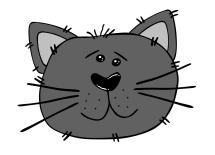
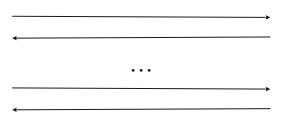
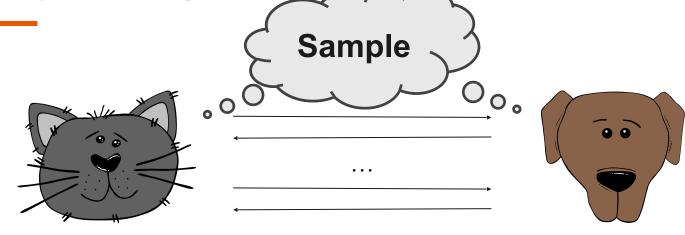
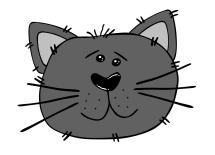
Secure Sampling with Sublinear Communication

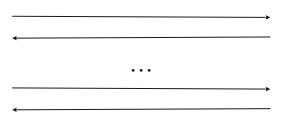
Seung Geol Choi (US Naval Academy)
Dana Dachman-Soled (University of Maryland)
S. Dov Gordon (George Mason University)
Linsheng Liu (George Washington University)
Arkady Yerukhimovich (George Washington University)











$$W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$$
 $W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$

Private sampling based on W_1 and W_2

- \circ Output i with $\Pr[i] \propto f(w_{1,i}, w_{2,i})$
- L₁ sampling; L₂ sampling; Product sampling

Distribution is private

$$W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$$
 $W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$

Private sampling based on W_1 and W_2

Distribution is private

- Output i with $\Pr[i] \propto f(w_{1,i}, w_{2,i})$
- L₁ sampling; L₂ sampling; Product sampling

Question: Sample with sublinear communication?

Our results

Private sampling:

- L₁ sampling with sublinear communication
- L₂ sampling with sublinear communication

• Product sampling:

- Impossibility for arbitrary inputs
- Sublinear communication with assumption on inputs

$$\langle \mathbf{W}_1, \mathbf{W}_2 \rangle \in \omega(\frac{\log n}{n})$$

Exponential Mechanism

2-party Exponential Mechanism with sublinear communication

Outline

- Sublinear sampling
- Sampling from common distributions
 - L₁ sampling
 - L₂ sampling
 - Product sampling
- Exponential Mechanism

L₁ Sampling

$$W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$$
 $W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$ \cdots Output i

$$\Pr[i] = \frac{w_{1,i} + w_{2,i}}{\sum_{j} (w_{1,j} + w_{2,j})} = \frac{w_{1,i} + w_{2,i}}{\|W_1 + W_2\|_1}$$

L₁ Sampling

 $W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$ $W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$

$$\Pr[i] = \frac{w_{1,i} + w_{2,i}}{\|W_1 + W_2\|_1} \propto w_{1,i} + w_{2,i}$$

L₁ Sampling

 $W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$ $W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$

• L₁ is linear!

$$\Pr[i] = \frac{w_{1,i} + w_{2,i}}{\|W_1 + W_2\|_1} \propto w_{1,i} + w_{2,i}$$

L₁ Sampling

 $W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$ $W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$

$$\Pr[i] = \frac{w_{1,i} + w_{2,i}}{\|W_1 + W_2\|_1} \propto w_{1,i} + w_{2,i}$$

L₁ Sampling

$$W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$$

 $W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$

$$\Pr[i] = \frac{w_{1,i} + w_{2,i}}{\|W_1 + W_2\|_1} \propto w_{1,i} + w_{2,i}$$

- First attempt:
 - Party 1 samples i_1 locally.
 - Party 2 samples i_2 locally.
 - Flip a coin and output i_1 or i_2 .

L₁ Sampling

$$\subset W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$$

 $W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$

$$\Pr[i] = \frac{w_{1,i} + w_{2,i}}{\|W_1 + W_2\|_1} \propto w_{1,i} + w_{2,i}$$

- First attempt:
 - Party 1 samples i_1 locally.
 - Party 2 samples i_2 locally.
 - Flip a coin and output i_1 or i_2 .

