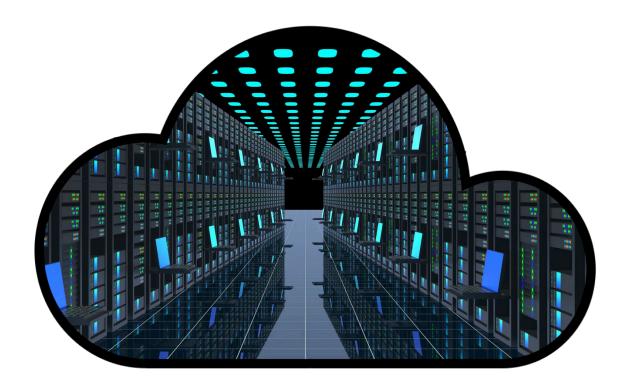
Parallelizable Delegation from LWE

Cody Freitag¹, Rafael Pass^{1,2}, Naomi Sirkin¹

¹Cornell Tech ²Tel-Aviv University

Verifier V

Prover **P**



Verifier V

M, x

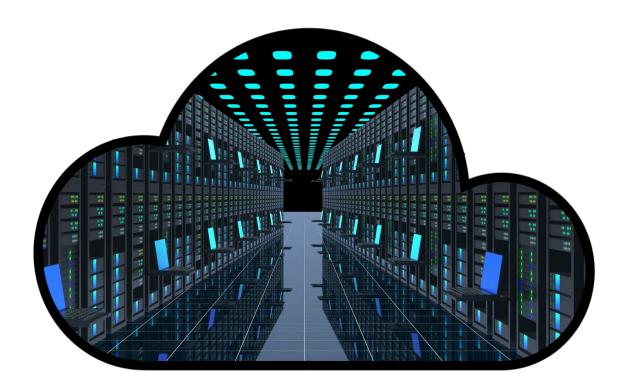
Prover **P**

y = M(x)

Verifier V

M, x

Prover **P**



y = M(x)

Verifier V

M, x

y, π

Prover **P**

y = M(x)

Completeness:

If y = M(x),
 π convinces V.

Verifier V

M, x

y, π

Prover **P**

y = M(x)

Completeness:

• If y = M(x), π convinces V.

Soundness:

convincing π .

Verifier V

M, x

y, π

• If y != M(x), PPT **P*** cannot generate a

Prover **P**

y = M(x)

Completeness:

• If y = M(x), π convinces V.

Soundness: • If y != M(x), PPT **P*** cannot generate a convincing π .

Verifier V

M, X

γ, π

Succinctness:

Prover **P**

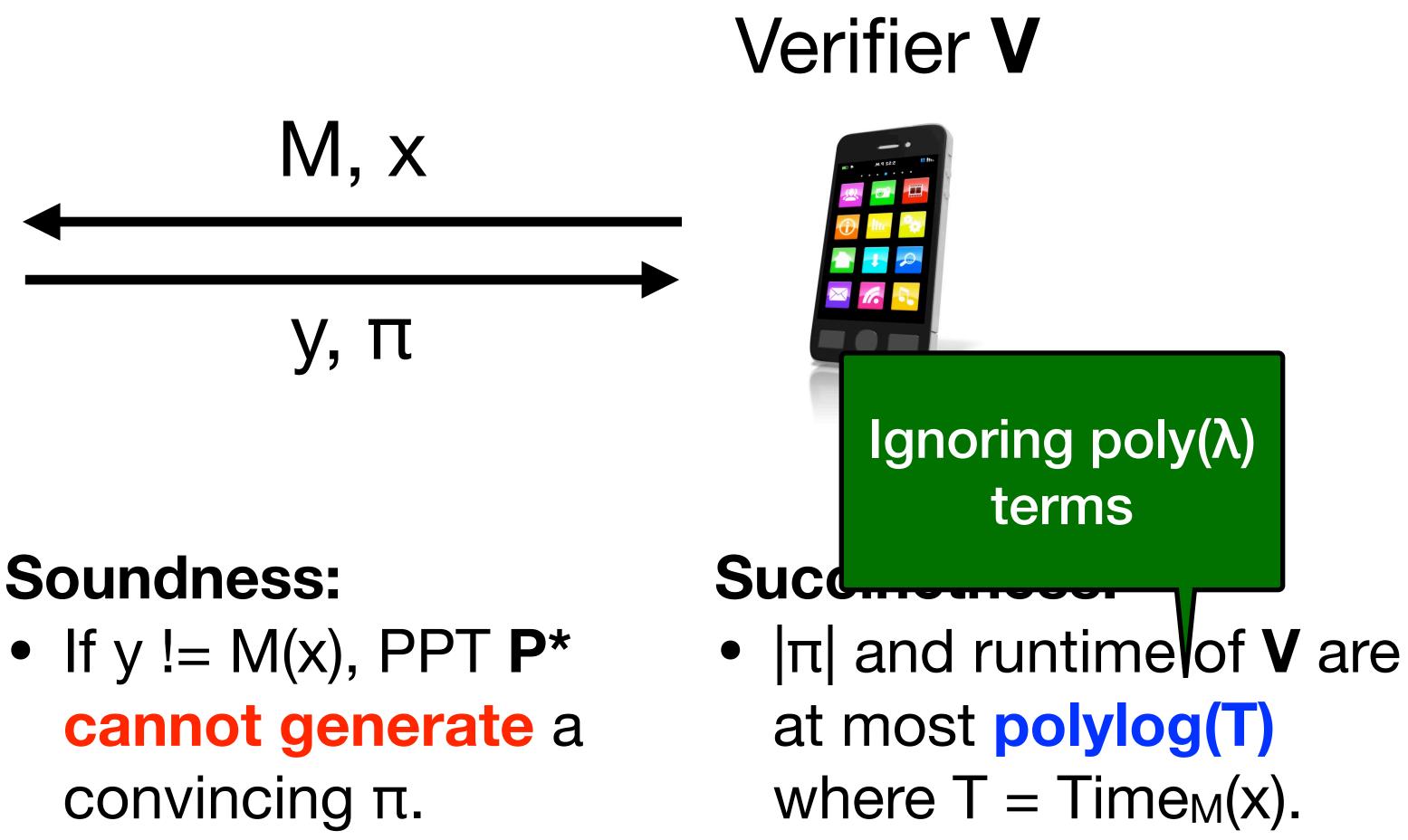
y = M(x)

Completeness:

• If y = M(x), π convinces V.

Soundness:

convincing π .



Prover **P**

y = M(x)

Completeness:

• If y = M(x), π convinces V.

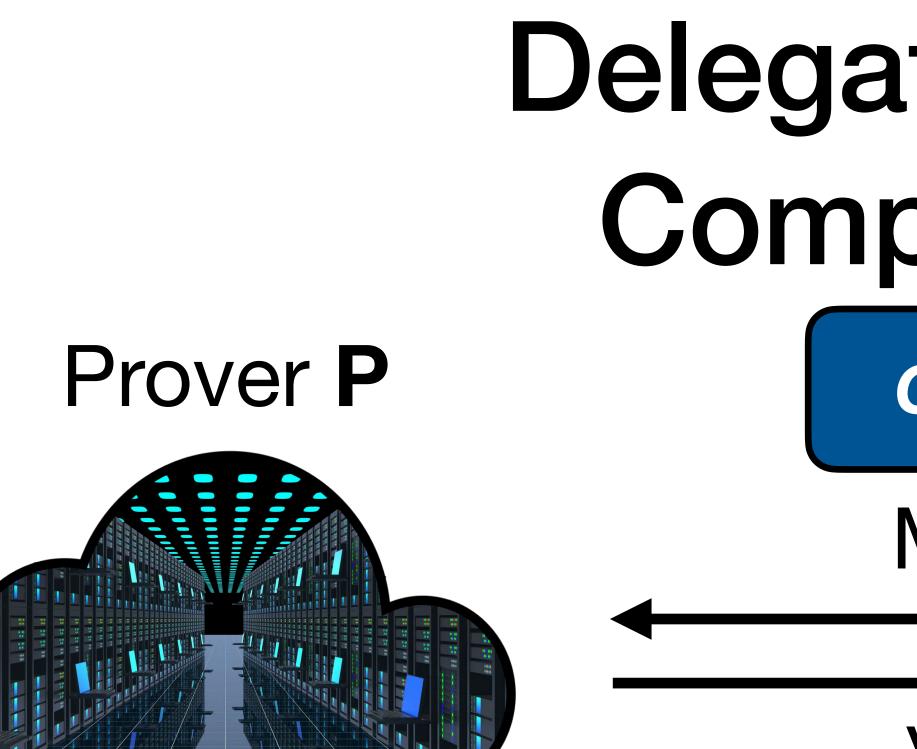
Soundness: • If y != M(x), PPT **P*** cannot generate a convincing π .

Verifier V

M, X

γ, π

Succinctness:



y = M(x)

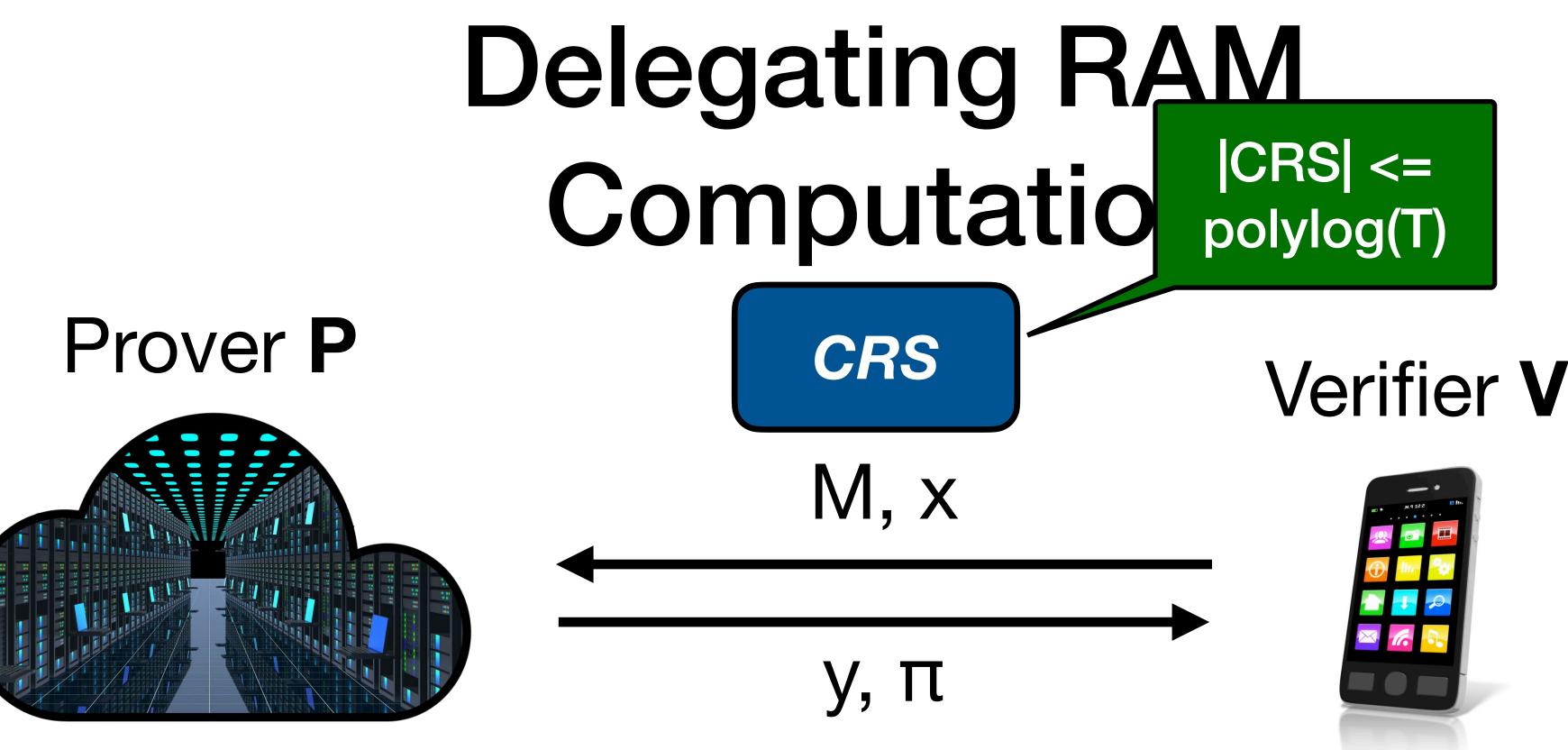
Completeness:

• If y = M(x), π convinces V.

