Oblivious-Transfer Complexity of Noisy Coin-Toss via Secure Zero Communication Reductions

Saumya Goyal¹, Varun Narayanan², Manoj Prabhakaran³

¹Stanford University, ²Technion, ³IIT Bombay

November 2022

Outline

2 Background

SZCR and OT

4 The Balanced Embedding

Solisy Coin-Toss

6 Conclusion

3

→

Image: A match a ma

Table of Contents

Introduction

- 2 Background
- 3 SZCR and OT
- 4 The Balanced Embedding
- 5 Noisy Coin-Toss

Conclusion

э

(a)

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

 $OT = (\theta_0, \theta_1)$ to Alice, (b, θ_b) to Bob

3

(a)

 $\mathsf{OT} = (\theta_0, \theta_1)$ to Alice, (b, θ_b) to Bob

 $|f|_{OT}$ = minimum number of OTs required by an information-theoretically (semi-honest, perfectly) secure protocol for f

 $|f|_{OT}$ = minimum number of OTs required by an information-theoretically (semi-honest, perfectly) secure protocol for f

- Well-studied since [Kilian'88] showed OT is complete
- But formidable barriers to proving super-linear lower bounds
 - In particular, lower bound for $|f|_{\rm OT}$ is a lower bound for circuit complexity of f
 - For deterministic functions

 $|f|_{OT}$ = minimum number of OTs required by an information-theoretically (semi-honest, perfectly) secure protocol for f

- Well-studied since [Kilian'88] showed OT is complete
- But formidable barriers to proving super-linear lower bounds
 - In particular, lower bound for $|f|_{\rm OT}$ is a lower bound for circuit complexity of f
 - For deterministic functions

Can we hope to evade these barriers for randomized functions?

< 日 > < 同 > < 回 > < 回 > < 回 >

 $|f|_{OT}$ = minimum number of OTs required by an information-theoretically (semi-honest, perfectly) secure protocol for f

- Well-studied since [Kilian'88] showed OT is complete
- But formidable barriers to proving super-linear lower bounds
 - In particular, lower bound for $|f|_{OT}$ is a lower bound for circuit complexity of f
 - For deterministic functions

Can we hope to evade these barriers for randomized functions?

Yes!

< 日 > < 同 > < 回 > < 回 > < 回 >

Noisy coin-tossing

p-noisy coin toss is defined as follows:

э

(a)

Noisy coin-tossing

p-noisy coin toss is defined as follows:

- Alice and Bob get a uniform bit each
- Which are unequal with probability p

4 円

Noisy coin-tossing

p-noisy coin toss is defined as follows:

- Alice and Bob get a uniform bit each
- Which are unequal with probability p

- Circuit complexity of sampling f_{p-coin} is Θ(log(1/p)) (need that many bits as randomness)
- By basic GMW protocol [GMW87] $|f_{p-\text{coin}}|_{\text{OT}} = O(\log 1/p)$
- Can we securely compute f_{p-coin} with fewer OTs?

Contributions

• Main Result: $|f_{p-coin}|_{OT} = \Theta(\log 1/p)$

э

イロト イヨト イヨト

Contributions

- Main Result: $|f_{p-coin}|_{OT} = \Theta(\log 1/p)$
 - Not limited by input/output size!

э

(a)

Contributions

- Main Result: $|f_{p-coin}|_{OT} = \Theta(\log 1/p)$
 - Not limited by input/output size!
 - Beyond the reach of state-of-the-art Information-theoretic techniques
 - $\bullet\,$ Limited by input/output size: a lower bound of at most 1
 - As p approaches 0, their lower bound degrades

< □ > < 同 > < 回 > < 回 > < 回 >

Contributions

- Main Result: $|f_{p-coin}|_{OT} = \Theta(\log 1/p)$
 - Not limited by input/output size!
 - Beyond the reach of state-of-the-art Information-theoretic techniques
 - $\bullet\,$ Limited by input/output size: a lower bound of at most 1
 - As p approaches 0, their lower bound degrades
- Tools:
 - Relation between Secure Zero-Communication Reductions (SZCR) [NPP20] and OT complexity for randomised functions
 - Define a Balanced Embedding complexity to simplify analysis