O(1) communication!

L₁ Sampling

$$W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$$

 $W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$

$$\Pr[i] = \frac{w_{1,i} + w_{2,i}}{\|W_1 + W_2\|_1} \propto w_{1,i} + w_{2,i}$$

- First attempt:
 - Party 1 samples i_1 locally.
 - Party 2 samples i_2 locally.
 - Flip a coin and output i_1 or i_2 .

O(1) communication!

This is not private!

- Initial attempt
 - 1. Party 1 samples i_1 locally.
 - 2. Party 2 samples i_2 locally.
 - 3. Flip a coin and output i_1 or i_2 .

- Initial attempt
 - 1. Party 1 samples i_1 locally.
 - 2. Party 2 samples i_2 locally.
 - 3. Flip a coin and output i_1 or i_2 .

Fix for privacy

Initial attempt

- 1. Party 1 samples i_1 locally.
- 2. Party 2 samples i_2 locally.
- 3. Flip a coin and output i_1 or i_2 .

Fix for privacy

1. The parties obliviously sample and secret share i_1 .

Initial attempt

- 1. Party 1 samples i_1 locally.
- 2. Party 2 samples i_2 locally.
- 3. Flip a coin and output i_1 or i_2 .

Fix for privacy

- 1. The parties obliviously sample and secret share i_1 .
- 2. The parties obliviously sample and secret share i_2 .

Initial attempt

- 1. Party 1 samples i_1 locally.
- 2. Party 2 samples i_2 locally.
- 3. Flip a coin and output i_1 or i_2 .

Fix for privacy

- 1. The parties obliviously sample and secret share i_1 .
- 2. The parties obliviously sample and secret share i_2 .
- 3. Reconstruct i_1 or i_2 based on a oblivious coin flip.

L₁ Sampling — F

Party 1 doesn't know i_1

Party 2 doesn't know i_2

Initial attempt

- 1. Party 1 samples i_1 locally.
- 2. Party 2 samples i_2 locally.
- 3. Flip a coin and output i_1 or i_2 .

Fix for priv cy

- 1. The parties obliviously sample and scret share i_1 .
- 2. The parties obliviously sample and secret share i_2 .
- 3. Reconstruct i_1 or i_2 based on a oblivious coin flip.

Initial attempt

- 1. Party 1 samples i_1 locally.
- 2. Party 2 samples i_2 locally.
- 3. Flip a coin and output i_1 or i_2 .

Fix for privacy

- 1. The parties obliviously sample and secret share i_1 .
- 2. The parties obliviously sample and secret share i_2 .
- 3. Reconstruct i_1 or i_2 based on a oblivious coin flip.

L₁ Sampling — Fix privacy issue

Initial attempt

- 1. Party 1 samples i_1 locally.
- 2. Party 2 samples i_2 locally.
- 3. Flip a coin and output i_1 or i_2 .

Fix for privacy

- 1. The parties obliviously sample and secret share i_1 .
- 2. The parties obliviously sample and secret share i_2 .
- 3. Reconstruct i_1 or i_2 based on a oblivious coin flip.

L₁ Sampling — Fix privacy issue

Initial attempt

- 1. Party 1 samples i_1 locally.
- 2. Party 2 samples i_2 locally.
- 3. Flip a coin and output i_1 or i_2 .

Fix for privacy

- 1. The parties obliviously sample and secret share i_1 .
- 2. The parties obliviously sample and secret share i_2 .
- 3. Reconstruct i_1 or i_2 based on a oblivious coin flip.

This is private!