Soundness: • If y != M(x), PPT **P*** cannot generate a convincing π .

Delegating RAM Computation CRS Verifier V M, x γ, π

Succinctness:



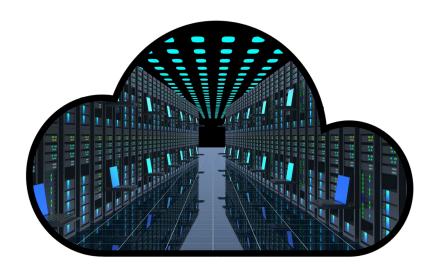
y = M(x)

Completeness:

• If y = M(x), π convinces V.

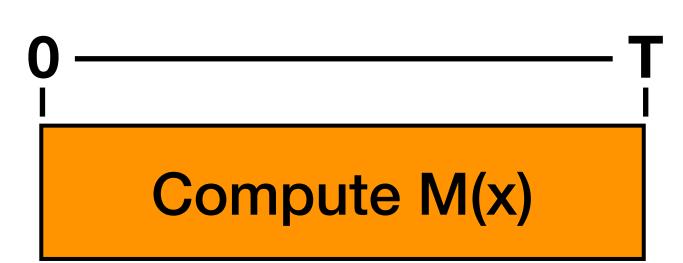
Soundness: • If y != M(x), PPT **P*** cannot generate a convincing π .

Succinctness:

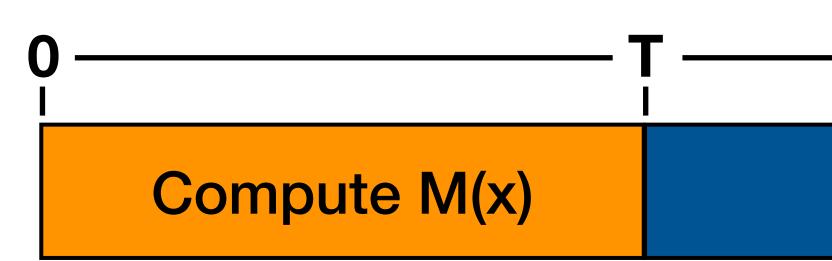


Wall-clock time

Wall-clock time



Wall-clock time



T*polylog(T)

Compute proof π

1 hour

Wall-clock time

Compute M(x)

T*polylog(T)

Compute proof π

What does the prover do? **100 hours** 1 hour T*polylog(T) Compute M(x) Compute proof π

Wall-clock time

1 hour

Wall-clock time

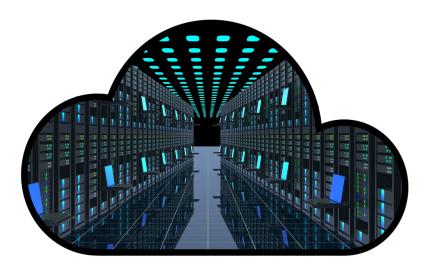
Compute M(x)

Quasi-linear T*polylog(T) prover efficiency:

What does the prover do? 1 hour 100 hours T*polylog(T) Compute proof π

Compute M(x)

Quasi-linear T*polylog(T) prover efficiency: • from ROM or SNARKs [M94, BS05, BCCT13].



What does the prover do? 1 hour **100 hours** T*polylog(T) Compute proof π

Wall-clock time

Compute M(x)

Quasi-linear T*polylog(T) prover efficiency: • from ROM or SNARKs [M94, BS05, BCCT13]. • from LWE [CJJ21].

1 hour

Wall-clock time

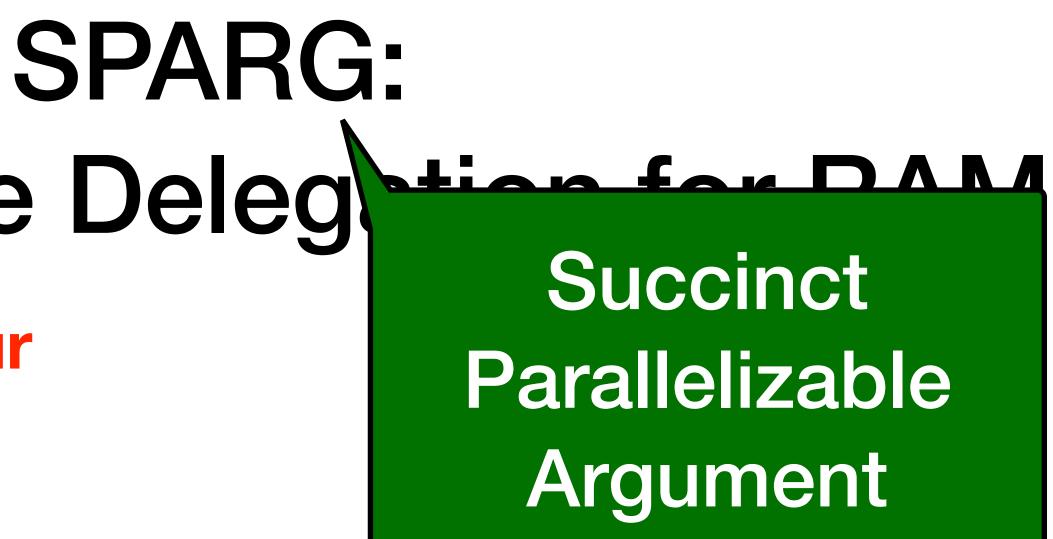
Compute M(x)

Parallelizable Deleg

1 hour

Wall-clock time

Compute M(x)



1 hour

Wall-clock time

Compute M(x)

1 hour

Wall-clock time

Compute M(x)

Compute the proof *in parallel* to the computation

1 hour

Wall-clock time

 $\left(\right)$

Compute M(x)

Compute proof π

+ polylog(T)

Compute the proof *in parallel* to the computation

1 hour

Wall-clock time

Compute M(x)

Compute proof π

+ polylog(T)

Compute the proof *in parallel* to the computation

polylog(T) procs

1 hour

Wall-clock time

Compute M(x)

Compute proof π

+ polylog(T) **p** procs p*polylog(T) procs

Compute the proof *in parallel* to the computation

1 hour

Wall-clock time

Compute M(x)

Compute proof π

+ polylog(T) **p** procs p*polylog(T) procs

Compute the proof *in parallel* to the computation

Only known from
 SNARKs [EFKP20]

Wall-clock time

Compute M(x)

Compute proof π

Main Result

T-T + polylog(T) **p** procs p*polylog(T) procs

+

Wall-clock time

Compute M(x)

Compute proof π

Main Result

polylog(T) **p** procs p*polylog(T) procs

Theorem:

Assuming LWE, there exists parallelizable delegation for any **PRAM** computation.

Verifiable function that cannot be sped up with many processors

Verifiable function that cannot be sped up with many processors

Verifiable function that cannot be sped up with many processors

Plain model constructions:

Verifiable function that cannot be sped up with many processors

Plain model constructions: **Iterated Sequential Function** + SNARGs for P **[BBBF18]**

Verifiable function that cannot be sped up with many processors

Plain model constructions: **Iterated Sequential** Function + SNARGs for P **[BBBF18]**

Any Sequential Function + SNARKs for NP [EFKP20]

Verifiable function that cannot be sped up with many processors

Plain model constructions: **Iterated Sequential** Function + SNARGs for P **[BBBF18]**

Any Sequential Function + SNARKs for NP **[EFKP20]**

Verifiable function that cannot be sped up with many processors

Plain model constructions: **Iterated Sequential** Function + SNARGs for P **[BBBF18]**

SPARG Paradigm:

Any Sequential Function + SNARKs for NP **[EFKP20]**

Repeated Squaring + LWE [BCHKLPR22] (Previous talk)

Any Function + SPARG => Verifiable Function

Verifiable function that cannot be sped up with many processors

Plain model constructions: **Iterated Sequential** Function + SNARGs for P **[BBBF18]**

SPARG Paradigm:

preserves parallel running time!

Any Sequential Function + SNARKs for NP **[EFKP20]**

Repeated Squaring + LWE [BCHKLPR22] (Previous talk)

Any Function + SPARG => Verifiable Function

Verifiable function that cannot be sped up with many processors

Plain model constructions: **Iterated Sequential** Function + SNARGs for P **[BBBF18]**

Any Sequential Function + SNARKs for NP **[EFKP20]**

Verifiable function that cannot be sped up with many processors

Plain model constructions: **Iterated Sequential** Function + SNARGs for P **[BBBF18]**

Theorem:

Assuming LWE and any sequential function, there exists a VDF.

Any Sequential Function + SNARKs for NP [EFKP20]

Verifiable function that cannot be sped up with many processors

Plain model constructions:

Theorem:

Iterated Sequential Function + SNARGs for P [BB<u>BF18]</u>

> Minimal assumption

Assuming LWE and any sequential function, there exists a VDF.

Any Sequential Function + SNARKs for NP [EFKP20]

Verifiable function that cannot be sped up with many processors

Plain model constructions: **Iterated Sequential** Function + SNARGs for P **[BBBF18]**

Theorem:

Assuming LWE and any sequential function, there exists a VDF.

Any Sequential Function + SNARKs for NP [EFKP20]

Verifiable function that cannot be sped up with many processors

Plain model constructions: **Iterated Sequential** Function + SNARGs for P [**BBBF18**]

Theorem:

Assuming LWE and any sequential function, there exists a VDF.

