
Adaptive versus Static Multi-oracle Algorithms,
and Quantum Security of a Split-key PRF

Jelle Don1 Serge Fehr1,2 Yu-Hsuan Huang1

1Centrum Wiskunde & Informatica, The Netherlands

2Leiden University, The Netherlands



Overview

▶ Adaptive versus Static Multi-oracle Algorithms
▶ Our Results

▶ Adaptive-to-static Compiler
▶ Quantum Security of a skPRF

▶ Summary



Adaptive versus Static Multi-oracle Algorithms



Oracle Algorithms
An algorithm AO querying a (possibly randomized) function O for free.

Assumption: a fixed upper bound q on #queries to O.



Multi-oracle Algorithms
An algorithm AO1,...,On querying multiple functions O1, . . . ,On for free.

Assumption: fixed upper bounds q1, . . . , qn on #queries to O1, . . . ,On.



Static Multi-oracle Algorithms
A multi-oracle algorithm with predetermined querying order.

In contrast, an adaptive
algorithm can decide which
oracle to query at what point
dependent on previous oracle
responses.

Why static algorithms?

▶ easier for analysis

▶ (sometimes) better
bounds



Static Multi-oracle Algorithms
A multi-oracle algorithm with predetermined querying order.

In contrast, an adaptive
algorithm can decide which
oracle to query at what point
dependent on previous oracle
responses.

Why static algorithms?

▶ easier for analysis

▶ (sometimes) better
bounds



Static Multi-oracle Algorithms
A multi-oracle algorithm with predetermined querying order.

In contrast, an adaptive
algorithm can decide which
oracle to query at what point
dependent on previous oracle
responses.

Why static algorithms?

▶ easier for analysis

▶ (sometimes) better
bounds



Static Multi-oracle Algorithms
A multi-oracle algorithm with predetermined querying order.

In contrast, an adaptive
algorithm can decide which
oracle to query at what point
dependent on previous oracle
responses.

Why static algorithms?

▶ easier for analysis

▶ (sometimes) better
bounds



Example: Multi-oracle Algorithms

Attackers A against cryptographic schemes in the random oracle
model:

▶ Encryption/KEM: O1 = random oracle and
O2 = decrpt/decap oracle.

▶ Signature: O1 = random oracle and O2 = signing oracle.

▶ Pseudorandom function: O1 = random oracle and
O2 = evaluation oracle.



Our Results
Our result consists of two parts

In the first part, we give a black-box, straight-line, efficient
compiler transforming any (classical or quantum) multi-oracle
algorithm A to a static one B[A], with a mild blow-up on its
query complexity.

▶ A makes q1, . . . , qn respective queries to O1, . . . ,On

⇒ B[A](1q1 , . . . , 1qn) makes nq1, . . . , nqn respective queries only.

▶ Applications: simplifying existing results [ABB+17, ABKM21]
but also obtaining an enhanced bound [JST21].

In the second part, we show the QROM security of a particularly
efficient skPRF by Giacon, Heuer and Poettering [GHP18].

▶ Consequently, an efficient KEM combiner is QROM-secure.

▶ Our analysis crucially relies on the abovementioned compiler.



Our Results
Our result consists of two parts

In the first part, we give a black-box, straight-line, efficient
compiler transforming any (classical or quantum) multi-oracle
algorithm A to a static one B[A], with a mild blow-up on its
query complexity.

▶ A makes q1, . . . , qn respective queries to O1, . . . ,On

⇒ B[A](1q1 , . . . , 1qn) makes nq1, . . . , nqn respective queries only.

▶ Applications: simplifying existing results [ABB+17, ABKM21]
but also obtaining an enhanced bound [JST21].

In the second part, we show the QROM security of a particularly
efficient skPRF by Giacon, Heuer and Poettering [GHP18].

▶ Consequently, an efficient KEM combiner is QROM-secure.

▶ Our analysis crucially relies on the abovementioned compiler.



Our Results
Our result consists of two parts

In the first part, we give a black-box, straight-line, efficient
compiler transforming any (classical or quantum) multi-oracle
algorithm A to a static one B[A], with a mild blow-up on its
query complexity.

▶ A makes q1, . . . , qn respective queries to O1, . . . ,On

⇒ B[A](1q1 , . . . , 1qn) makes nq1, . . . , nqn respective queries only.