Outline

- Sublinear sampling
- Sampling from common distributions
 - L₁ sampling
 - L₂ sampling
 - Product sampling
- Exponential Mechanism

L₂ Sampling

$$W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$$
 $W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$

$$\Pr[i] = \frac{(w_{1,i} + w_{2,i})^2}{\sum_{i} (w_{1,j} + w_{2,j})^2} = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2}$$

$$\Pr[i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2} = \frac{w_{1,i}^2 + w_{2,i}^2 + 2w_{1,i} \cdot w_{2,i}}{\|W_1\|_2^2 + \|W_2\|_2^2 + 2\sum_i (w_{1,i} \cdot w_{2,i})}$$

$$\Pr[i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2} = \frac{w_{1,i}^2 + w_{2,i}^2 + 2w_{1,i} \cdot w_{2,i}}{\|W_1\|_2^2 + \|W_2\|_2^2 + 2\sum_i (w_{1,i} \cdot w_{2,i})}$$

Apply the linearity trick like L₁?

$$\Pr[i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2} = \frac{w_{1,i}^2 + w_{2,i}^2 + 2w_{1,i} \cdot w_{2,i}}{\|W_1\|_2^2 + \|W_2\|_2^2 + 2\sum_j (w_{1,j} \cdot w_{2,j})}$$

Apply the linearity trick like L₁?

$$\Pr[i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2} = \frac{w_{1,i}^2 + w_{2,i}^2 + 2w_{1,i} \cdot w_{2,i}}{\|W_1\|_2^2 + \|W_2\|_2^2 + 2\sum_j (w_{1,j} \cdot w_{2,j})}$$

Apply the linearity trick like L₁?

- No longer linear
- Cross terms. (Inner product)
- Impossible to compute with sublinear communication

$$W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$$
 $W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$

$$W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$$

• Corrective sampling
$$\Pr[i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2} = \frac{w_{1,i}^2 + w_{2,i}^2 + 2w_{1,i} \cdot w_{2,i}}{\|W_1\|_2^2 + \|W_2\|_2^2 + 2\sum_i (w_{1,j} \cdot w_{2,j})}$$

Goal: Output i with $Pr[L_2 = i]$

$$W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$$
 $W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$

$$W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$$

$$\qquad \qquad \textbf{Corrective sampling} \qquad \Pr[i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2} = \frac{w_{1,i}^2 + w_{2,i}^2 + 2w_{1,i} \cdot w_{2,i}}{\|W_1\|_2^2 + \|W_2\|_2^2 + 2\sum_j (w_{1,j} \cdot w_{2,j})}$$

Goal: Output i with $Pr[L_2 = i]$

Sample from a related distribution — "Drop the cross terms"

$$W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$$
 $W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$

$$W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$$

$$\qquad \qquad \textbf{Corrective sampling} \qquad \Pr[i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2} = \frac{w_{1,i}^2 + w_{2,i}^2 + 2w_{1,i} \cdot w_{2,i}}{\|W_1\|_2^2 + \|W_2\|_2^2 + 2\sum_j (w_{1,j} \cdot w_{2,j})}$$

Goal: Output i with $Pr[L_2 = i]$

Sample from a related distribution — "Drop the cross terms"

- Correct it by "rejection sampling"
 - Output *i* with some probability p_i

$$W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$$

$$W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$$

Corrective sampling
$$\Pr[i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2} = \frac{w_{1,i}^2 + w_{2,i}^2 + 2w_{1,i} \cdot w_{2,i}}{\|W_1\|_2^2 + \|W_2\|_2^2 + 2\sum_j (w_{1,j} \cdot w_{2,j})}$$

Goal: Output i with $Pr[L_2 = i]$

Sample from a related distribution — "Drop the cross terms"

- Correct it by "rejection sampling"
 - Output i with some probability p_i

Avoid computing "Inner Product"

$$W_1 = (w_{1,1}, w_{1,2}, ..., w_{1,n})$$

$$W_2 = (w_{2,1}, w_{2,2}, ..., w_{2,n})$$

• Corrective sampling
$$\Pr[i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2} = \frac{w_{1,i}^2 + w_{2,i}^2 + 2w_{1,i} \cdot w_{2,i}}{\|W_1\|_2^2 + \|W_2\|_2^2 + 2\sum_j (w_{1,j} \cdot w_{2,j})}$$

Goal: Output i with $Pr[L_2 = i]$

Sample from a related distribution — "Drop the cross terms"

- Correct it by "rejection sampling"
 - Output i with some probability p_i

Avoid computing "Inner Product"