Any Sequential Function + SNARKs for NP [EFKP20]

Repeated Squaring + LWE [BCHKLPR22] (Previous talk)

Theorem:

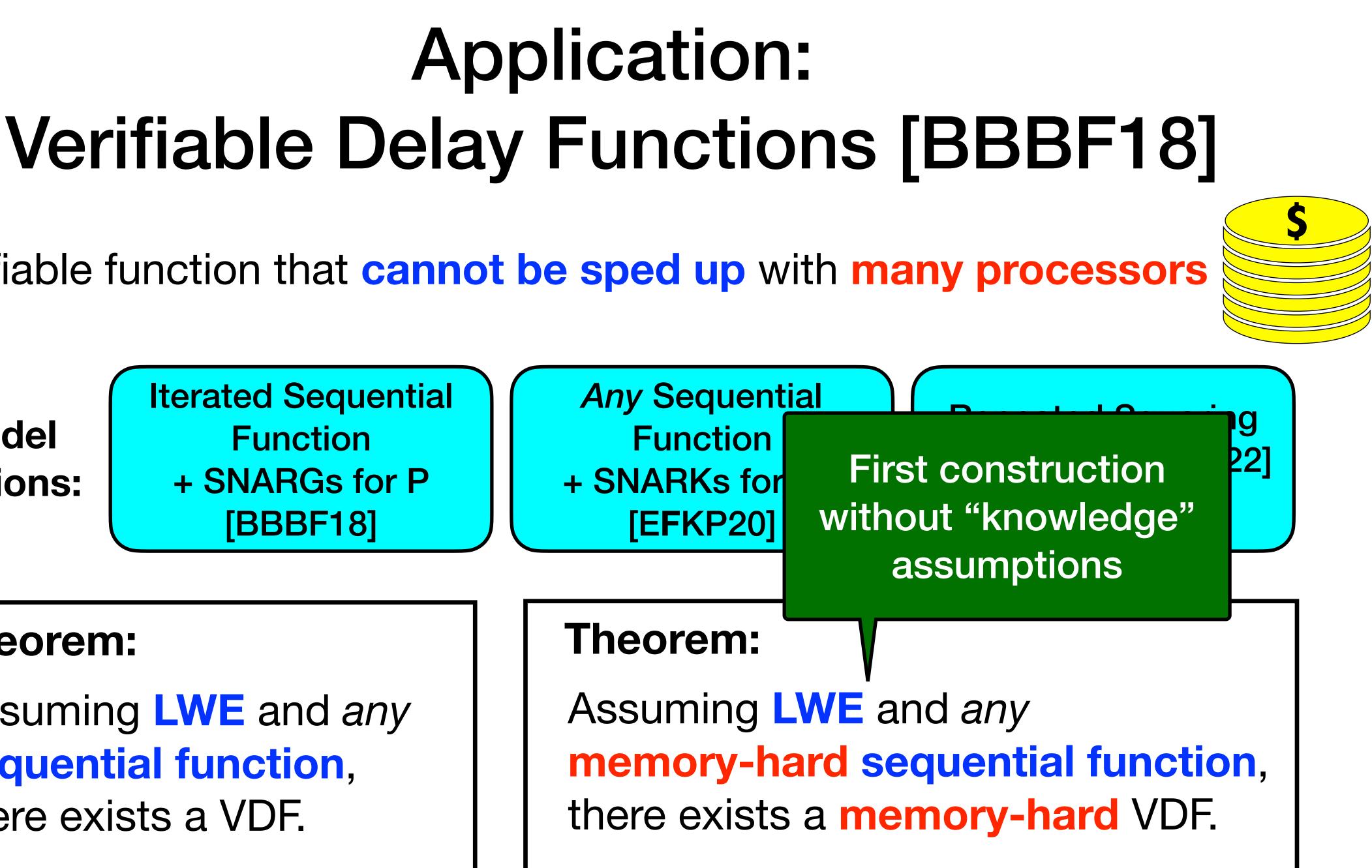
Assuming LWE and any memory-hard sequential function, there exists a memory-hard VDF.

Verifiable function that cannot be sped up with many processors

Plain model constructions: **Iterated Sequential** Function + SNARGs for P **[BBBF18]**

Theorem:

Assuming LWE and any sequential function, there exists a VDF.



Verifiable function that cannot be sped up with many processors

Plain model constructions: **Iterated Sequential** Function + SNARGs for P [**BBBF18**]

Theorem:

Assuming LWE and any sequential function, there exists a VDF.

Any Sequential Function + SNARKs for NP [EFKP20]

Repeated Squaring + LWE [BCHKLPR22] (Previous talk)

Theorem:

Assuming LWE and any memory-hard sequential function, there exists a memory-hard VDF.

Additional Result: Time-Independent SPARGs

Additional Result: Time-Independent SPARGs

Observation:

For standard arguments, can know the time bound **T** when you compute the proof.

Observation:

For standard arguments, can know the time bound **T** when you compute the proof.

0 — T? Compute M(x)? …

Observation:

For standard arguments, can know the time bound **T** when you compute the proof.

0 ______T?
Compute M(x)? ...
Compute proof π?

Observation:

For standard arguments, can know the time bound **T** when you compute the proof.

•[EFKP20] relied on knowing T in advance

Compute M(x)? ··· Compute proof π?

Observation:

For standard arguments, can know the time bound **T** when you compute the proof.

• [EFKP20] relied on knowing T in advance

Is this necessary?

Compute M(x)? ··· Compute proof π?

Observation:

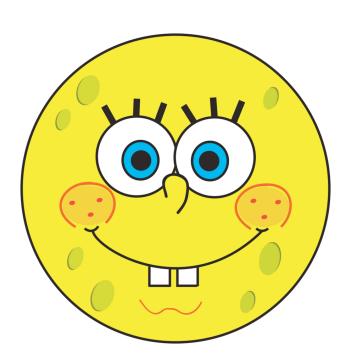
For standard arguments, can know the time bound **T** when you compute the proof.

• [EFKP20] relied on knowing T in advance

Is this necessary?

0 Compute M(x)? ···· Compute proof π?

We show: No!



Observation:

For standard arguments, can know the time bound **T** when you compute the proof.

0 ______T?
Compute M(x)? ...
Compute proof π?

Observation:

For standard arguments, can know the time bound **T** when you compute the proof.

Theorem (informal):

Given any SPARG, can construct a time-independent SPARG.

[? Compute M(x)? Compute proof π ?

Observation:

For standard arguments, can know the time bound **T** when you compute the proof.

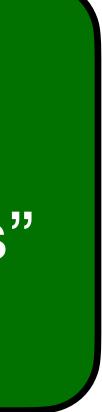
Theorem (informal):

Given *any* SPARG, can construct a **time-independent SPARG**.

 Compute M(x)?
 ···

 Compute proof π?

Key idea: Tree-based construction to "non-deterministically guess" binary representation of **T**.



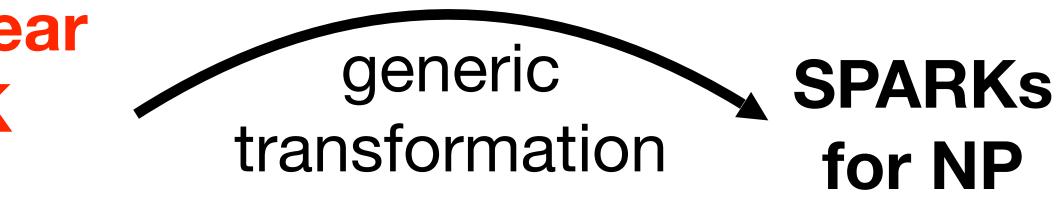
[EFKP20]

[EFKP20]

Quasi-linear Any SNARK SNARK for NP => [BCCT13] for NP

[EFKP20]

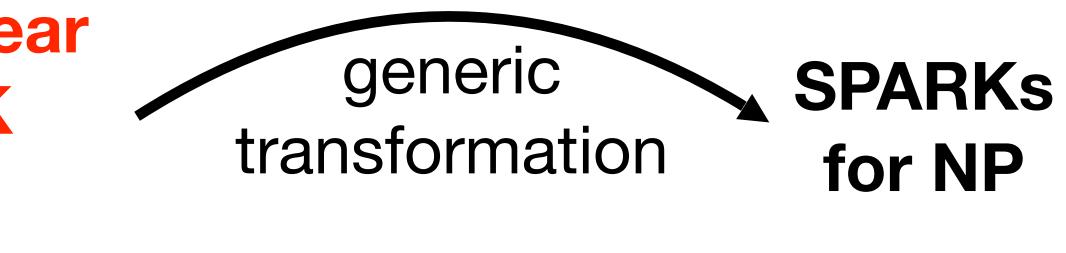
Any SNARK for NP => SNARK [BCCT13] for NP



[EFKP20]

Any SNARK for NP => SNARK [BCCT13] for NP

Our Work



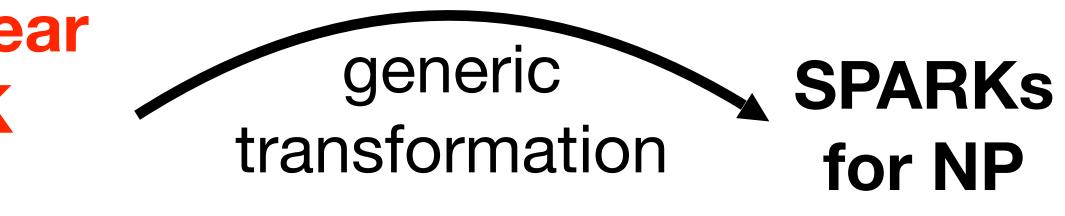
[EFKP20]

Quasi-linear Any SNARK SNARK for NP [BCCT13] for NP

Our Work

Specific **SNARG** for P => from LWE [CJJ21]

Quasi-linear updatable RAM delegation



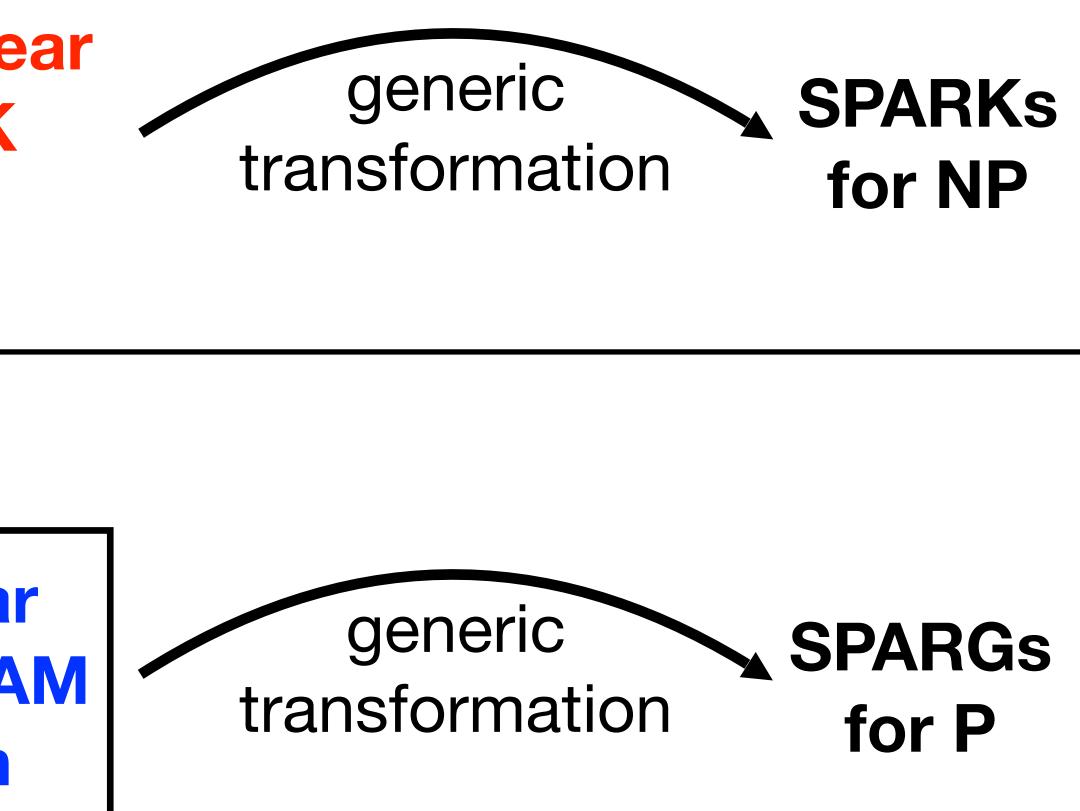
[EFKP20]

