
Parallelizable Delegation

from LWE

Cody Freitag1, Rafael Pass1,2, Naomi Sirkin1

1Cornell Tech

2Tel-Aviv University

Delegating RAM
Computation

Delegating RAM
Computation

Verifier V

Delegating RAM
Computation

M, x
Verifier VProver P

Delegating RAM
Computation

M, x

y = M(x)

Verifier VProver P

Delegating RAM
Computation

M, x

y = M(x)
y, π

Verifier VProver P

Delegating RAM
Computation

M, x

y = M(x)
y, π

Verifier VProver P

Completeness:
• If y = M(x),
π convinces V.

Delegating RAM
Computation

M, x

y = M(x)
y, π

Verifier VProver P

Completeness:
• If y = M(x),
π convinces V.

Soundness:
• If y != M(x), PPT P*

cannot generate a
convincing π.

Delegating RAM
Computation

M, x

y = M(x)
y, π

Verifier VProver P

Completeness:
• If y = M(x),
π convinces V.

Soundness:
• If y != M(x), PPT P*

cannot generate a
convincing π.

Succinctness:
• |π| and runtime of V are

at most polylog(T)
where T = TimeM(x).

Delegating RAM
Computation

M, x

y = M(x)
y, π

Verifier VProver P

Completeness:
• If y = M(x),
π convinces V.

Soundness:
• If y != M(x), PPT P*

cannot generate a
convincing π.

Succinctness:
• |π| and runtime of V are

at most polylog(T)
where T = TimeM(x).

Ignoring poly(λ)
terms

Delegating RAM
Computation

M, x

y = M(x)
y, π

Verifier VProver P

Completeness:
• If y = M(x),
π convinces V.

Soundness:
• If y != M(x), PPT P*

cannot generate a
convincing π.

Succinctness:
• |π| and runtime of V are

at most polylog(T)
where T = TimeM(x).

Delegating RAM
Computation

M, x

y = M(x)
y, π

Verifier VProver P

Completeness:
• If y = M(x),
π convinces V.

Soundness:
• If y != M(x), PPT P*

cannot generate a
convincing π.

Succinctness:
• |π| and runtime of V are

at most polylog(T)
where T = TimeM(x).

CRS

Delegating RAM
Computation

M, x

y = M(x)
y, π

Verifier VProver P

Completeness:
• If y = M(x),
π convinces V.

Soundness:
• If y != M(x), PPT P*

cannot generate a
convincing π.

Succinctness:
• |π| and runtime of V are

at most polylog(T)
where T = TimeM(x).

CRS

|CRS| <=
polylog(T)

What does the prover do?

What does the prover do?

Wall-clock
time

What does the prover do?

Wall-clock
time 0 T

Compute M(x)

What does the prover do?

Wall-clock
time 0 T

Compute M(x) Compute proof π

T*polylog(T)

What does the prover do?

Wall-clock
time 0 T

Compute M(x) Compute proof π

T*polylog(T)
1 hour

What does the prover do?

Wall-clock
time 0 T

Compute M(x) Compute proof π

T*polylog(T)
1 hour 100 hours

What does the prover do?

Wall-clock
time 0 T

Compute M(x) Compute proof π

T*polylog(T)
1 hour 100 hours

Quasi-linear T*polylog(T) prover efficiency:

What does the prover do?

Wall-clock
time 0 T

Compute M(x) Compute proof π

T*polylog(T)
1 hour 100 hours

Quasi-linear T*polylog(T) prover efficiency:
•from ROM or SNARKs [M94, BS05, BCCT13].

What does the prover do?

Wall-clock
time 0 T

Compute M(x) Compute proof π

T*polylog(T)
1 hour 100 hours

Quasi-linear T*polylog(T) prover efficiency:
•from ROM or SNARKs [M94, BS05, BCCT13].
•from LWE [CJJ21].

SPARG:

Parallelizable Delegation for RAM

Wall-clock
time 0 T

Compute M(x)

1 hour

SPARG:

Parallelizable Delegation for RAM

Wall-clock
time 0 T

Compute M(x)

1 hour
Succinct

Parallelizable

Argument

SPARG:

Parallelizable Delegation for RAM

Wall-clock
time 0 T

Compute M(x)

1 hour

SPARG:

Parallelizable Delegation for RAM

Wall-clock
time 0 T

Compute M(x)

1 hour

Compute the proof
in parallel

to the computation

SPARG:

Parallelizable Delegation for RAM

Wall-clock
time 0 T

Compute M(x)

Compute proof π

T + polylog(T)
1 hour

Compute the proof
in parallel

to the computation

SPARG:

Parallelizable Delegation for RAM

Wall-clock
time 0 T

Compute M(x)

Compute proof π

T + polylog(T)
1 hour

Compute the proof
in parallel

to the computation

polylog(T)
procs

SPARG:

