with "Seen" strings is tiny

Probability a fresh challenge

Suppose gⁿ is not a strong OWF...

(∼, ∼, **y**, ∼, ∼) weak OWF inverter y = g(x)Sends many queries (~, ~, ~, **y**, ~) with the **same** $\mathbf{y} = \mathbf{g}(\mathbf{x})$ embedded in random $(\mathbf{y}, \sim, \sim, \sim, \sim)$ locations Х In the full proof, we show that any reduction – not just Yao's- that is black-box in g will have to repeat! send correlated queries to (A, Nat). Thus, similarly broken!

Observe:

(A, Nat) is still robustly winning! Probability a fresh challenge coincides with "Seen" strings is tiny

Strong OWF Inverter $A \leftrightarrow Nat$

Consider the following (A, Nat):

- A forwards messages
- Nat keeps a list Seen of previously processed subqueries y_i
- **Nat** on seeing (y₁, y₂, ..., y_n),
 - If any $y_i ∈ Seen$, Nat replies "reject"
 - Else, **Nat** replies with correct preimage with desired Pr.
 - $\circ \quad \text{Finally, add each } \textbf{y}_{i} \, \text{to} \, \textbf{\textit{Seen}}$

Indeed, Hardness amplification is possible for specific one-way functions!

Theorem 4 (Informal):

Let f be a re-randomizable OWF. Then Yao's reduction is a universal reduction.

> Rerandomizability helps us fool Nature into thinking that it is always playing "fresh instances" of the security game.

Indeed, Hardness amplification is possible for specific one-way functions!

Theorem 4 (Informal):

Let f be a re-randomizable OWF. Then Yao's reduction is a universal reduction.

> Rerandomizability helps us fool Nature into thinking that it is always playing "fresh instances" of the security game.

Writing universal reductions requires new techniques!

Indeed, Hardness amplification is possible for specific one-way functions!

Theorem 4 (Informal):

Let f be a re-randomizable OWF. Then Yao's reduction is a universal reduction.

> Rerandomizability helps us fool Nature into thinking that it is always playing "fresh instances" of the security game.

Writing universal reductions requires new techniques!

for now, let's try to climb a different mountain...

Briefly: Restricting Nature

Can we get non-trivial results by imposing constraints on Nature?

Nat

Small Games, Large World

It may be presumptuous to think that **C** or **A** can *influence* the future behavior of **Nat**. What if **Nat** evolves over time (# of queries it has received)...

...but has a short term memory, and behaves independently of prior interactions?

Theorem 5 (informal): Time-Evolving k-window Natures.

Suppose the behavior of "Nature" depends only on the number of messages it has seen, and the last k messages it has seen. Then classical non-adaptive straightline black-box reductions imply universal reductions w.r.t. this Nature.

We can think of (A, Nat) as a sequence of attackers $A_1 A_2 A_3 \dots$

How do we turn a "sequence of attackers" that must be queried in order into a single "restartable" adversary?

Theorem 5 (informal): Time-Evolving k-window Natures.

Suppose the behavior of "Nature" depends only on the number of messages it has seen, and the last k messages it has seen. Then classical non-adaptive straightline black-box reductions imply universal reductions w.r.t. this Nature.

Theorem 5 (informal): Time-Evolving k-window Natures.

Suppose the behavior of "Nature" depends only on the number of messages it has seen, and the last k messages it has seen. Then classical non-adaptive straightline black-box reductions imply universal reductions w.r.t. this Nature.

Theorem 5 (informal): Time-Evolving k-window Natures.

Suppose the behavior of "Nature" depends only on the number of messages it has seen, and the last k messages it has seen. Then classical non-adaptive straightline black-box reductions imply universal reductions w.r.t. this Nature.

Nature is going to reply to queries out of order as it evolves $A_1, A_2, A_3...$

> Allowed since order of $\mathbf{q}_1 \dots \mathbf{q}_5$ doesn't matter, by nonadaptivity.

Theorem 5 (informal): Time-Evolving k-window Natures.

Suppose the behavior of "Nature" depends only on the number of messages it has seen, and the last k messages it has seen. Then classical non-adaptive straightline black-box reductions imply universal reductions w.r.t. this Nature.

Reduce collision probability by choosing from a long sequence of attackers!

In conclusion: alot to unpack.

Takeaway: we can write meaningful security proofs w.r.t. stateful attackers!

Yet, at the same time, new techniques are clearly necessary.

- PRGs from OWFs?
- MPC?

We have hope for a "future-proof" notion of cryptography...

Universal Reductions: An Unexplored Universe.

Thank You!