Any SNARK for NP => SNARK [BCCT13] for NP

Our Work

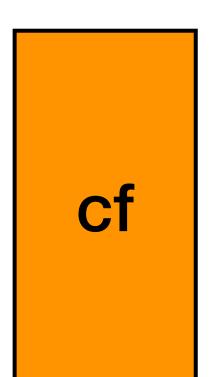
Specific SNARG for P from LWE [CJJ21]

Quasi-linear updatable RAM delegation



cf'

t steps

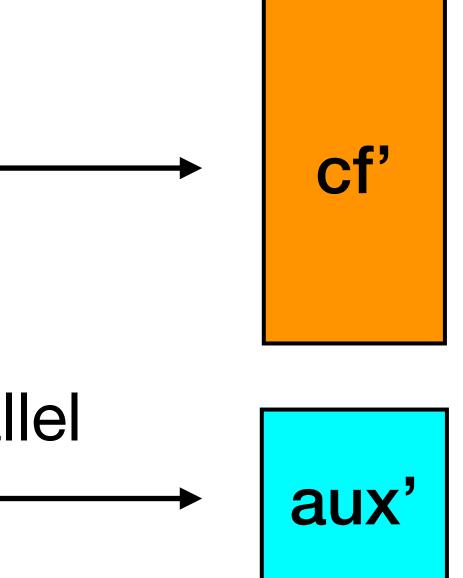


t steps

Update in parallel

cf

aux

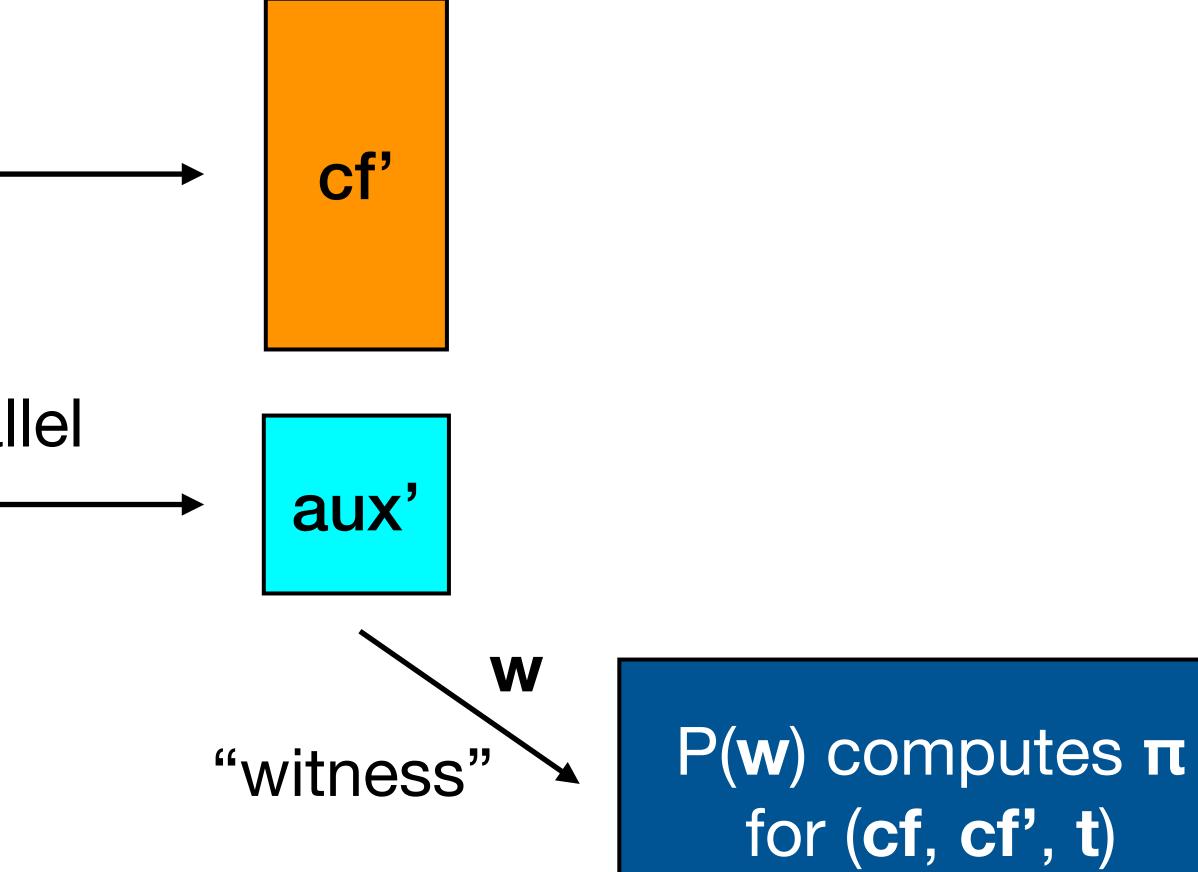


t steps

Update in parallel