Depends only on $w_{i,i}$ and $w_{i,i}$

Our protocol

Our protocol

• The simple distribution A

$$\Pr[A = i] = \frac{w_{1,i}^2 + w_{2,i}^2}{\|W_1\|_2^2 + \|W_2\|_2^2}$$

Our protocol

The simple distribution A

$$\Pr[A = i] = \frac{w_{1,i}^2 + w_{2,i}^2}{\|W_1\|_2^2 + \|W_2\|_2^2}$$

Simply using our L1 sampling

$$V_1 = (w_{1,1}^2, w_{1,2}^2, ..., w_{1,n}^2)$$
$$V_2 = (w_{2,1}^2, w_{2,2}^2, ..., w_{2,n}^2)$$

$$V_2 = (w_{2.1}^2, w_{2.2}^2, ..., w_{2.n}^2)$$

Our protocol

The simple distribution A

$$\Pr[A = i] = \frac{w_{1,i}^2 + w_{2,i}^2}{\|W_1\|_2^2 + \|W_2\|_2^2}$$

Simply using our L1 sampling

$$V_1 = (w_{1,1}^2, w_{1,2}^2, ..., w_{1,n}^2)$$
$$V_2 = (w_{2,1}^2, w_{2,2}^2, ..., w_{2,n}^2)$$

$$V_2 = (w_{2,1}^2, w_{2,2}^2, ..., w_{2,n}^2)$$

Acceptance probability p_i

Goal for acceptance rate:
$$\frac{\Pr[L_2 = i]}{\Pr[A = i]}$$

Correctness

L₂ distribution

$$\Pr[L_2 = i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2}$$

Easy distribution A

$$\Pr[A = i] = \frac{w_{1,i}^2 + w_{2,i}^2}{\|W_1\|_2^2 + \|W_2\|_2^2}$$

Probability for *i* being accepted

$$\frac{\Pr[L_2 = i]}{\Pr[A = i]} = \frac{(w_{1,i} + w_{2,i})^2}{w_{1,i}^2 + w_{2,i}^2} \cdot \frac{\|W_1\|_2^2 + \|W_2\|_2^2}{\|W_1 + W_2\|_2^2}$$

Correctness

L₂ distribution

$$\Pr[L_2 = i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2}$$

Easy distribution A

$$\Pr[A = i] = \frac{w_{1,i}^2 + w_{2,i}^2}{\|W_1\|_2^2 + \|W_2\|_2^2}$$

Probability for *i* being accepted

$$\frac{\Pr[L_2 = i]}{\Pr[A = i]} = \underbrace{\frac{(w_{1,i} + w_{2,i})^2}{w_{1,i}^2 + w_{2,i}^2}} \cdot \frac{\|W_1\|_2^2 + \|W_2\|_2^2}{\|W_1 + W_2\|_2^2}$$

- ullet Only depend on w_i
- easy to compute

Correctness

L₂ distribution

$$\Pr[L_2 = i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2}$$

Easy distribution A

$$\Pr[A = i] = \frac{w_{1,i}^2 + w_{2,i}^2}{\|W_1\|_2^2 + \|W_2\|_2^2}$$

Probability for *i* being accepted

$$\frac{\Pr[L_2 = i]}{\Pr[A = i]} = \underbrace{\frac{(w_{1,i} + w_{2,i})^2}{w_{1,i}^2 + w_{2,i}^2}} \cdot \underbrace{\frac{\|W_1\|_2^2 + \|W_2\|_2^2}{\|W_1 + W_2\|_2^2}}$$

$$\frac{\|W_1\|_2^2 + \|W_2\|_2^2}{\|W_1 + W_2\|_2^2}$$

Hard to compute

- Only depend on w_i
- easy to compute

Correctness

L₂ distribution

$$\Pr[L_2 = i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2}$$

Easy distribution A

$$\Pr[A = i] = \frac{w_{1,i}^2 + w_{2,i}^2}{\|W_1\|_2^2 + \|W_2\|_2^2}$$

Probability for *i* being accepted

$$\frac{\Pr[L_2 = i]}{\Pr[A = i]} = \underbrace{\frac{(w_{1,i} + w_{2,i})^2}{w_{1,i}^2 + w_{2,i}^2}} \cdot \underbrace{\frac{\|W_1\|_2^2 + \|W_2\|_2^2}{\|W_1 + W_2\|_2^2}}$$