▶ Applications: simplifying existing results [ABB+17, ABKM21]
but also obtaining an enhanced bound [JST21].

In the second part, we show the QROM security of a particularly
efficient skPRF by Giacon, Heuer and Poettering [GHP18].

▶ Consequently, an efficient KEM combiner is QROM-secure.

▶ Our analysis crucially relies on the abovementioned compiler.



Our Results
Our result consists of two parts

In the first part, we give a black-box, straight-line, efficient
compiler transforming any (classical or quantum) multi-oracle
algorithm A to a static one B[A], with a mild blow-up on its
query complexity.

▶ A makes q1, . . . , qn respective queries to O1, . . . ,On

⇒ B[A](1q1 , . . . , 1qn) makes nq1, . . . , nqn respective queries only.

▶ Applications: simplifying existing results [ABB+17, ABKM21]
but also obtaining an enhanced bound [JST21].

In the second part, we show the QROM security of a particularly
efficient skPRF by Giacon, Heuer and Poettering [GHP18].

▶ Consequently, an efficient KEM combiner is QROM-secure.

▶ Our analysis crucially relies on the abovementioned compiler.



Our Results
Our result consists of two parts

In the first part, we give a black-box, straight-line, efficient
compiler transforming any (classical or quantum) multi-oracle
algorithm A to a static one B[A], with a mild blow-up on its
query complexity.

▶ A makes q1, . . . , qn respective queries to O1, . . . ,On

⇒ B[A](1q1 , . . . , 1qn) makes nq1, . . . , nqn respective queries only.

▶ Applications: simplifying existing results [ABB+17, ABKM21]
but also obtaining an enhanced bound [JST21].

In the second part, we show the QROM security of a particularly
efficient skPRF by Giacon, Heuer and Poettering [GHP18].

▶ Consequently, an efficient KEM combiner is QROM-secure.

▶ Our analysis crucially relies on the abovementioned compiler.



Part 1: Adaptive-to-static Compiler



Our Results: The Adaptive-to-static Compiler

Our compiler works by running an interactive oracle algorithm B as
an interface between A and oracles O1, . . . ,On and re-routing the
adaptive queries to the pre-determined static ones.

A ...
... B

...
...

B[A]

{O1, . . . ,On}



A Naive Compiler

Consider n = 2.
Suppose A makes q1, q2 queries to O1,O2 respectively.

▶ Let Bnaive[A](1q1 , 1q2) query in order

(O1O2)
q1+q2 := (O1O2) . . . (O1O2)︸ ︷︷ ︸

q1+q2 times

.

▶ Forward the query of A and do a dummy query for mis-match.

Bnaive[A](1q1 , 1q2) makes q1 + q2 queries to both O1,O2:

▶ What if q1 = q22? Then it makes ≈ q1 >> q2 queries to both.
We want ≈ q1 queries to O1 and ≈ q2 queries to O2 instead!!!



A Naive Compiler

Consider n = 2.
Suppose A makes q1, q2 queries to O1,O2 respectively.

▶ Let Bnaive[A](1q1 , 1q2) query in order

(O1O2)
q1+q2 := (O1O2) . . . (O1O2)︸ ︷︷ ︸

q1+q2 times

.

▶ Forward the query of A and do a dummy query for mis-match.

Bnaive[A](1q1 , 1q2) makes q1 + q2 queries to both O1,O2:

▶ What if q1 = q22? Then it makes ≈ q1 >> q2 queries to both.
We want ≈ q1 queries to O1 and ≈ q2 queries to O2 instead!!!



A Naive Compiler

Consider n = 2.
Suppose A makes q1, q2 queries to O1,O2 respectively.

▶ Let Bnaive[A](1q1 , 1q2) query in order

(O1O2)
q1+q2 := (O1O2) . . . (O1O2)︸ ︷︷ ︸

q1+q2 times

.

▶ Forward the query of A and do a dummy query for mis-match.

Bnaive[A](1q1 , 1q2) makes q1 + q2 queries to both O1,O2:

▶ What if q1 = q22? Then it makes ≈ q1 >> q2 queries to both.

We want ≈ q1 queries to O1 and ≈ q2 queries to O2 instead!!!



A Naive Compiler

Consider n = 2.
Suppose A makes q1, q2 queries to O1,O2 respectively.