cf

aux

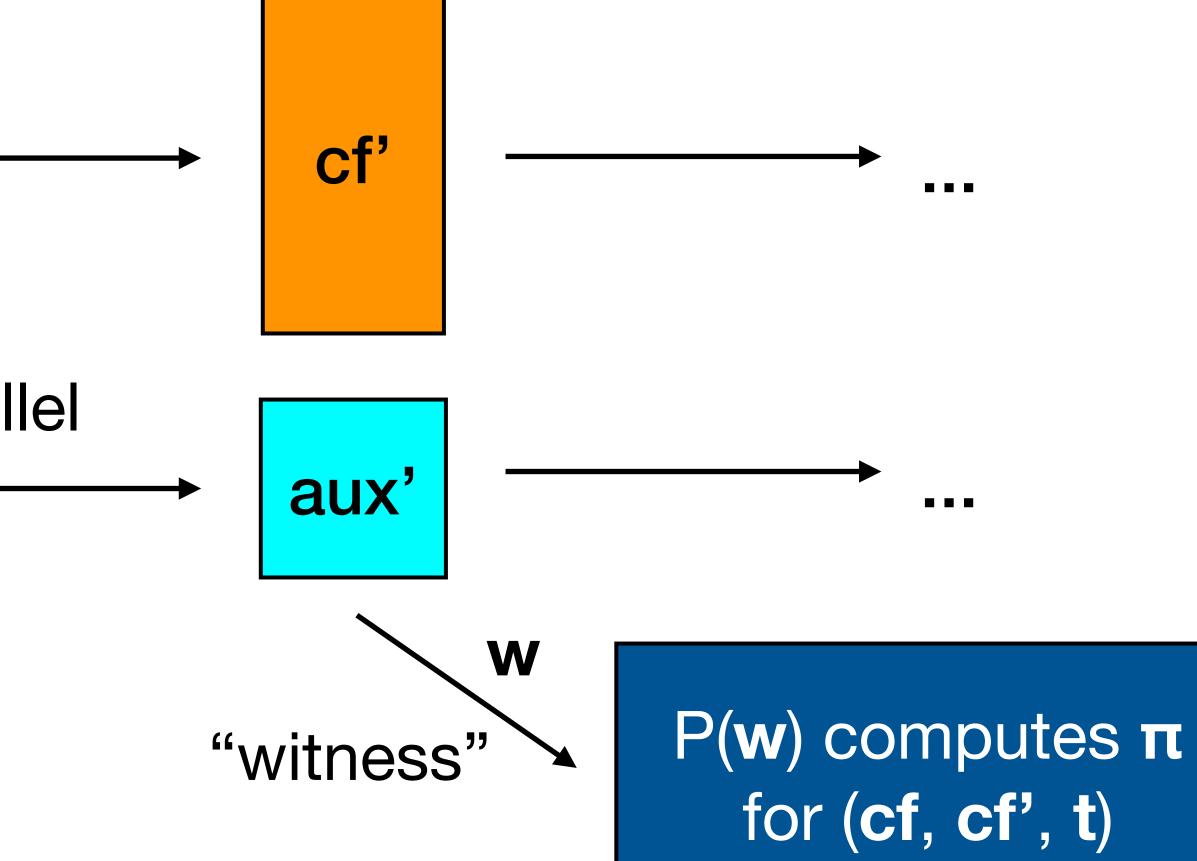


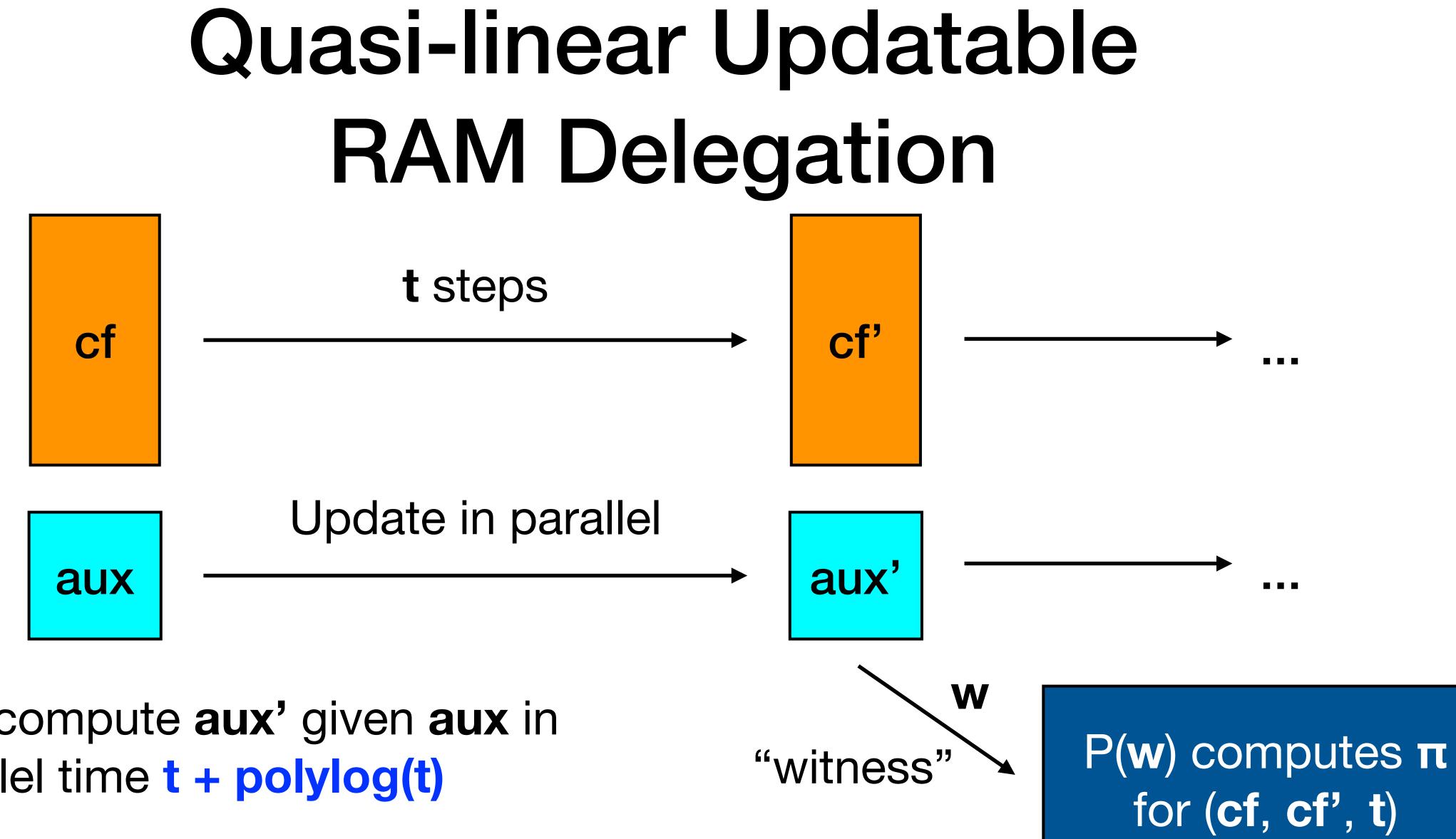
t steps

Update in parallel

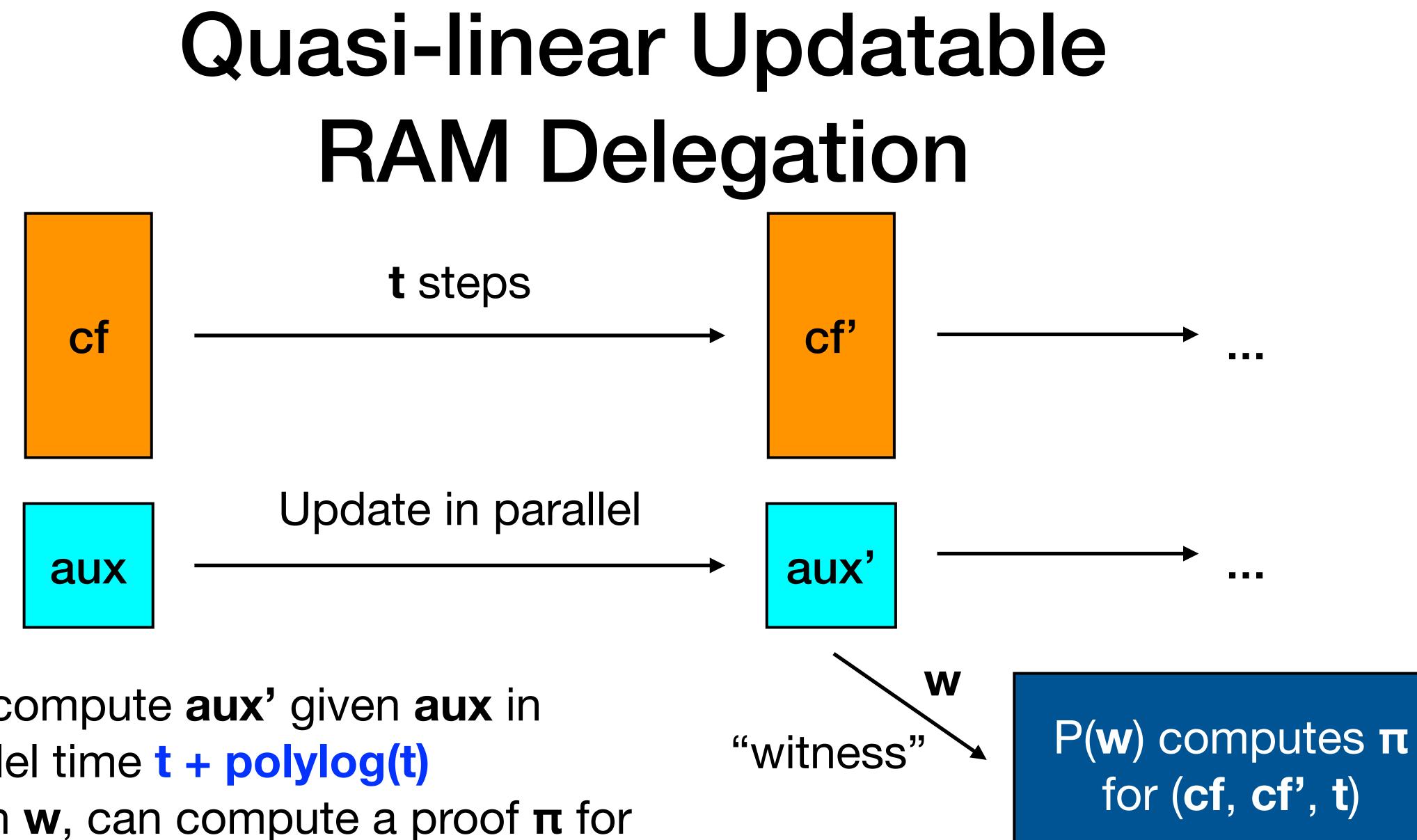
cf

aux

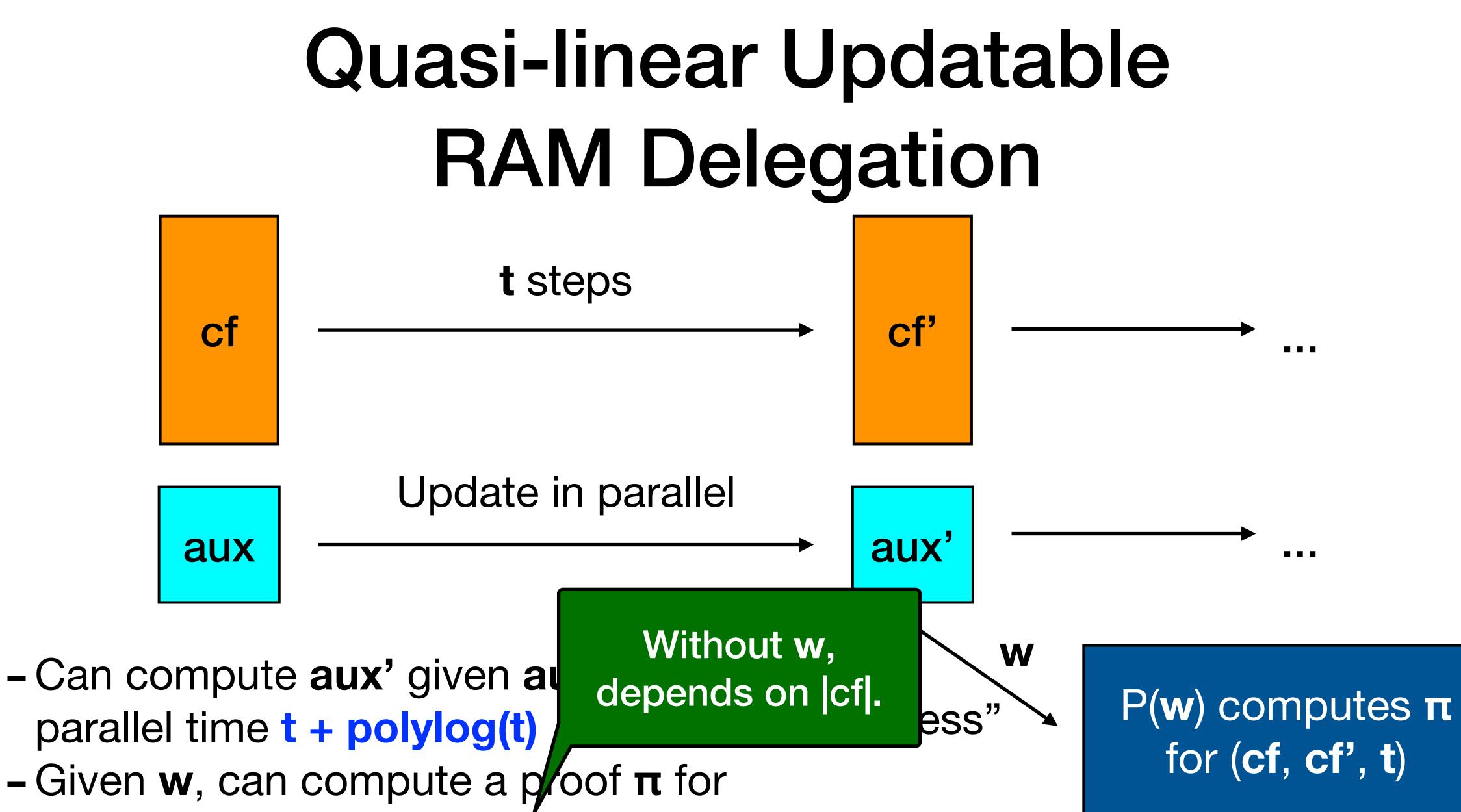




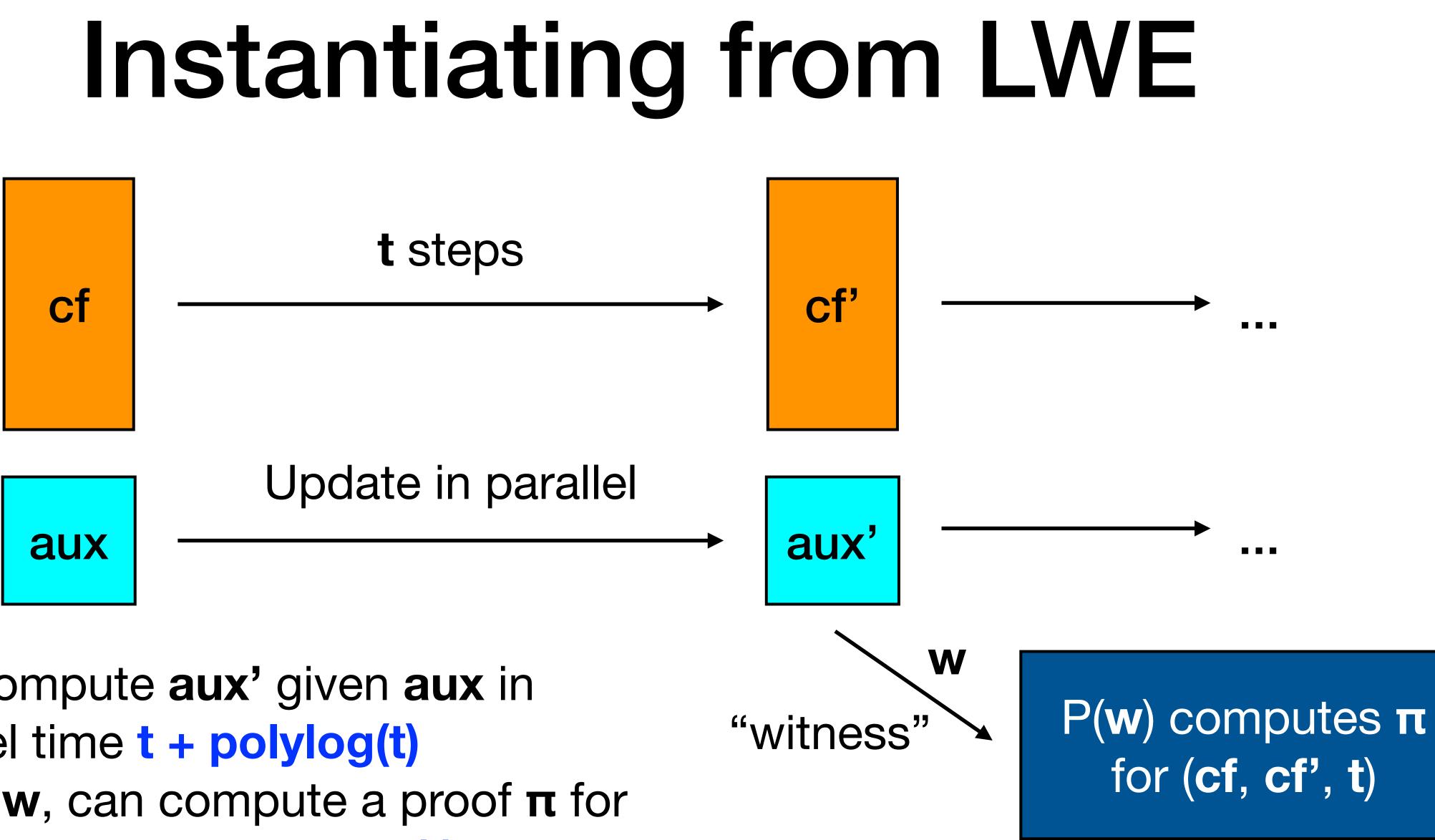
- Can compute aux' given aux in parallel time t + polylog(t)



