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For SPARGSs:

Observation:
For standard arguments, can
know the time bound T when

you compute the proof. -
Compute proof n?

Theorem (informal): Key idea:

Tree-based construction to
“non-deterministically guess”
binary representation of T.

Given any SPARG, can construct a
time-independent SPARG.
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C updatable MT from
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Update in parallel MT update paths

-an compute aux’ given au Somewhere extractable P(w) comput
| W
parallel time t + polylog(t) commitment for (cf E;J’ etc;, Tt

- Given w, can compute a prc¢ + batch argument
cf->cf’ in time t *polylog(t) from [CJJ21]
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* Final proof consists of m = polylog(T) sub-proofs.



Questions?

0 ————— T-T + polylog(T)

Compute y = M(x)

Result 1: Result 2:

Assuming LWE, exist SPARGSs =>
Compute proof m SPARGs for PRAM. time-independent SPARGs

Result 3: Result 4:

VDFs from LWE + any Mem-hard VDFs without
sequential function “knowledge™ assumptions