▶ Let Bnaive[A](1q1 , 1q2) query in order

(O1O2)
q1+q2 := (O1O2) . . . (O1O2)︸ ︷︷ ︸

q1+q2 times

.

▶ Forward the query of A and do a dummy query for mis-match.

Bnaive[A](1q1 , 1q2) makes q1 + q2 queries to both O1,O2:

▶ What if q1 = q22? Then it makes ≈ q1 >> q2 queries to both.
We want ≈ q1 queries to O1 and ≈ q2 queries to O2 instead!!!



A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .

Problem of naive construction: s ∈ Char(q1 + q2, q1 + q2)
Goal: find such s in, say Char(2q1, 2q2).

Example

▶ for (q1, q2) = (1, 3), pick
▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)

▶ for (q1, q2) = (3, 10), pick
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)



A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .

Problem of naive construction: s ∈ Char(q1 + q2, q1 + q2)

Goal: find such s in, say Char(2q1, 2q2).

Example

▶ for (q1, q2) = (1, 3), pick
▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)

▶ for (q1, q2) = (3, 10), pick
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)



A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .

Problem of naive construction: s ∈ Char(q1 + q2, q1 + q2)
Goal: find such s in, say Char(2q1, 2q2).

Example

▶ for (q1, q2) = (1, 3), pick
▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)

▶ for (q1, q2) = (3, 10), pick
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)



A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .

Problem of naive construction: s ∈ Char(q1 + q2, q1 + q2)
Goal: find such s in, say Char(2q1, 2q2).

Example

▶ for (q1, q2) = (1, 3), pick s = 2221222
▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)

▶ for (q1, q2) = (3, 10), pick
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)



A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .

Problem of naive construction: s ∈ Char(q1 + q2, q1 + q2)
Goal: find such s in, say Char(2q1, 2q2).

Example

▶ for (q1, q2) = (1, 3), pick s = 2221222
▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)
▶ s ′ = 2221 ⊑ s

▶ for (q1, q2) = (3, 10), pick
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)



A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .

Problem of naive construction: s ∈ Char(q1 + q2, q1 + q2)
Goal: find such s in, say Char(2q1, 2q2).

Example

▶ for (q1, q2) = (1, 3), pick s = 2221222
▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)
▶ s ′ = 2212 ⊑ s

▶ for (q1, q2) = (3, 10), pick
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)



A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .

Problem of naive construction: s ∈ Char(q1 + q2, q1 + q2)
Goal: find such s in, say Char(2q1, 2q2).

Example

▶ for (q1, q2) = (1, 3), pick s = 2221222
▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)
▶ s ′ = 2122 ⊑ s

▶ for (q1, q2) = (3, 10), pick
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)



A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .

Problem of naive construction: s ∈ Char(q1 + q2, q1 + q2)
Goal: find such s in, say Char(2q1, 2q2).

Example

▶ for (q1, q2) = (1, 3), pick s = 2221222
▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)
▶ s ′ = 1222 ⊑ s

▶ for (q1, q2) = (3, 10), pick
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)



A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .

Problem of naive construction: s ∈ Char(q1 + q2, q1 + q2)
Goal: find such s in, say Char(2q1, 2q2).

Example

▶ for (q1, q2) = (1, 3), pick s = 2221222
▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)

▶ for (q1, q2) = (3, 10), pick
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)



A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .

Problem of naive construction: s ∈ Char(q1 + q2, q1 + q2)
Goal: find such s in, say Char(2q1, 2q2).

Example

▶ for (q1, q2) = (1, 3), pick s = 2221222
▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)

▶ for (q1, q2) = (3, 10), pick s = 2221222122221222122212222
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)



A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .

Problem of naive construction: s ∈ Char(q1 + q2, q1 + q2)
Goal: find such s in, say Char(2q1, 2q2).

Example

▶ for (q1, q2) = (1, 3), pick s = 2221222
▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)

▶ for (q1, q2) = (3, 10), pick s = 2221222122221222122212222
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)
▶ 1222212222122 ⊑ s



A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .

Problem of naive construction: s ∈ Char(q1 + q2, q1 + q2)
Goal: find such s in, say Char(2q1, 2q2).

Example

▶ for (q1, q2) = (1, 3), pick s = 2221222
▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)

▶ for (q1, q2) = (3, 10), pick s = 2221222122221222122212222
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)
▶ 1112222222222 ⊑ s



A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .

Problem of naive construction: s ∈ Char(q1 + q2, q1 + q2)
Goal: find such s in, say Char(2q1, 2q2).

Example

▶ for (q1, q2) = (1, 3), pick s = 2221222
▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)

▶ for (q1, q2) = (3, 10), pick s = 2221222122221222122212222
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)



Our Embedding Lemma

Let (q1, . . . , qn) ∈ Nn.

Lemma
There exists a string s ∈ Char(nq1, . . . , nqn) such that every string
s ′ ∈ Char(q1, . . . , qn) is a subsequence of s.

Furthermore, such s is polynomial-time computable given
(1q1 , . . . , 1qn) in unary representation.



Our Embedding Lemma

Let (q1, . . . , qn) ∈ Nn.

Lemma
There exists a string s ∈ Char(nq1, . . . , nqn) such that every string
s ′ ∈ Char(q1, . . . , qn) is a subsequence of s.

Furthermore, such s is polynomial-time computable given
(1q1 , . . . , 1qn) in unary representation.



Our Embedding Lemma

Proof.

Idea: distribute each symbol σ ∈ [n] evenly within the interval
(0, n] and collect them from left to right.



Our Embedding Lemma

Proof.
Idea: distribute each symbol σ ∈ [n] evenly within the interval

(0, n] and collect them from left to right.

s
init← ϵ

0

{1}

1/q1

{1}

2/q1

{1}

3/q1 . . .

. . .

Figure: Constructing the string s (here with 3/q1 = 2/q2)



Our Embedding Lemma

Proof.
Idea: distribute each symbol σ ∈ [n] evenly within the interval

(0, n] and collect them from left to right.

s
init← ϵ

0

{1}

1/q1

{2}

1/q2

{1}

2/q1

{1, 2}

3/q1 = 2/q2 . . .

. . .

Figure: Constructing the string s (here with 3/q1 = 2/q2)



Our Embedding Lemma

Proof.
Idea: distribute each symbol σ ∈ [n] evenly within the interval

(0, n] and collect them from left to right.
s ← s∥1 = 1

0

{1}

1/q1

{2}

1/q2

{1}

2/q1

{1, 2}

3/q1 = 2/q2 . . .

. . .

Figure: Constructing the string s (here with 3/q1 = 2/q2)



Our Embedding Lemma

Proof.
Idea: distribute each symbol σ ∈ [n] evenly within the interval

(0, n] and collect them from left to right.
s ← s∥2 = 12

0 1/q1

{2}

1/q2

{1}

2/q1

{1, 2}

3/q1 = 2/q2 . . .

. . .

Figure: Constructing the string s (here with 3/q1 = 2/q2)



Our Embedding Lemma

Proof.
Idea: distribute each symbol σ ∈ [n] evenly within the interval

(0, n] and collect them from left to right.
s ← s∥1 = 121

0 1/q1 1/q2

{1}

2/q1

{1, 2}

3/q1 = 2/q2 . . .

. . .

Figure: Constructing the string s (here with 3/q1 = 2/q2)



Our Embedding Lemma

Proof.
Idea: distribute each symbol σ ∈ [n] evenly within the interval

(0, n] and collect them from left to right.
s ← s∥1 = 1211

0 1/q1 1/q2 2/q1

{1, 2}

3/q1 = 2/q2 . . .

. . .

Figure: Constructing the string s (here with 3/q1 = 2/q2)



Our Embedding Lemma

Proof.
Idea: distribute each symbol σ ∈ [n] evenly within the interval

(0, n] and collect them from left to right.
s ← s∥2 = 12112

0 1/q1 1/q2 2/q1

{2}

3/q1 = 2/q2 . . .

. . .

Figure: Constructing the string s (here with 3/q1 = 2/q2)



Our Embedding Lemma

Proof.
Idea: distribute each symbol σ ∈ [n] evenly within the interval

(0, n] and collect them from left to right.
s ← s∥. . . = 12112. . .

0 1/q1 1/q2 2/q1 3/q1 = 2/q2 . . .

. . .

Figure: Constructing the string s (here with 3/q1 = 2/q2)



Our Embedding Lemma

Proof.
Idea: distribute each symbol σ ∈ [n] evenly within the interval

(0, n] and collect them from left to right.
s ← s∥. . . = 12112. . . until we reach time n

0 1/q1 1/q2 2/q1 3/q1 = 2/q2 . . .