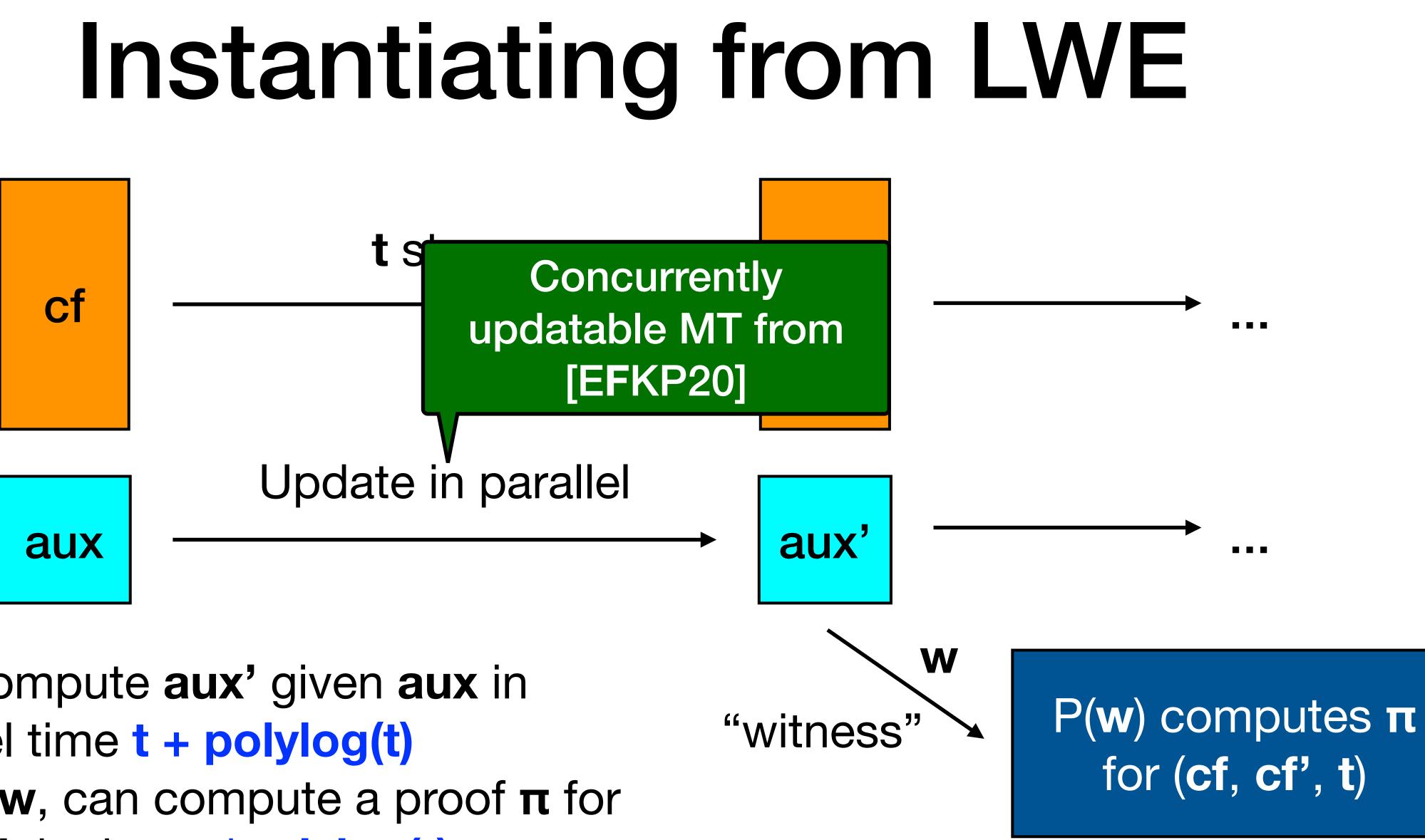
- Can compute aux' given aux in parallel time t + polylog(t) - Given w, can compute a proof π for
 - cf->cf' in time t *polylog(t)



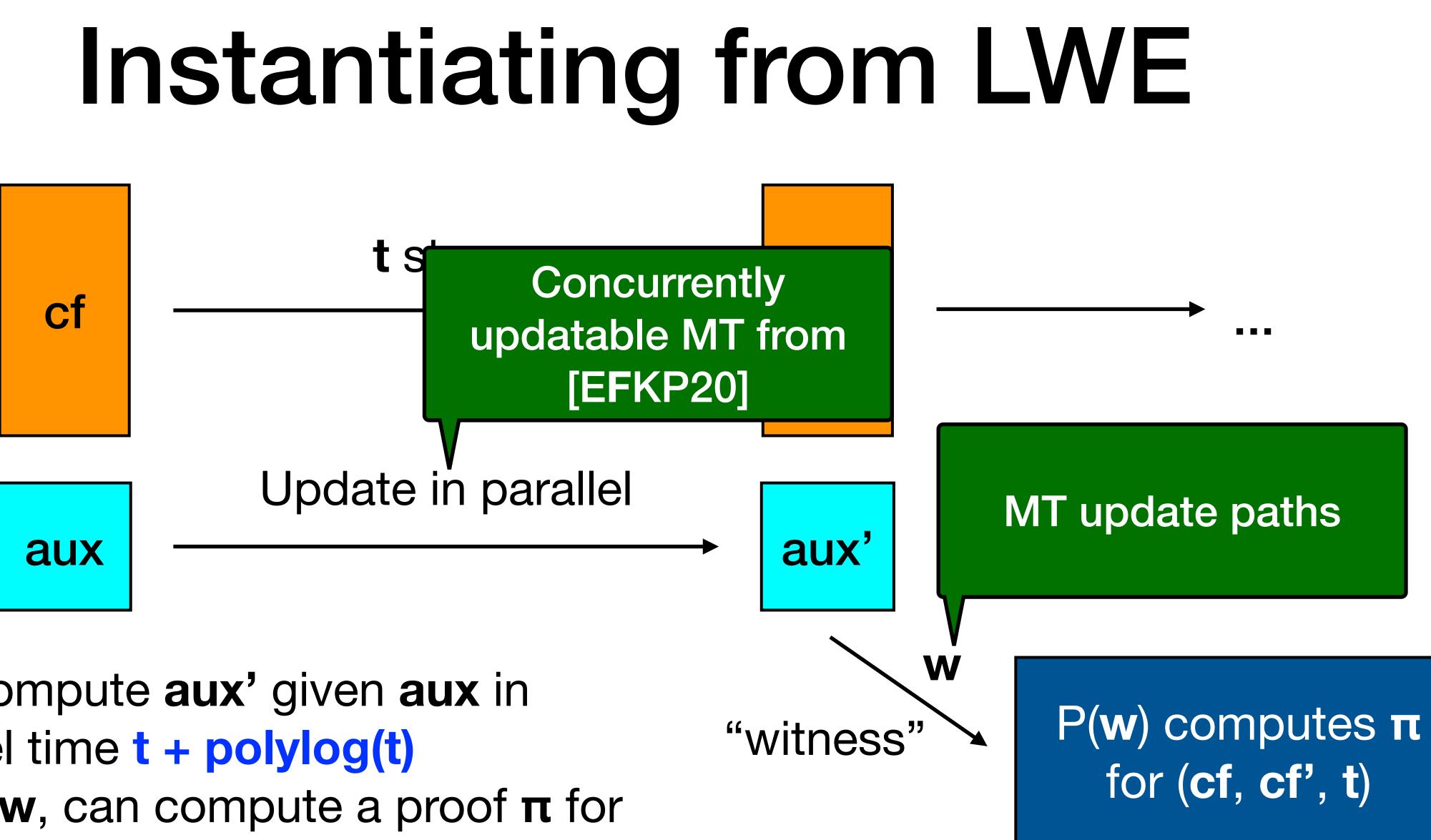
cf->cf' in time t *polylog(t)



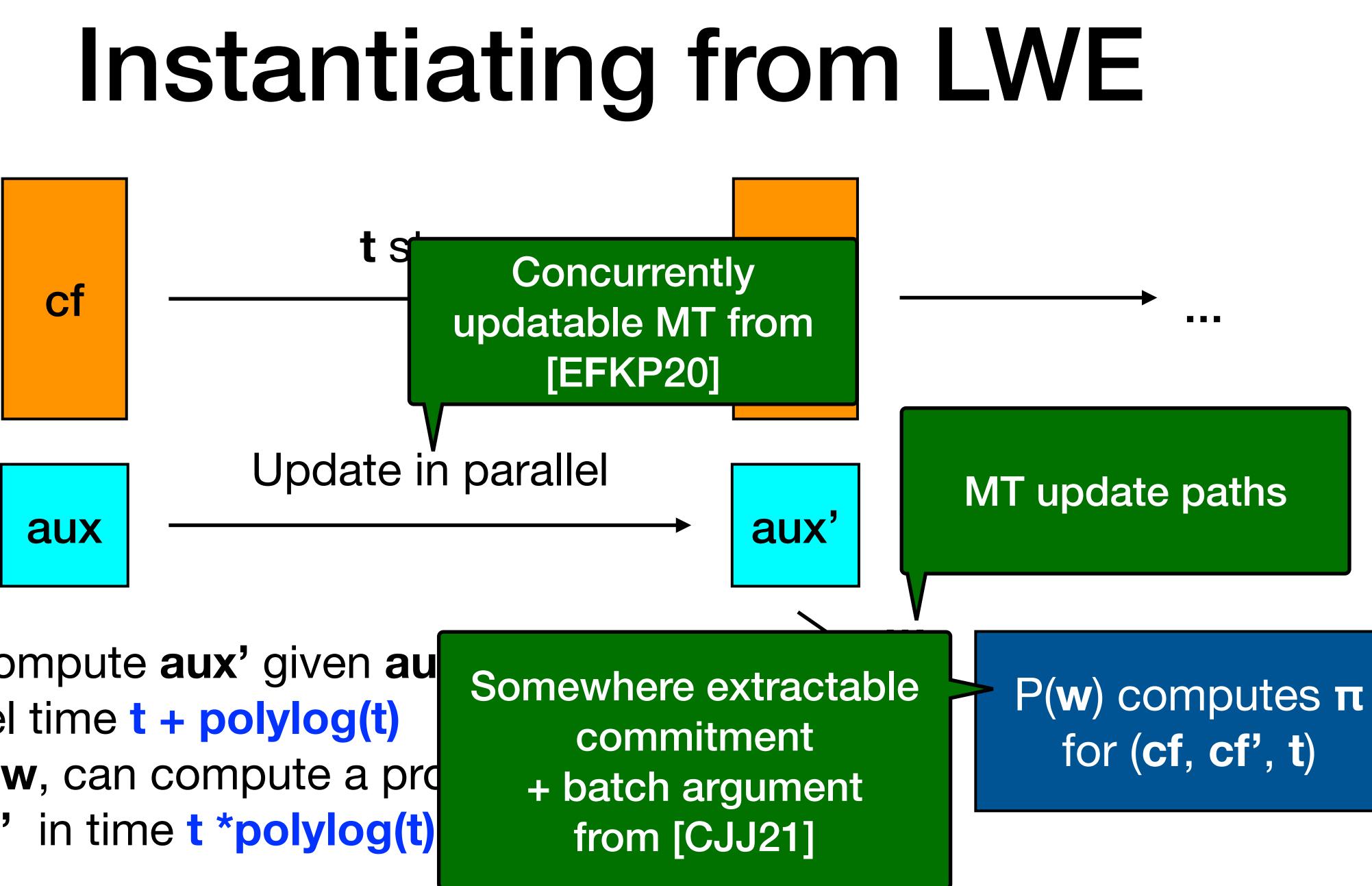
- Can compute aux' given aux in parallel time t + polylog(t) - Given w, can compute a proof π for cf->cf' in time t *polylog(t)