$$\frac{\|W_1\|_2^2 + \|W_2\|_2^2}{\|W_1 + W_2\|_2^2}$$

Hard to compute

Constant

- Only depend on w_i
- easy to compute

Correctness

L₂ distribution

$$\Pr[L_2 = i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2}$$

Easy distribution A

$$\Pr[A = i] = \frac{w_{1,i}^2 + w_{2,i}^2}{\|W_1\|_2^2 + \|W_2\|_2^2}$$

Probability for *i* being accepted

$$\frac{\Pr[L_2 = i]}{\Pr[A = i]} = \underbrace{\frac{(w_{1,i} + w_{2,i})^2}{w_{1,i}^2 + w_{2,i}^2}}_{(w_{1,i}^2 + w_{2,i}^2)} \cdot \underbrace{\frac{\|W_1\|_2^2 + \|W_2\|_2^2}{\|W_1 + W_2\|_2^2}}_{(w_{1,i}^2 + w_{2,i}^2)}$$

 p_i

Hard to compute

Constant

- Only depend on w_i
- easy to compute

Correctness

L₂ distribution

$$\Pr[L_2 = i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2}$$

O(1) communication

Easy distribution A

$$\Pr[A = i] = \frac{w_{1,i}^2 + w_{2,i}^2}{\|W_1\|_2^2 + \|W_2\|_2^2}$$

Probability for *i* being accepted

$$\frac{\Pr[L_2 = i]}{\Pr[A = i]} = \underbrace{\frac{(w_{1,i} + w_{2,i})^2}{w_{1,i}^2 + w_{2,i}^2}} \cdot \underbrace{\frac{\|W_1\|_2^2 + \|W_2\|_2^2}{\|W_1 + W_2\|_2^2}}$$

- p_i

Hard to compute

Constant

- Only depend on w_i
- easy to compute

Correctness

L₂ distribution

$$\Pr[L_2 = i] = \frac{(w_{1,i} + w_{2,i})^2}{\|W_1 + W_2\|_2^2}$$

O(1) communication

Easy distribution A

$$\Pr[A = i] = \frac{w_{1,i}^2 + w_{2,i}^2}{\|W_1\|_2^2 + \|W_2\|_2^2}$$

Probability for *i* being accepted

$$\frac{\Pr[L_2 = i]}{\Pr[A = i]} = \underbrace{\frac{(w_{1,i} + w_{2,i})^2}{w_{1,i}^2 + w_{2,i}^2}} \cdot \underbrace{\frac{\|W_1\|_2^2 + \|W_2\|_2^2}{\|W_1 + W_2\|_2^2}}$$

Hard to compute

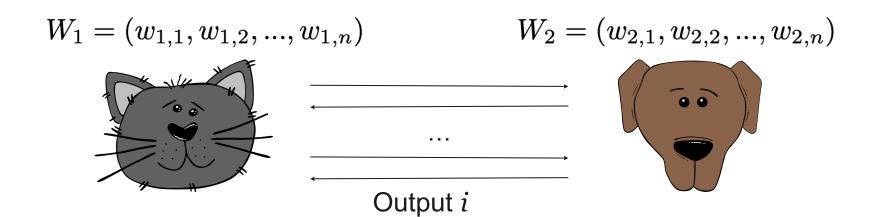
Constant

- Only depend on w_i
- easy to compute

Expected constant round

Outline

- Sublinear sampling
- Sampling from common distributions
 - L₁ sampling
 - L₂ sampling
 - Product sampling
- Exponential Mechanism



$$\Pr[i] = \frac{w_{1,i} \cdot w_{2,i}}{\sum_{j} w_{1,j} \cdot w_{2,j}} = \frac{w_{1,i} \cdot w_{2,i}}{\langle \mathbf{W_1}, \mathbf{W_2} \rangle}$$

$$\Pr[i] = \frac{w_{1,i} \cdot w_{2,i}}{\sum_{i} w_{1,j} \cdot w_{2,j}} = \frac{w_{1,i} \cdot w_{2,i}}{\langle \mathbf{W_1, W_2} \rangle} \propto w_{1,i} \cdot w_{2,i}$$