. . .

Figure: Constructing the string s (here with 3/q1 = 2/q2)



Our Embedding Lemma

Proof.
Idea: distribute each symbol σ ∈ [n] evenly within the interval

(0, n] and collect them from left to right.
s = 12112 . . . until reach time n

0 1/q1 1/q2 2/q1 3/q1 = 2/q2 . . .

Figure: Constructing the string s (here with 3/q1 = 2/q2)



Part 2: Quantum-security of a skPRF



Main Applications: skPRF

A skPRF is a function F(k1, . . . , kn, x) such that:

▶ for each i : F is pseudorandom as a function with key ki .
(technical constraint: attacker never query the same x twice)

▶ Implication: skPRF ⇒ KEM-combiner [GHP18]

Efficient hash-based instantiation by [GHP18]:

F(k1, . . . , kn, x) := H(g(k1, . . . , kn), x) for “key-mixing” g .

Already proven classically secure, quantum security unknown.

Theorem (Our result: quantum security of F)
In the QROM, any skPRF attacker with at most qF , qH respective
queries to F ,H has advantage at most 4qH

√
2qF ϵ+ 4qF

√
2qHϵ.



Main Applications: skPRF

A skPRF is a function F(k1, . . . , kn, x) such that:

▶ for each i : F is pseudorandom as a function with key ki .
(technical constraint: attacker never query the same x twice)

▶ Implication: skPRF ⇒ KEM-combiner [GHP18]

Efficient hash-based instantiation by [GHP18]:

F(k1, . . . , kn, x) := H(g(k1, . . . , kn), x) for “key-mixing” g .

Already proven classically secure, quantum security unknown.

Theorem (Our result: quantum security of F)
In the QROM, any skPRF attacker with at most qF , qH respective
queries to F ,H has advantage at most 4qH

√
2qF ϵ+ 4qF

√
2qHϵ.



Main Applications: skPRF

A skPRF is a function F(k1, . . . , kn, x) such that:

▶ for each i : F is pseudorandom as a function with key ki .
(technical constraint: attacker never query the same x twice)

▶ Implication: skPRF ⇒ KEM-combiner [GHP18]

Efficient hash-based instantiation by [GHP18]:

F(k1, . . . , kn, x) := H(g(k1, . . . , kn), x) for “key-mixing” g .

Already proven classically secure, quantum security unknown.

Theorem (Our result: quantum security of F)
In the QROM, any skPRF attacker with at most qF , qH respective
queries to F ,H has advantage at most 4qH

√
2qF ϵ+ 4qF

√
2qHϵ.



Quantum-security of a skPRF
Proof idea (for random function R and auxiliary oracle H ′):

▶ initial querying pattern:

qH,1︷ ︸︸ ︷
H ′ . . .H ′ F

qH,2︷ ︸︸ ︷
H ′ . . .H ′ FH ′ . . .

▶ from left to right, replace every H ′ to H and every F to R

Let’s look at the losses for replacing H ′ to H:

▶ The loss replacing H ′ to H in each block: 2qH,i
√
qF ϵ

▶ summing up, loss:
∑

i 2qH,i
√
qF ϵ

▶ without any compiling, qH,i ≤ qH gives

qH(qF + 1)
√
qF ϵ

▶ naive compiler:
∑

i qH,i ≤ qH + qF and qF becoming qF + qH gives

2(qH + qF )
√

(qH + qF )ϵ

▶ our compiler:
∑

i qH,i ≤ 2qH and factor 2 blow-up on qF , gives

4qH
√
2qF ϵ

Our proof crucially relies on the compiler. ✓



Quantum-security of a skPRF
Proof idea (for random function R and auxiliary oracle H ′):

▶ initial querying pattern:

qH,1︷ ︸︸ ︷
H ′ . . .H ′ F

qH,2︷ ︸︸ ︷
H ′ . . .H ′ FH ′ . . .