- Can compute **aux'** given **aux** in parallel time t + polylog(t) - Given w, can compute a proof π for cf->cf' in time t *polylog(t)



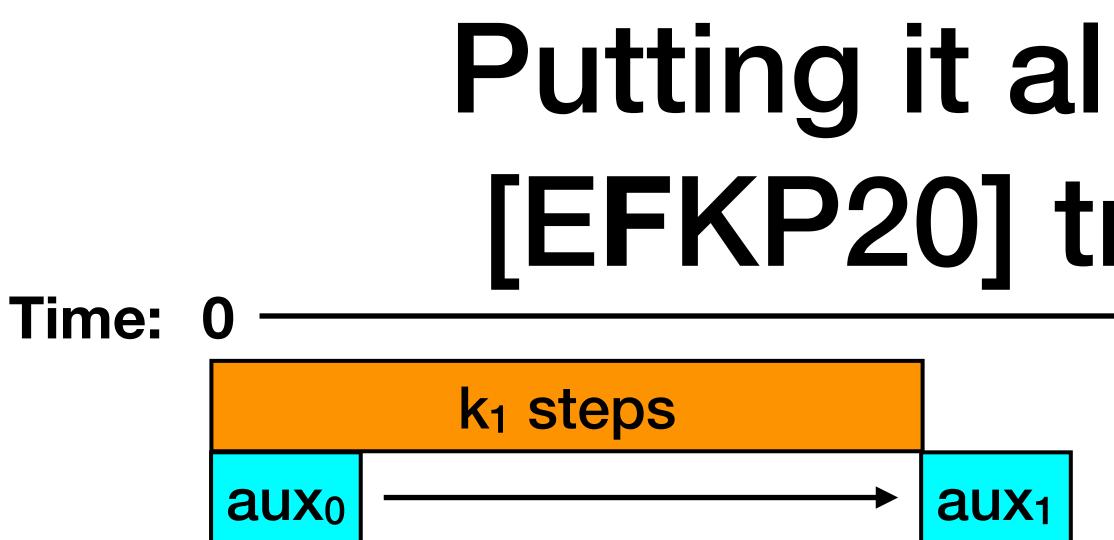
- Can compute **aux'** given **aux** in parallel time t + polylog(t) - Given w, can compute a proof π for cf->cf' in time t *polylog(t)

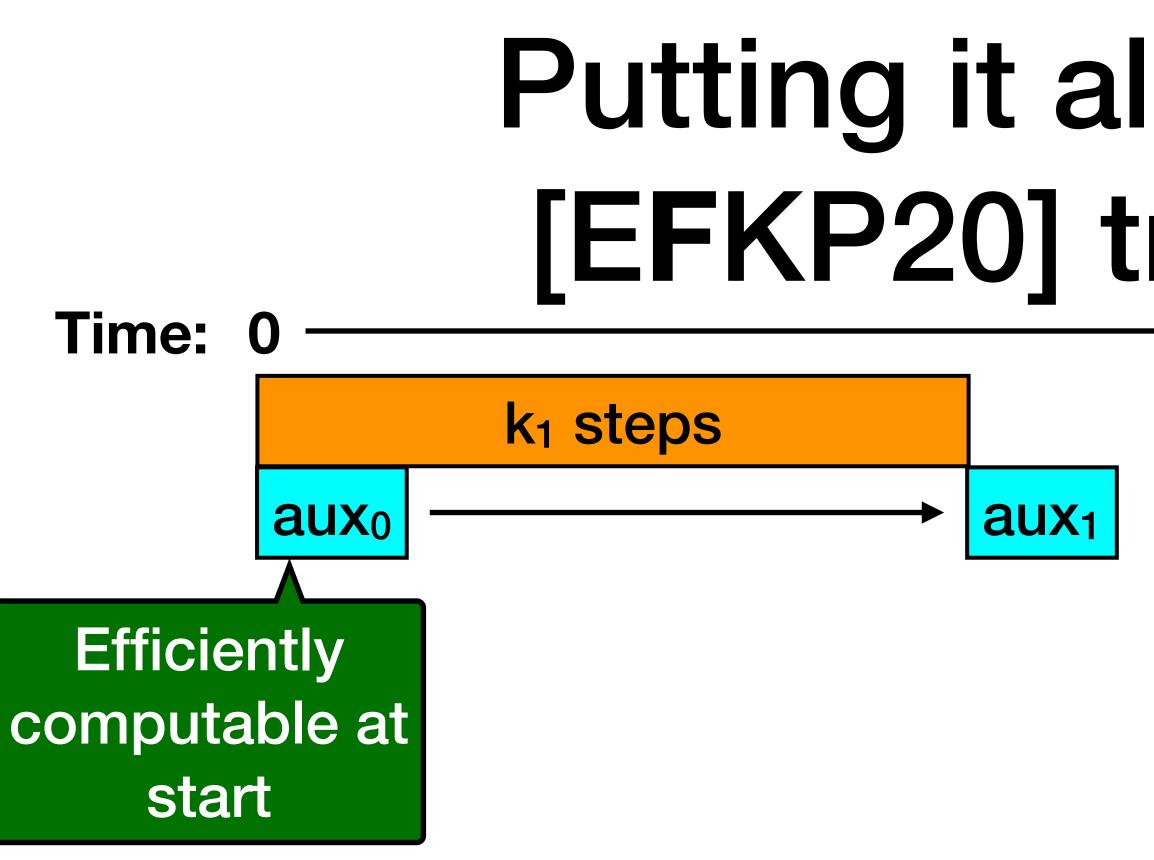


- Can compute **aux'** given **au** parallel time t + polylog(t) - Given w, can compute a pro cf->cf' in time t *polylog(t)