Contributions

- Main Result: $|f_{p-coin}|_{OT} = \Theta(\log 1/p)$
 - Not limited by input/output size!
 - Beyond the reach of state-of-the-art Information-theoretic techniques
 - $\bullet\,$ Limited by input/output size: a lower bound of at most 1
 - As p approaches 0, their lower bound degrades
- Tools:
 - Relation between Secure Zero-Communication Reductions (SZCR) [NPP20] and OT complexity for randomised functions
 - Define a Balanced Embedding complexity to simplify analysis

$$|f|_{\mathsf{emb}} \leq |f|_{\mathsf{szcr}} \lesssim |f|_{\mathsf{OT}}$$

Table of Contents

3 SZCR and OT

4 The Balanced Embedding

5 Noisy Coin-Toss

Conclusion

э

(a)

Background

SZCR

2

イロト イヨト イヨト イヨト

Background

SZCR

 $|f|_{szcr}$ = minimum number of OTs needed by an SZCR of f

Goyal, Narayanan, Prabhakara	an
------------------------------	----

э

(a)

Table of Contents

5 Noisy Coin-Toss

Conclusion

э

(a)

SZCR and OT complexity

Using our construction for SZCR given an MPC protocol, we will show:

 $|f|_{
m szcr} \lesssim |f|_{
m OT}$

Same result was shown in [NPP20] for deterministic f

I ⇒

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Given an MPC protocol using m OTs for computing f, an SZCR for f using OT^m :

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given an MPC protocol using m OTs for computing f, an SZCR for f using OT^m :

• Receive transcript q^* from CRS

< A[™]

Given an MPC protocol using m OTs for computing f, an SZCR for f using OT^m :

Receive transcript q* from CRS
If q* compatible with input:

▲ 西部

Given an MPC protocol using m OTs for computing f, an SZCR for f using OT^m :

1 Receive transcript q^* from CRS

▲ 西部

- 2 If q^* compatible with input:
 - Compute output
 - Sample OT view

Given an MPC protocol using m OTs for computing f, an SZCR for f using OT^m :

1 Receive transcript q^* from CRS

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- 2 If q^* compatible with input:
 - Compute output
 - Sample OT view

• Output will be correct if OT^m predicate accepts (U, V)

Randomised functions

Given an MPC protocol using m OTs for computing f, an SZCR for f using OT^m :

Sample output

- 2 Receive transcript q^* from CRS
- If q* compatible with input input-output pair
 - Compute output
 - Sample OT view

• Output will be correct if OT^m predicate accepts (U, V)

SZCR and OT complexity

Using our construction for SZCR given an MPC protocol, we are able to conclude:

 $|f|_{
m szcr} \lesssim |f|_{
m OT}$

- 4 ⊒ →

Image: A matrix and a matrix

SZCR and OT complexity

Using our construction for SZCR given an MPC protocol, we are able to conclude:

 $|f|_{
m szcr} \lesssim |f|_{
m OT}$

Remarks on the construction:

- Comes with a lower bound on the acceptance probability
- Generalizes to correlations beyond OT
- Can avoid the need for common randomness

Table of Contents

- 1 Introduction
- 2 Background
- 3 SZCR and OT
- 4 The Balanced Embedding
 - Noisy Coin-Toss

Conclusion

э

(a)

Evaluation Graph

For a function $f: X \times Y \rightarrow A \times B$, we define the evaluation graph G_f as:

- Bipartite graph on $(X \times A), (Y \times B)$
- Weight of edge ((x, a), (y, b)) = Pr[f(x, y) = (a, b)]

3

The Balanced Embedding

SZCR as a graph embedding

Consider the evaluation graph of fand the graph of the predicate Φ . An SZCR:

▲ 西部

э

Consider the evaluation graph of f and the graph of the predicate Φ . An SZCR:

• Defines a probabilistic map from nodes in G_f to the graph of Φ

Consider the evaluation graph of f and the graph of the predicate Φ . An SZCR:

- Defines a probabilistic map from nodes in *G_f* to the graph of Φ
- Results in "embedding" the function graph into predicate

Consider the evaluation graph of f and the graph of the predicate Φ . An SZCR:

- Defines a probabilistic map from nodes in G_f to the graph of Φ
- Results in "embedding" the function graph into predicate

What can a semi-honest adversary infer about (y_1, b_1) from u_2 ?:

Consider the evaluation graph of f and the graph of the predicate Φ . An SZCR:

- Defines a probabilistic map from nodes in *G_f* to the graph of Φ
- Results in "embedding" the function graph into predicate

What can a semi-honest adversary infer about (y_1, b_1) from u_2 ?:

• Using the protocol

Consider the evaluation graph of f and the graph of the predicate Φ . An SZCR:

- Defines a probabilistic map from nodes in G_f to the graph of Φ
- Results in "embedding" the function graph into predicate

What can a semi-honest adversary infer about (y_1, b_1) from u_2 ?:

- Using the protocol
- Using the simulator

Consider the evaluation graph of f and the graph of the predicate Φ . An SZCR:

- Defines a probabilistic map from nodes in G_f to the graph of Φ
- Results in "embedding" the function graph into predicate

What can a semi-honest adversary infer about (y_1, b_1) from u_2 ?:

- Using the protocol
- Using the simulator

For security, we need both to be equivalent

< A

The Balanced Embedding

Simplifying to a Balanced Embedding

Balanced embedding of weighted bipartite graph $G(S, T, \omega)$ into $H(U, V, \Phi)$ where weight function ω is non-negative:

▲ 西部

Simplifying to a Balanced Embedding

Balanced embedding of weighted bipartite graph $G(S, T, \omega)$ into $H(U, V, \Phi)$ where weight function ω is non-negative:

• (π, θ) , two embeddings that balance each other

The Balanced Embedding

Simplifying to a Balanced Embedding

Balanced embedding of weighted bipartite graph $G(S, T, \omega)$ into $H(U, V, \Phi)$ where weight function ω is non-negative:

• (π, θ) , two embeddings that balance each other

The Balanced Embedding

Simplifying to a Balanced Embedding

Balanced embedding of weighted bipartite graph $G(S, T, \omega)$ into $H(U, V, \Phi)$ where weight function ω is non-negative:

 (π, θ), two embeddings that balance each other
 Balancing (similar to security):

$$\sum_{v \in \mathcal{V}} \pi(v, \beta) \cdot \phi(u, v) = \theta(u, \alpha) \cdot \omega(\alpha, \beta) \forall u \in \mathcal{U}$$

Balanced Embedding complexity

Balanced Embedding

For $\pi, \theta : (\mathcal{U} \times \mathcal{S}) \cup (\mathcal{V} \times \mathcal{T}) \to \mathbb{R}_{\geq 0}$, (π, θ) is a balanced embedding of $\mathcal{G}(\mathcal{S}, \mathcal{T}, \omega)$ into $\mathcal{H}(\mathcal{U}, \mathcal{V}, \mathbf{\Phi})$ if for all $(\alpha, \beta) \in \mathcal{S} \times \mathcal{T}$:

$$\sum_{v \in \mathcal{V}} \pi(v, \beta) \cdot \Phi(u, v) = \theta(u, \alpha) \cdot \omega(\alpha, \beta) \qquad \forall u \in \mathcal{U}$$
$$\sum_{u \in \mathcal{U}} \pi(u, \alpha) \cdot \Phi(u, v) = \theta(v, \beta) \cdot \omega(\alpha, \beta) \qquad \forall v \in \mathcal{V}$$
$$\sum_{u \in \mathcal{U}} \pi(u, \alpha) \cdot \theta(u, \alpha) = 1 \qquad \sum_{v \in \mathcal{V}} \pi(v, \beta) \cdot \theta(v, \beta) = 1 \qquad \text{if } \omega(\alpha, \beta) > 0$$