▶ from left to right, replace every H ′ to H and every F to R

Let’s look at the losses for replacing H ′ to H:

▶ The loss replacing H ′ to H in each block: 2qH,i
√
qF ϵ

▶ summing up, loss:
∑

i 2qH,i
√
qF ϵ

▶ without any compiling, qH,i ≤ qH gives

qH(qF + 1)
√
qF ϵ

▶ naive compiler:
∑

i qH,i ≤ qH + qF and qF becoming qF + qH gives

2(qH + qF )
√

(qH + qF )ϵ

▶ our compiler:
∑

i qH,i ≤ 2qH and factor 2 blow-up on qF , gives

4qH
√
2qF ϵ

Our proof crucially relies on the compiler. ✓



Quantum-security of a skPRF
Proof idea (for random function R and auxiliary oracle H ′):

▶ initial querying pattern:

qH,1︷ ︸︸ ︷
H ′ . . .H ′ F

qH,2︷ ︸︸ ︷
H ′ . . .H ′ FH ′ . . .

▶ from left to right, replace every H ′ to H and every F to R

Let’s look at the losses for replacing H ′ to H:

▶ The loss replacing H ′ to H in each block: 2qH,i
√
qF ϵ

▶ summing up, loss:
∑

i 2qH,i
√
qF ϵ

▶ without any compiling, qH,i ≤ qH gives

qH(qF + 1)
√
qF ϵ

▶ naive compiler:
∑

i qH,i ≤ qH + qF and qF becoming qF + qH gives

2(qH + qF )
√

(qH + qF )ϵ

▶ our compiler:
∑

i qH,i ≤ 2qH and factor 2 blow-up on qF , gives

4qH
√
2qF ϵ

Our proof crucially relies on the compiler. ✓



Quantum-security of a skPRF
Proof idea (for random function R and auxiliary oracle H ′):

▶ initial querying pattern:

qH,1︷ ︸︸ ︷
H ′ . . .H ′ F

qH,2︷ ︸︸ ︷
H ′ . . .H ′ FH ′ . . .

▶ from left to right, replace every H ′ to H and every F to R

Let’s look at the losses for replacing H ′ to H:

▶ The loss replacing H ′ to H in each block: 2qH,i
√
qF ϵ

▶ summing up, loss:
∑

i 2qH,i
√
qF ϵ

▶ without any compiling, qH,i ≤ qH gives

qH(qF + 1)
√
qF ϵ

▶ naive compiler:
∑

i qH,i ≤ qH + qF and qF becoming qF + qH gives

2(qH + qF )
√

(qH + qF )ϵ

▶ our compiler:
∑

i qH,i ≤ 2qH and factor 2 blow-up on qF , gives

4qH
√
2qF ϵ

Our proof crucially relies on the compiler. ✓



Quantum-security of a skPRF
Proof idea (for random function R and auxiliary oracle H ′):

▶ initial querying pattern:

qH,1︷ ︸︸ ︷
H ′ . . .H ′ F

qH,2︷ ︸︸ ︷
H ′ . . .H ′ FH ′ . . .

▶ from left to right, replace every H ′ to H and every F to R

Let’s look at the losses for replacing H ′ to H:

▶ The loss replacing H ′ to H in each block: 2qH,i
√
qF ϵ

▶ summing up, loss:
∑

i 2qH,i
√
qF ϵ

▶ without any compiling, qH,i ≤ qH gives

qH(qF + 1)
√
qF ϵ

▶ naive compiler:
∑

i qH,i ≤ qH + qF and qF becoming qF + qH gives

2(qH + qF )
√

(qH + qF )ϵ

▶ our compiler:
∑

i qH,i ≤ 2qH and factor 2 blow-up on qF , gives

4qH
√
2qF ϵ

Our proof crucially relies on the compiler. ✓



Quantum-security of a skPRF
Proof idea (for random function R and auxiliary oracle H ′):

▶ initial querying pattern:

qH,1︷ ︸︸ ︷
H ′ . . .H ′ F

qH,2︷ ︸︸ ︷
H ′ . . .H ′ FH ′ . . .

▶ from left to right, replace every H ′ to H and every F to R

Let’s look at the losses for replacing H ′ to H:

▶ The loss replacing H ′ to H in each block: 2qH,i
√
qF ϵ

▶ summing up, loss:
∑

i 2qH,i
√
qF ϵ

▶ without any compiling, qH,i ≤ qH gives

qH(qF + 1)
√
qF ϵ

▶ naive compiler:
∑

i qH,i ≤ qH + qF and qF becoming qF + qH gives

2(qH + qF )
√

(qH + qF )ϵ

▶ our compiler:
∑

i qH,i ≤ 2qH and factor 2 blow-up on qF , gives

4qH
√

2qF ϵ

Our proof crucially relies on the compiler. ✓



Quantum-security of a skPRF
Proof idea (for random function R and auxiliary oracle H ′):

▶ initial querying pattern:

qH,1︷ ︸︸ ︷
H ′ . . .H ′ F

qH,2︷ ︸︸ ︷
H ′ . . .H ′ FH ′ . . .