Time: 0

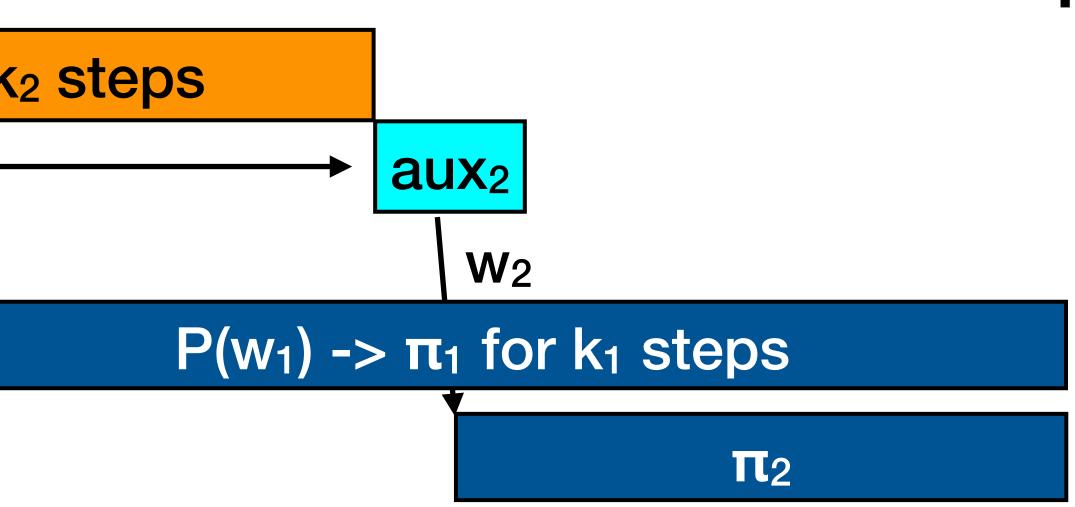
k₁ steps



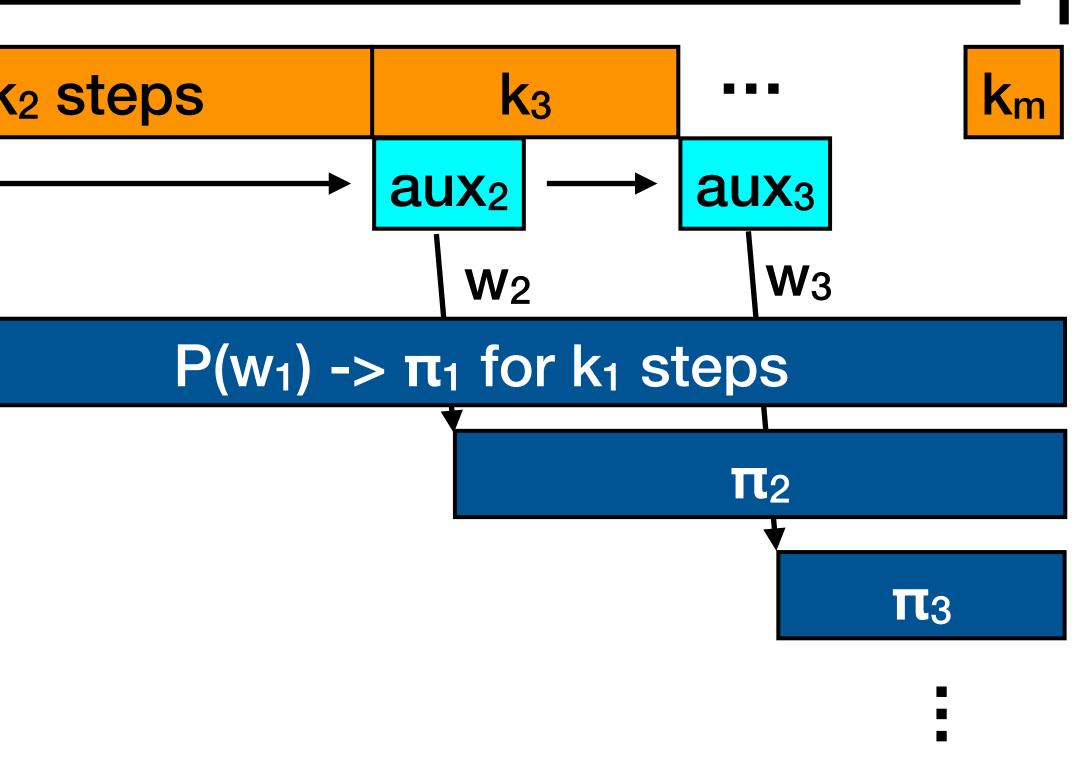


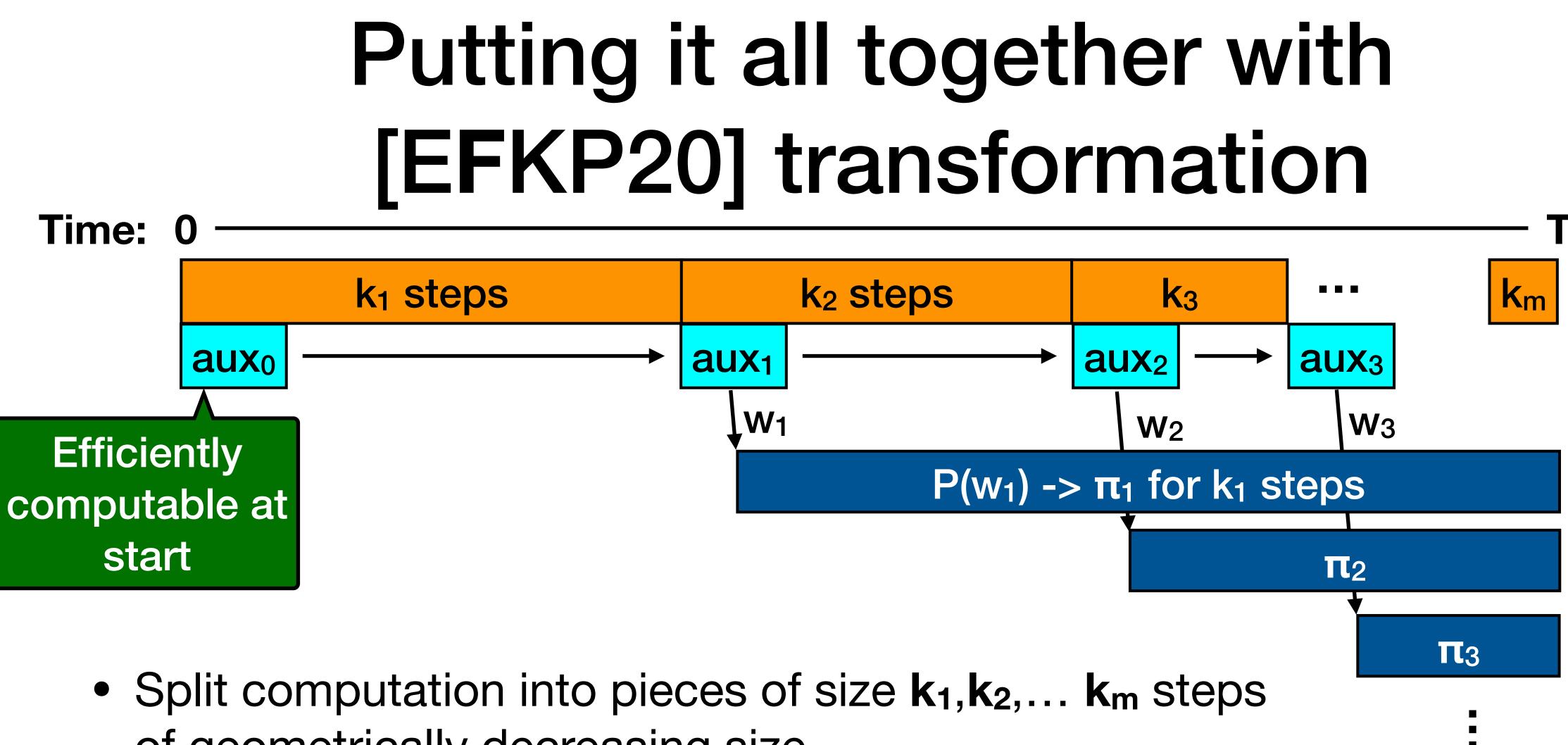
Putting it all together with [EFKP20] transformation Time: 0 k₁ steps aux₀ aux₁ W1 Efficiently $P(w_1) \rightarrow \pi_1$ for k_1 steps computable at start

Putting it all together with [EFKP20] transformation Time: 0 k₁ steps k₂ steps aux₀ aux₁ aux₂ W1 **W**₂ Efficiently $P(w_1) \rightarrow \pi_1$ for k_1 steps computable at start

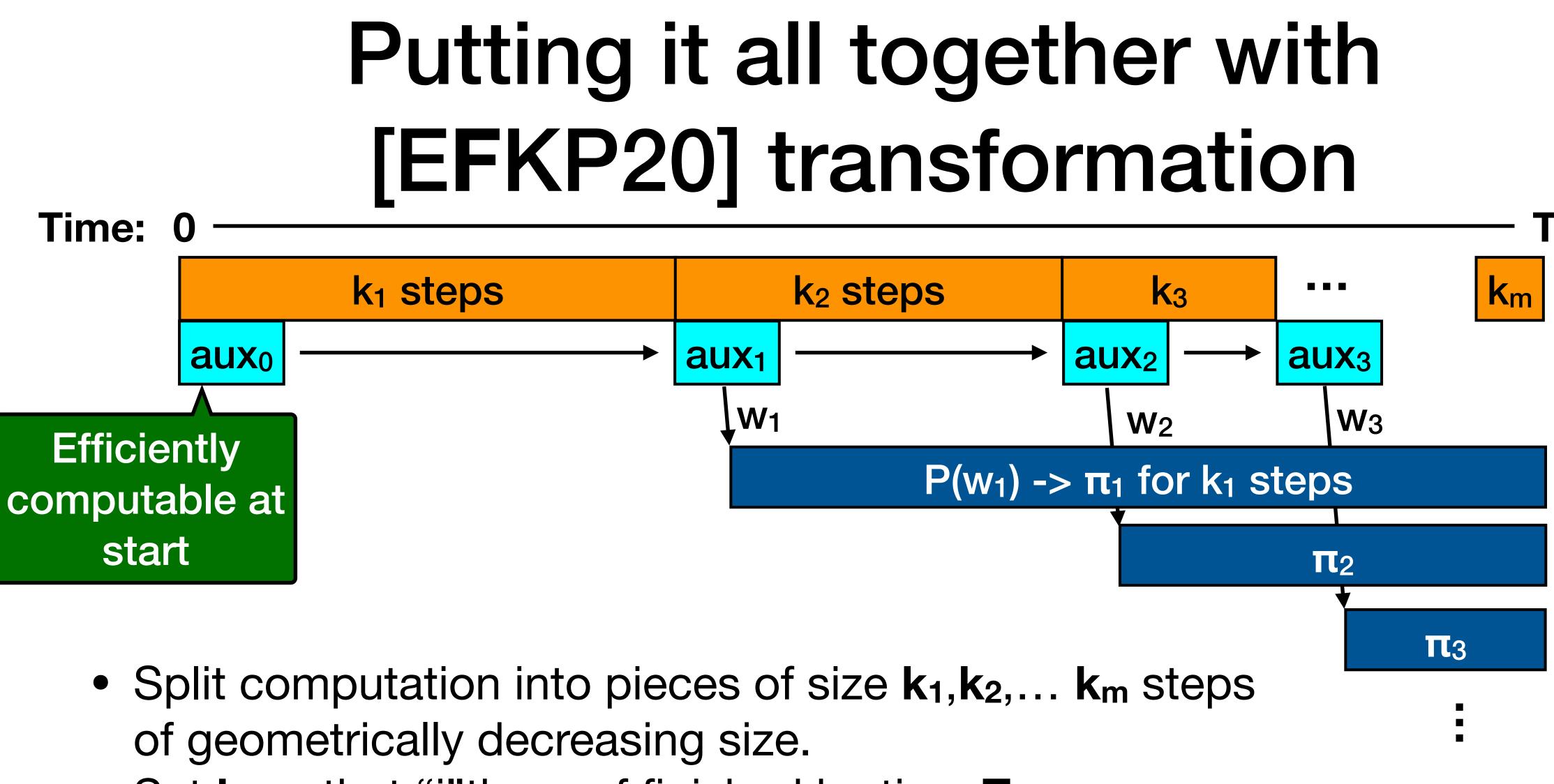


Putting it all together with [EFKP20] transformation Time: 0 k₁ steps k₂ steps **k**₃ aux₀ aux₂ aux₁ aux₃ W1 **W**₂ Efficiently $P(w_1) \rightarrow \pi_1$ for k_1 steps computable at start

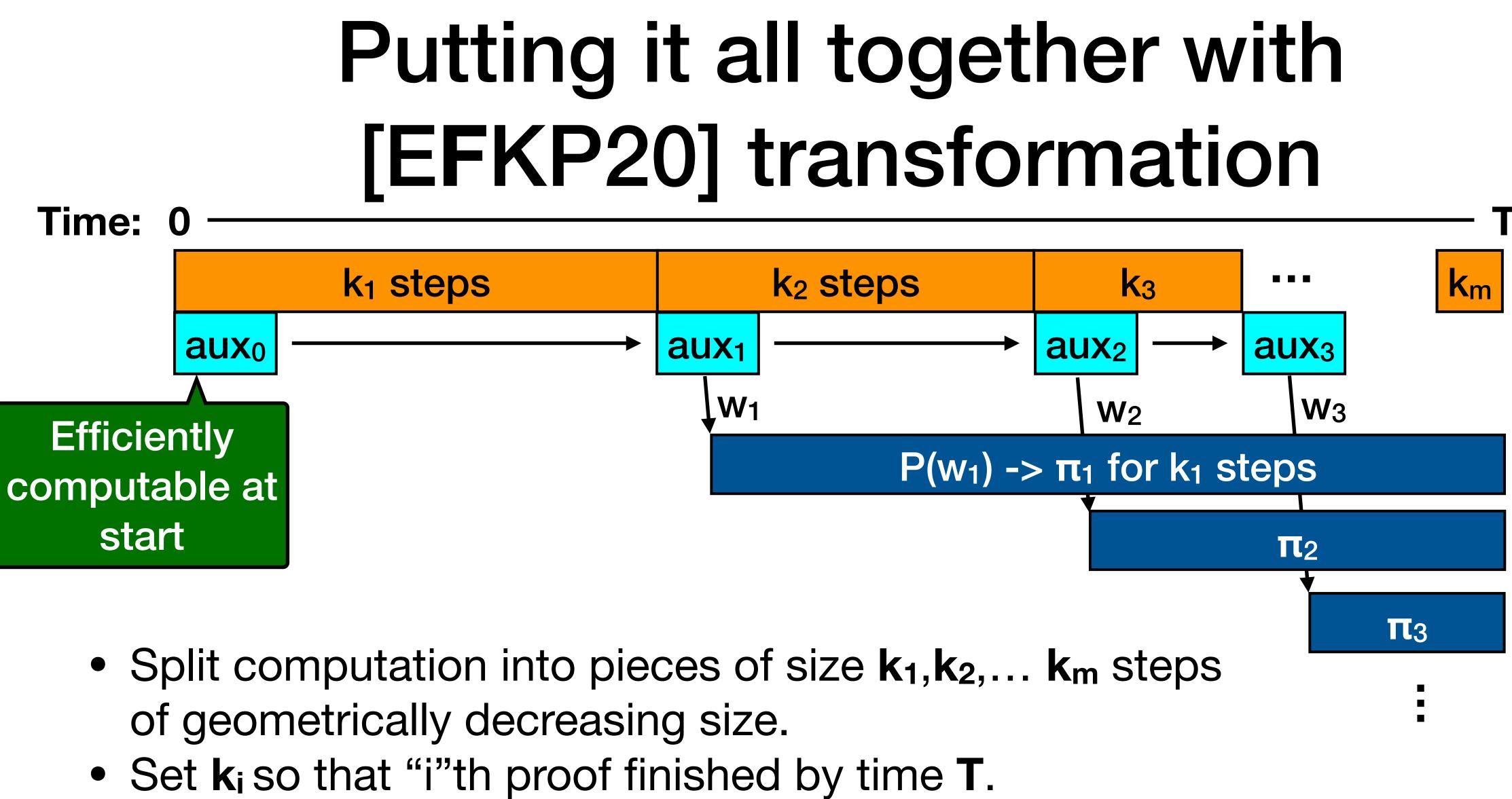




of geometrically decreasing size.



- Set **k**_i so that "i"th proof finished by time **T**.



- Final proof consists of m = polylog(T) sub-proofs.