< 47 ▶

Balanced Embedding complexity

Balanced Embedding

For $\pi, \theta : (\mathcal{U} \times \mathcal{S}) \cup (\mathcal{V} \times \mathcal{T}) \to \mathbb{R}_{\geq 0}$, (π, θ) is a balanced embedding of $\mathcal{G}(\mathcal{S}, \mathcal{T}, \omega)$ into $\mathcal{H}(\mathcal{U}, \mathcal{V}, \mathbf{\Phi})$ if for all $(\alpha, \beta) \in \mathcal{S} \times \mathcal{T}$:

$$\sum_{v \in \mathcal{V}} \pi(v, \beta) \cdot \phi(u, v) = \theta(u, \alpha) \cdot \omega(\alpha, \beta) \qquad \forall u \in \mathcal{U}$$
$$\sum_{u \in \mathcal{U}} \pi(u, \alpha) \cdot \phi(u, v) = \theta(v, \beta) \cdot \omega(\alpha, \beta) \qquad \forall v \in \mathcal{V}$$
$$\sum_{u \in \mathcal{U}} \pi(u, \alpha) \cdot \theta(u, \alpha) = 1 \qquad \sum_{v \in \mathcal{V}} \pi(v, \beta) \cdot \theta(v, \beta) = 1 \qquad \text{if } \omega(\alpha, \beta) > 0$$

Balanced Embedding Complexity

The balanced embedding complexity of f, $|f|_{emb}$ is the smallest m such that G_f has a balanced embedding into $H_{\Phi_{OT}^m}$. By construction, we conclude: $|f|_{emb} \leq |f|_{szcr}$

▲ 西部

Table of Contents

- Introduction
- 2 Background
- 3 SZCR and OT
- 4 The Balanced Embedding
- 5 Noisy Coin-Toss

Conclusion

э

(a)

• The noisy coin-toss looks like this for small *p*

Image: A matrix

э

< ∃⇒

- The noisy coin-toss looks like this for small p
- We want to embed it into m instances of OT

- ∢ /⊐ ►

э

- The noisy coin-toss looks like this for small p
- We want to embed it into m instances of OT

Assume that nodes are embedded as follows

э

- The noisy coin-toss looks like this for small *p*
- We want to embed it into *m* instances of OT
- Assume that nodes are embedded as follows
- We show that there is a v:
 - Mapped from 1_B
 - Number of edges to groups depends on thickness in function graph

- The noisy coin-toss looks like this for small *p*
- We want to embed it into *m* instances of OT
- Assume that nodes are embedded as follows
- We show that there is a v:
 - Mapped from 1_B
 - Number of edges to groups depends on thickness in function graph

• We find that $2^m \ge \frac{1-p}{p}$

Table of Contents

- Introduction
- 2 Background
- 3 SZCR and OT
- 4 The Balanced Embedding
- Noisy Coin-Toss

э

(a)

Conclusion

Conclusion

- We showed:
 - $|f|_{\rm emb} \leq |f|_{\rm szcr} \lesssim |f|_{\rm OT}$ for all (possibly randomised) f

•
$$|f_{p\text{-}\mathrm{coin}}|_{\mathsf{emb}} = \omega(\log 1/p)$$

Hence,
$$|f_{p\text{-}\mathrm{coin}}|_{\mathsf{OT}} = \omega(\log 1/p)$$

э

イロン イ理 とくほと イロン

Conclusion

Conclusion

- We showed:
 - $|f|_{\rm emb} \leq |f|_{\rm szcr} \lesssim |f|_{\rm OT}$ for all (possibly randomised) f

•
$$|f_{p\text{-}\mathrm{coin}}|_{\mathsf{emb}} = \omega(\log 1/p)$$

Hence,
$$|f_{p\text{-}coin}|_{\mathsf{OT}} = \omega(\log 1/p)$$

Open: Super-linear balanced-embedding complexity for deterministic functions

- For explicit functions, this faces circuit complexity barriers
- Immediate question: Do such functions exist?