$$\Pr[i] \propto w_{1,i} \cdot w_{2,i}$$

$$\Pr[i] = \frac{w_{1,i} \cdot w_{2,i}}{\sum_{i} w_{1,j} \cdot w_{2,j}} = \frac{w_{1,i} \cdot w_{2,i}}{\langle \mathbf{W_1}, \mathbf{W_2} \rangle} \propto w_{1,i} \cdot w_{2,i}$$

$$\Pr[i] \propto w_{1,i} \cdot w_{2,i}$$

$$\Pr[i] = \frac{w_{1,i} \cdot w_{2,i}}{\sum_{i} w_{1,j} \cdot w_{2,j}} = \frac{w_{1,i} \cdot w_{2,i}}{\langle \mathbf{W_1}, \mathbf{W_2} \rangle} \propto w_{1,i} \cdot w_{2,i}$$

$$\Pr[i] \propto w_{1,i} \cdot w_{2,i}$$

- 1. The parties obliviously sample and secret share i_1 .
- 2. The parties obliviously sample and secret share i_2 .
- 3. Equality check:
 - a. if $i_1 = i_2$, output i_1
 - b. else $i_1 \neq i_2$, go to 1

$$\Pr[i] = \frac{w_{1,i} \cdot w_{2,i}}{\sum_{i} w_{1,i} \cdot w_{2,i}} = \frac{w_{1,i} \cdot w_{2,i}}{\langle \mathbf{W_1}, \mathbf{W_2} \rangle} \propto w_{1,i} \cdot w_{2,i}$$

$$\Pr[i] \propto w_{1,i} \cdot w_{2,i}$$

- 1. The parties obliviously sample and secret share i_1 .
- 2. The parties obliviously sample and secret share i_2 .
- 3. Equality check:
 - a. if $i_1 = i_2$, output i_1
 - b. else $i_1 \neq i_2$, go to 1

Expected # of iterations:

$$\frac{1}{\langle \mathbf{W_1}, \mathbf{W_2} \rangle}$$

$$\Pr[i] = \frac{w_{1,i} \cdot w_{2,i}}{\sum_{i} w_{1,j} \cdot w_{2,j}} = \frac{w_{1,i} \cdot w_{2,i}}{\langle \mathbf{W_1, W_2} \rangle} \propto w_{1,i} \cdot w_{2,i}$$

$$\Pr[i] \propto w_{1,i} \cdot w_{2,i}$$

- 1. The parties obliviously sample and secret share i_1 .
- 2. The parties obliviously sample and secret share i_2 .
- 3. Equality check:
 - a. if $i_1 = i_2$, output i_1
 - b. else $i_1 \neq i_2$, go to 1

Expected # of iterations:

$$\frac{1}{\langle \mathbf{W_1}, \mathbf{W_2} \rangle}$$

• Need sufficiently large inner product $\langle \mathbf{W}_1, \mathbf{W}_2 \rangle = \omega(\frac{\log n}{n})$

$$\Pr[i] = \frac{w_{1,i} \cdot w_{2,i}}{\sum_{i} w_{1,j} \cdot w_{2,j}} = \frac{w_{1,i} \cdot w_{2,i}}{\langle \mathbf{W_1}, \mathbf{W_2} \rangle} \propto w_{1,i} \cdot w_{2,i}$$

$$\Pr[i] \propto w_{1,i} \cdot w_{2,i}$$

- 1. The parties obliviously sample and secret share i_1 .
- 2. The parties obliviously sample and secret share i_2 .
- 3. Equality check:
 - a. if $i_1 = i_2$, output i_1
 - b. else $i_1 \neq i_2$, go to 1