Parallelizable Delegation for PRAM

Wall-clock
time 0 T

Compute M(x)

Compute proof π

T + polylog(T)
1 hour

Compute the proof
in parallel

to the computation

p*polylog(T)
procs

p procs

SPARG:

Parallelizable Delegation for PRAM

Wall-clock
time 0 T

Compute M(x)

Compute proof π

T + polylog(T)
1 hour

Compute the proof
in parallel

to the computation

p*polylog(T)
procs •Only known from

SNARKs [EFKP20]

p procs

Main Result
Wall-clock

time 0 T

Compute M(x)

Compute proof π

T + polylog(T)

p*polylog(T)
procs

p procs

Main Result
Wall-clock

time 0 T

Compute M(x)

Compute proof π

T + polylog(T)

p*polylog(T)
procs

p procs
Theorem:
Assuming LWE, there
exists parallelizable
delegation for any
PRAM computation.

Application:

Verifiable Delay Functions [BBBF18]

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors
$

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors
$

Plain model
constructions:

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors

Iterated Sequential
Function

+ SNARGs for P
[BBBF18]

$

Plain model
constructions:

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors

Iterated Sequential
Function

+ SNARGs for P
[BBBF18]

Any Sequential
Function

+ SNARKs for NP
[EFKP20]

$

Plain model
constructions:

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors

Iterated Sequential
Function

+ SNARGs for P
[BBBF18]

Any Sequential
Function

+ SNARKs for NP
[EFKP20]

Repeated Squaring

+ LWE [BCHKLPR22]

(Previous talk)

$

Plain model
constructions:

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors

Iterated Sequential
Function

+ SNARGs for P
[BBBF18]

Any Sequential
Function

+ SNARKs for NP
[EFKP20]

Repeated Squaring

+ LWE [BCHKLPR22]

(Previous talk)

$

SPARG Paradigm:
Any Function + SPARG => Verifiable Function

Plain model
constructions:

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors

Iterated Sequential
Function

+ SNARGs for P
[BBBF18]

Any Sequential
Function

+ SNARKs for NP
[EFKP20]

Repeated Squaring

+ LWE [BCHKLPR22]

(Previous talk)

$

SPARG Paradigm:
Any Function + SPARG => Verifiable Function

preserves parallel running time!

Plain model
constructions:

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors

Iterated Sequential
Function

+ SNARGs for P
[BBBF18]

Any Sequential
Function

+ SNARKs for NP
[EFKP20]

Repeated Squaring

+ LWE [BCHKLPR22]

(Previous talk)

$

Plain model
constructions:

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors

Iterated Sequential
Function

+ SNARGs for P
[BBBF18]

Any Sequential
Function

+ SNARKs for NP
[EFKP20]

Repeated Squaring

+ LWE [BCHKLPR22]

(Previous talk)

$

Plain model
constructions:

Theorem:
Assuming LWE and any
sequential function,
there exists a VDF.

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors

Iterated Sequential
Function

+ SNARGs for P
[BBBF18]

Any Sequential
Function

+ SNARKs for NP
[EFKP20]

Repeated Squaring

+ LWE [BCHKLPR22]

(Previous talk)

$

Plain model
constructions:

Theorem:
Assuming LWE and any
sequential function,
there exists a VDF.

Minimal
assumption

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors

Iterated Sequential
Function

+ SNARGs for P
[BBBF18]

Any Sequential
Function

+ SNARKs for NP
[EFKP20]

Repeated Squaring

+ LWE [BCHKLPR22]

(Previous talk)

$

Plain model
constructions:

Theorem:
Assuming LWE and any
sequential function,
there exists a VDF.

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors

Iterated Sequential
Function

+ SNARGs for P
[BBBF18]

Any Sequential
Function

+ SNARKs for NP
[EFKP20]

Repeated Squaring

+ LWE [BCHKLPR22]

(Previous talk)

$

Plain model
constructions:

Theorem:
Assuming LWE and any
sequential function,
there exists a VDF.

Theorem:
Assuming LWE and any

memory-hard sequential function,

there exists a memory-hard VDF.

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors

Iterated Sequential
Function

+ SNARGs for P
[BBBF18]

Any Sequential
Function

+ SNARKs for NP
[EFKP20]

Repeated Squaring

+ LWE [BCHKLPR22]

(Previous talk)

$

Plain model
constructions:

Theorem:
Assuming LWE and any
sequential function,
there exists a VDF.

Theorem:
Assuming LWE and any

memory-hard sequential function,

there exists a memory-hard VDF.