▶ from left to right, replace every H ′ to H and every F to R

Let’s look at the losses for replacing H ′ to H:

▶ The loss replacing H ′ to H in each block: 2qH,i
√
qF ϵ

▶ summing up, loss:
∑

i 2qH,i
√
qF ϵ

▶ without any compiling, qH,i ≤ qH gives

qH(qF + 1)
√
qF ϵ

▶ naive compiler:
∑

i qH,i ≤ qH + qF and qF becoming qF + qH gives

2(qH + qF )
√

(qH + qF )ϵ

▶ our compiler:
∑

i qH,i ≤ 2qH and factor 2 blow-up on qF , gives

4qH
√

2qF ϵ

Our proof crucially relies on the compiler. ✓



Summary



Summary
Our result consists of two parts

In the first part, we give a compiler transforming a multi-oracle
algorithm A with (q1, . . . , qn) queries to a static one with
(nq1, . . . , nqn) queries.

▶ simplifying existing results [ABB+17, ABKM21] but also
obtaining an enhanced bound [JST21].

In the second part, we give the QROM security of the hash-based
skPRF constructed by Giacon, Heuer and Poettering [GHP18].

▶ Consequently, the KEM combiner using F is QROM-secure.

▶ Our analysis crucially relies on the abovementioned compiler.

Take away: if you have adaptive adversaries, use our compiler!



Summary
Our result consists of two parts

In the first part, we give a compiler transforming a multi-oracle
algorithm A with (q1, . . . , qn) queries to a static one with
(nq1, . . . , nqn) queries.

▶ simplifying existing results [ABB+17, ABKM21] but also
obtaining an enhanced bound [JST21].

In the second part, we give the QROM security of the hash-based
skPRF constructed by Giacon, Heuer and Poettering [GHP18].

▶ Consequently, the KEM combiner using F is QROM-secure.

▶ Our analysis crucially relies on the abovementioned compiler.

Take away: if you have adaptive adversaries, use our compiler!



Summary
Our result consists of two parts

In the first part, we give a compiler transforming a multi-oracle
algorithm A with (q1, . . . , qn) queries to a static one with
(nq1, . . . , nqn) queries.

▶ simplifying existing results [ABB+17, ABKM21] but also
obtaining an enhanced bound [JST21].

In the second part, we give the QROM security of the hash-based
skPRF constructed by Giacon, Heuer and Poettering [GHP18].

▶ Consequently, the KEM combiner using F is QROM-secure.

▶ Our analysis crucially relies on the abovementioned compiler.

Take away: if you have adaptive adversaries, use our compiler!



That’s It

Thanks for your listening!

Arxiv. 2206.08132

Eprint. 2022/773



References I

[ABB+17] Erdem Alkim, Nina Bindel, Johannes Buchmann,
Özgür Dagdelen, Edward Eaton, Gus Gutoski, Juliane
Krämer, and Filip Pawlega. Revisiting TESLA in the
quantum random oracle model. In Tanja Lange and
Tsuyoshi Takagi, editors, Post-Quantum Cryptography,
pages 143–162. Springer, 2017.

[ABKM21] Gorjan Alagic, Chen Bai, Jonathan Katz, and Christian
Majenz. Post-quantum security of the Even-Mansour
cipher. Cryptology ePrint Archive, Report 2021/1601,
2021. https://ia.cr/2021/1601.

[GHP18] Federico Giacon, Felix Heuer, and Bertram Poettering.
KEM combiners. In IACR International Workshop on
Public Key Cryptography, pages 190–218. Springer,
2018.

https://ia.cr/2021/1601


References II

[JST21] Joseph Jaeger, Fang Song, and Stefano Tessaro.
Quantum key-length extension. In Kobbi Nissim and
Brent Waters, editors, Theory of Cryptography
Conference, pages 209–239. Springer, 2021.


	References