Expected # of iterations:

$$\left| rac{1}{\left< \mathbf{W_1}, \mathbf{W_2} \right>} \right|$$

- Need sufficiently large inner product $\langle \mathbf{W}_1, \mathbf{W}_2 \rangle = \omega(\frac{\log n}{n})$
- Leakage: (at most) inner product

$$\Pr[i] = \frac{w_{1,i} \cdot w_{2,i}}{\sum_{i} w_{1,j} \cdot w_{2,j}} = \frac{w_{1,i} \cdot w_{2,i}}{\langle \mathbf{W_1}, \mathbf{W_2} \rangle} \propto w_{1,i} \cdot w_{2,i}$$

$$\Pr[i] \propto w_{1,i} \cdot w_{2,i}$$

- 1. The parties obliviously sample and secret share i_1 .
- 2. The parties obliviously sample and secret share i_2 .
- 3. Equality check:
 - a. if $i_1 = i_2$, output i_1
 - b. else $i_1 \neq i_2$, go to 1

Expected # of iterations:

$$oxed{rac{1}{\langle \mathbf{W_1}, \mathbf{W_2}
angle}}$$

- Need sufficiently large inner product $\langle \mathbf{W}_1, \mathbf{W}_2 \rangle = \omega(\frac{\log n}{n})$
- Leakage: (at most) inner product
- Impossible for sublinear communication
 - Reduction from Set Disjointness Problem

Requires at least linear communication[R92]

Outline

- Sublinear sampling
- Sampling from common distributions
 - L₁ sampling
 - L₂ sampling
 - Product sampling
- Exponential Mechanism

- Exponential Mechanism (simplified)
 - \circ A list of items h_i
 - \circ Goal: output h_i with probability $\propto e^{s(h_i)}$

- Exponential Mechanism (simplified)
 - \circ A list of items h_i
 - o Goal: output h_i with probability $\propto e^{s(h_i)}$
- 2 party sublinear Exponential Mechanism
 - O Additive score function $s(h_i) = s_i(h_i) + s_2(h_i)$
 - Party j computes $s_i(h_i)$ privately
 - o Goal: output h_i with probability $\propto e^{s(h_i)} = e^{s_1(h_i) + s_2(h_i)} = e^{s_1(h_i)} \cdot e^{s_2(h_i)}$

- Exponential Mechanism (simplified)
 - \circ A list of items h_i
 - o Goal: output h_i with probability $\propto e^{s(h_i)}$
- 2 party sublinear Exponential Mechanism
 - O Additive score function $s(h_i) = s_i(h_i) + s_2(h_i)$
 - o Party j computes $s_i(h_i)$ privately
 - Goal: output h_i with probability $\propto e^{s(h_i)} = e^{s_1(h_i) + s_2(h_i)} = e^{s_1(h_i)} \cdot e^{s_2(h_i)}$

- Exponential Mechanism (simplified)
 - \circ A list of items h_i
 - \circ Goal: output h_i with probability $\propto e^{s(h_i)}$
- 2 party sublinear Exponential Mechanism
 - O Additive score function $s(h_i) = s_1(h_i) + s_2(h_i)$
 - o Party j computes $s_i(h_i)$ privately

Goal: output
$$h_i$$
 with probability $\propto e^{s(h_i)} = e^{s_1(h_i) + s_2(h_i)} = e^{s_1(h_i)} \cdot e^{s_2(h_i)}$

- Exponential Mechanism (simplified)
 - \circ A list of items h_i
 - o Goal: output h_i with probability $\propto e^{s(h_i)}$
- 2 party sublinear Exponential Mechanism
 - O Additive score function $s(h_i) = s_1(h_i) + s_2(h_i)$
 - o Party j computes $s_i(h_i)$ privately

- Goal: output h_i with probability $\propto e^{s(h_i)} = e^{s_1(h_i) + s_2(h_i)} = e^{s_1(h_i)} \cdot e^{s_2(h_i)}$
- We have a problem leaking inner product is not DP!
- ✓ Solution: estimate Inner Product by DP version of Johnson-Lindenstrauss Transform[JL84, IM98]

Conclusion

- Introduce a new problem of distributed sublinear sampling
- Achieve
 - 2-party L₁, L₂, L_psublinear sampling
 - Impossibility of sublinear product sampling in general
 - Sublinear product sampling protocol
 - for inputs w/ sufficient large inner product
 - 2-party exponential mechanism for differential privacy

Thank You!

http://eprint.iacr.org/2022/660

Thanks!

http://eprint.iacr.org/2022/660