First construction
without “knowledge”

assumptions

Application:

Verifiable Delay Functions [BBBF18]

• Verifiable function that cannot be sped up with many processors

Iterated Sequential
Function

+ SNARGs for P
[BBBF18]

Any Sequential
Function

+ SNARKs for NP
[EFKP20]

Repeated Squaring

+ LWE [BCHKLPR22]

(Previous talk)

$

Plain model
constructions:

Theorem:
Assuming LWE and any
sequential function,
there exists a VDF.

Theorem:
Assuming LWE and any

memory-hard sequential function,

there exists a memory-hard VDF.

Additional Result:

Time-Independent SPARGs

Additional Result:

Time-Independent SPARGs

Observation:
For standard arguments, can
know the time bound T when

you compute the proof.

Additional Result:

Time-Independent SPARGs

0 T?

Compute M(x)? …
Observation:

For standard arguments, can
know the time bound T when

you compute the proof.

For SPARGs:

Additional Result:

Time-Independent SPARGs

0 T?

Compute M(x)? …

Compute proof π?

Observation:
For standard arguments, can
know the time bound T when

you compute the proof.

For SPARGs:

Additional Result:

Time-Independent SPARGs

0 T?

Compute M(x)?

•[EFKP20] relied on knowing T in advance

…

Compute proof π?

Observation:
For standard arguments, can
know the time bound T when

you compute the proof.

For SPARGs:

Additional Result:

Time-Independent SPARGs

0 T?

Compute M(x)?

•[EFKP20] relied on knowing T in advance

…

Compute proof π?

Is this necessary?

Observation:
For standard arguments, can
know the time bound T when

you compute the proof.

For SPARGs:

Additional Result:

Time-Independent SPARGs

0 T?

Compute M(x)?

•[EFKP20] relied on knowing T in advance

We show:
No!

…

Compute proof π?

Is this necessary?

Observation:
For standard arguments, can
know the time bound T when

you compute the proof.

For SPARGs:

Additional Result:

Time-Independent SPARGs

0 T?

Compute M(x)? …

Compute proof π?

Observation:
For standard arguments, can
know the time bound T when

you compute the proof.

For SPARGs:

Additional Result:

Time-Independent SPARGs

0 T?

Compute M(x)? …

Compute proof π?

Observation:
For standard arguments, can
know the time bound T when

you compute the proof.

For SPARGs:

Theorem (informal):
Given any SPARG, can construct a

time-independent SPARG.

Additional Result:

Time-Independent SPARGs

0 T?

Compute M(x)? …

Compute proof π?

Observation:
For standard arguments, can
know the time bound T when

you compute the proof.

For SPARGs:

Theorem (informal):
Given any SPARG, can construct a

time-independent SPARG.

Key idea:
Tree-based construction to

“non-deterministically guess”
binary representation of T.

Big Picture for

Our Main Result

Big Picture for

Our Main Result

[EFKP20]

Big Picture for

Our Main Result

Quasi-linear
SNARK
for NP

Any SNARK
for NP =>

[EFKP20]

[BCCT13]

Big Picture for

Our Main Result

Quasi-linear
SNARK
for NP

SPARKs
for NP

generic

transformation

Any SNARK
for NP =>

[EFKP20]

[BCCT13]

Big Picture for

Our Main Result

Quasi-linear
SNARK
for NP

SPARKs
for NP

generic

transformation

Any SNARK
for NP =>

[EFKP20]

Our Work

[BCCT13]

Big Picture for

Our Main Result

Quasi-linear
SNARK
for NP

SPARKs
for NP

generic

transformation

Quasi-linear
updatable RAM

delegation

Any SNARK
for NP =>

Specific

SNARG for P

from LWE

[CJJ21]

=>

[EFKP20]

Our Work

[BCCT13]

Big Picture for

Our Main Result

Quasi-linear
SNARK
for NP

SPARKs
for NP

generic

transformation

SPARGs
for P

Quasi-linear
updatable RAM

delegation

Any SNARK
for NP =>

Specific

SNARG for P

from LWE

[CJJ21]

=>

[EFKP20]

Our Work

generic

transformation

[BCCT13]

Quasi-linear Updatable
RAM Delegation

Quasi-linear Updatable
RAM Delegation

t steps
cf cf’

Quasi-linear Updatable
RAM Delegation

t steps
cf cf’

aux aux’
Update in parallel

Quasi-linear Updatable
RAM Delegation

t steps
cf cf’

aux aux’
Update in parallel

“witness”
w

P(w) computes π

for (cf, cf’, t)

Quasi-linear Updatable
RAM Delegation

t steps
cf cf’

aux aux’
Update in parallel

“witness”
w

P(w) computes π

for (cf, cf’, t)

…

…

Quasi-linear Updatable
RAM Delegation

t steps

-Can compute aux’ given aux in
parallel time t + polylog(t)

cf cf’

aux aux’
Update in parallel

“witness”
w

P(w) computes π

for (cf, cf’, t)

…

…

Quasi-linear Updatable
RAM Delegation

t steps

-Can compute aux’ given aux in
parallel time t + polylog(t)

-Given w, can compute a proof π for
cf->cf’ in time t *polylog(t)

cf cf’

aux aux’
Update in parallel

“witness”
w

P(w) computes π

for (cf, cf’, t)

…

…

Quasi-linear Updatable
RAM Delegation

t steps

-Can compute aux’ given aux in
parallel time t + polylog(t)

-Given w, can compute a proof π for
cf->cf’ in time t *polylog(t)

cf cf’

aux aux’
Update in parallel

“witness”
w

P(w) computes π

for (cf, cf’, t)

…

…

Without w,
depends on |cf|.

