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Adaptive versus Static Multi-oracle Algorithms



Oracle Algorithms
An algorithm AO querying a (possibly randomized) function O for free.

Assumption: a fixed upper bound q on #queries to O.



Multi-oracle Algorithms
An algorithm AO1,...,On querying multiple functions O1, . . . ,On for free.

Assumption: fixed upper bounds q1, . . . , qn on #queries to O1, . . . ,On.



Static Multi-oracle Algorithms
A multi-oracle algorithm with predetermined querying order.

In contrast, an adaptive
algorithm can decide which
oracle to query at what point
dependent on previous oracle
responses.

Why static algorithms?

▶ easier for analysis

▶ (sometimes) better
bounds
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Static Multi-oracle Algorithms
A multi-oracle algorithm with predetermined querying order.

In contrast, an adaptive
algorithm can decide which
oracle to query at what point
dependent on previous oracle
responses.

Why static algorithms?

▶ easier for analysis
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bounds



Example: Multi-oracle Algorithms

Attackers A against cryptographic schemes in the random oracle
model:

▶ Encryption/KEM: O1 = random oracle and
O2 = decrpt/decap oracle.

▶ Signature: O1 = random oracle and O2 = signing oracle.

▶ Pseudorandom function: O1 = random oracle and
O2 = evaluation oracle.



Our Results
Our result consists of two parts

In the first part, we give a black-box, straight-line, efficient
compiler transforming any (classical or quantum) multi-oracle
algorithm A to a static one B[A], with a mild blow-up on its
query complexity.

▶ A makes q1, . . . , qn respective queries to O1, . . . ,On

⇒ B[A](1q1 , . . . , 1qn) makes nq1, . . . , nqn respective queries only.

▶ Applications: simplifying existing results [ABB+17, ABKM21]
but also obtaining an enhanced bound [JST21].

In the second part, we show the QROM security of a particularly
efficient skPRF by Giacon, Heuer and Poettering [GHP18].

▶ Consequently, an efficient KEM combiner is QROM-secure.

▶ Our analysis crucially relies on the abovementioned compiler.
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Part 1: Adaptive-to-static Compiler



Our Results: The Adaptive-to-static Compiler

Our compiler works by running an interactive oracle algorithm B as
an interface between A and oracles O1, . . . ,On and re-routing the
adaptive queries to the pre-determined static ones.

A ...
... B

...
...

B[A]

{O1, . . . ,On}



A Naive Compiler

Consider n = 2.
Suppose A makes q1, q2 queries to O1,O2 respectively.

▶ Let Bnaive[A](1q1 , 1q2) query in order

(O1O2)
q1+q2 := (O1O2) . . . (O1O2)︸ ︷︷ ︸

q1+q2 times

.

▶ Forward the query of A and do a dummy query for mis-match.

Bnaive[A](1q1 , 1q2) makes q1 + q2 queries to both O1,O2:

▶ What if q1 = q22? Then it makes ≈ q1 >> q2 queries to both.
We want ≈ q1 queries to O1 and ≈ q2 queries to O2 instead!!!
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A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .

Problem of naive construction: s ∈ Char(q1 + q2, q1 + q2)
Goal: find such s in, say Char(2q1, 2q2).

Example

▶ for (q1, q2) = (1, 3), pick
▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)

▶ for (q1, q2) = (3, 10), pick
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)
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Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where
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A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where

Char(q1, q2) := {s ′ ∈ {1, 2}∗ : every σ ∈ {1, 2} occurs in s ′ for qσ times} .
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A Combinatorial Approach

Abstract formulation: the string s = (12)q1+q2 = 1212 . . . 12 is a
supersequence of every s ′ ∈ Char(q1, q2) where
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▶ s ∈ Char(1, 6) ⊆ Char(2q1, 2q2)

▶ for (q1, q2) = (3, 10), pick s = 2221222122221222122212222
▶ s ∈ Char(6, 19) ⊆ Char(2q1, 2q2)



Our Embedding Lemma

Let (q1, . . . , qn) ∈ Nn.

Lemma
There exists a string s ∈ Char(nq1, . . . , nqn) such that every string
s ′ ∈ Char(q1, . . . , qn) is a subsequence of s.

Furthermore, such s is polynomial-time computable given
(1q1 , . . . , 1qn) in unary representation.
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Proof.
Idea: distribute each symbol σ ∈ [n] evenly within the interval

(0, n] and collect them from left to right.
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Our Embedding Lemma

Proof.
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Our Embedding Lemma

Proof.
Idea: distribute each symbol σ ∈ [n] evenly within the interval

(0, n] and collect them from left to right.
s ← s∥. . . = 12112. . . until we reach time n
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. . .

Figure: Constructing the string s (here with 3/q1 = 2/q2)



Our Embedding Lemma

Proof.
Idea: distribute each symbol σ ∈ [n] evenly within the interval

(0, n] and collect them from left to right.
s = 12112 . . . until reach time n

0 1/q1 1/q2 2/q1 3/q1 = 2/q2 . . .

Figure: Constructing the string s (here with 3/q1 = 2/q2)



Part 2: Quantum-security of a skPRF



Main Applications: skPRF

A skPRF is a function F(k1, . . . , kn, x) such that:

▶ for each i : F is pseudorandom as a function with key ki .
(technical constraint: attacker never query the same x twice)

▶ Implication: skPRF ⇒ KEM-combiner [GHP18]

Efficient hash-based instantiation by [GHP18]:

F(k1, . . . , kn, x) := H(g(k1, . . . , kn), x) for “key-mixing” g .

Already proven classically secure, quantum security unknown.

Theorem (Our result: quantum security of F)
In the QROM, any skPRF attacker with at most qF , qH respective
queries to F ,H has advantage at most 4qH

√
2qF ϵ+ 4qF

√
2qHϵ.
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Quantum-security of a skPRF
Proof idea (for random function R and auxiliary oracle H ′):

▶ initial querying pattern:

qH,1︷ ︸︸ ︷
H ′ . . .H ′ F

qH,2︷ ︸︸ ︷
H ′ . . .H ′ FH ′ . . .

▶ from left to right, replace every H ′ to H and every F to R

Let’s look at the losses for replacing H ′ to H:

▶ The loss replacing H ′ to H in each block: 2qH,i
√
qF ϵ

▶ summing up, loss:
∑

i 2qH,i
√
qF ϵ

▶ without any compiling, qH,i ≤ qH gives

qH(qF + 1)
√
qF ϵ

▶ naive compiler:
∑

i qH,i ≤ qH + qF and qF becoming qF + qH gives

2(qH + qF )
√

(qH + qF )ϵ

▶ our compiler:
∑

i qH,i ≤ 2qH and factor 2 blow-up on qF , gives

4qH
√
2qF ϵ

Our proof crucially relies on the compiler. ✓
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Summary
Our result consists of two parts

In the first part, we give a compiler transforming a multi-oracle
algorithm A with (q1, . . . , qn) queries to a static one with
(nq1, . . . , nqn) queries.

▶ simplifying existing results [ABB+17, ABKM21] but also
obtaining an enhanced bound [JST21].

In the second part, we give the QROM security of the hash-based
skPRF constructed by Giacon, Heuer and Poettering [GHP18].

▶ Consequently, the KEM combiner using F is QROM-secure.

▶ Our analysis crucially relies on the abovementioned compiler.

Take away: if you have adaptive adversaries, use our compiler!
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That’s It

Thanks for your listening!

Arxiv. 2206.08132

Eprint. 2022/773



References I

[ABB+17] Erdem Alkim, Nina Bindel, Johannes Buchmann,
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