Instantiating from LWE
t steps

-Can compute aux’ given aux in
parallel time t + polylog(t)

-Given w, can compute a proof π for
cf->cf’ in time t *polylog(t)

cf cf’

aux aux’
Update in parallel

“witness”
w

P(w) computes π

for (cf, cf’, t)

…

…

Instantiating from LWE
t steps

-Can compute aux’ given aux in
parallel time t + polylog(t)

-Given w, can compute a proof π for
cf->cf’ in time t *polylog(t)

cf cf’

aux aux’
Update in parallel

“witness”
w

P(w) computes π

for (cf, cf’, t)

…

…

Concurrently
updatable MT from

[EFKP20]

Instantiating from LWE
t steps

-Can compute aux’ given aux in
parallel time t + polylog(t)

-Given w, can compute a proof π for
cf->cf’ in time t *polylog(t)

cf cf’

aux aux’
Update in parallel

“witness”
w

P(w) computes π

for (cf, cf’, t)

…

…

Concurrently
updatable MT from

[EFKP20]

MT update paths

Instantiating from LWE
t steps

-Can compute aux’ given aux in
parallel time t + polylog(t)

-Given w, can compute a proof π for
cf->cf’ in time t *polylog(t)

cf cf’

aux aux’
Update in parallel

“witness”
w

P(w) computes π

for (cf, cf’, t)

…

…

Concurrently
updatable MT from

[EFKP20]

MT update paths

Somewhere extractable
commitment

+ batch argument

from [CJJ21]

Putting it all together with

[EFKP20] transformation

Putting it all together with

[EFKP20] transformation

Time: 0 T

Putting it all together with

[EFKP20] transformation

k1 steps
Time: 0 T

Putting it all together with

[EFKP20] transformation

k1 steps
aux0

Time: 0 T

aux1

Putting it all together with

[EFKP20] transformation

k1 steps
aux0

Time: 0 T

aux1

Efficiently
computable at

start

Putting it all together with

[EFKP20] transformation

k1 steps
aux0

Time: 0 T

aux1

w1

P(w1) -> π1 for k1 steps
Efficiently

computable at
start

Putting it all together with

[EFKP20] transformation

k1 steps
aux0

k2 steps
Time: 0 T

aux1 aux2

w1 w2

P(w1) -> π1 for k1 steps

π2

Efficiently
computable at

start

Putting it all together with

[EFKP20] transformation

k1 steps km…
aux0

k2 steps k3

Time: 0 T

aux1 aux2

w1 w2

aux3

P(w1) -> π1 for k1 steps

π2

w3

π3

…

Efficiently
computable at

start

Putting it all together with

[EFKP20] transformation

k1 steps km…
aux0

k2 steps k3

Time: 0 T

aux1 aux2

w1 w2

aux3

P(w1) -> π1 for k1 steps

π2

w3

π3

…

Efficiently
computable at

start

• Split computation into pieces of size k1,k2,… km steps
of geometrically decreasing size.

Putting it all together with

[EFKP20] transformation

k1 steps km…
aux0

k2 steps k3

Time: 0 T

aux1 aux2

w1 w2

aux3

P(w1) -> π1 for k1 steps

π2

w3

π3

…

Efficiently
computable at

start

• Split computation into pieces of size k1,k2,… km steps
of geometrically decreasing size.

• Set ki so that “i”th proof finished by time T.

Putting it all together with

[EFKP20] transformation

k1 steps km…
aux0

k2 steps k3

Time: 0 T

aux1 aux2

w1 w2

aux3

P(w1) -> π1 for k1 steps

π2

w3

π3

…

Efficiently
computable at

start

• Split computation into pieces of size k1,k2,… km steps
of geometrically decreasing size.

• Set ki so that “i”th proof finished by time T.
• Final proof consists of m = polylog(T) sub-proofs.

Questions?
M, x

y, π

0 T

Compute y = M(x)

Compute proof π

T + polylog(T)

Result 1:
Assuming LWE, exist
SPARGs for PRAM.

Result 3:
VDFs from LWE + any
sequential function

Result 2:
SPARGs =>

time-independent SPARGs

Result 4:
Mem-hard VDFs without
“knowledge” assumptions

