~Parallelizable DelegationW

from LWE

Cody Freitag'!, Rafael Pass'.2, Naomi Sirkin’

1Cornell Tech
2Tel-Aviv University

Delegating RAM
Computation

Delegating RAM
Computation

Verifier V

Delegating RAM
Computation

Prover P

Verifier V

Delegating RAM
Computation

Prover P

Verifier V

Delegating RAM
Computation

Prover P

Verifier V

Delegating RAM
Computation

Prover P

Verifier V

Completeness:
o |fy=M(x),
T convinces V.

Delegating RAM
Computation

Prover P

Verifier V

Completeness: Soundness:
* Ify = M(x), e Ify = M(x), PPT P*
T convinces V. cannot generate a

convincing .

Delegating RAM
Computation

Prover P

Verifier V

Completeness: Soundness: Succinctness:
o Ify=M(x), o [fy!=M(x), PPT P* e |1l and runtime of V are
T convinces V. cannot generate a at most polylog(T)

convincing Tt. where T = Timewm(Xx).

Delegating RAM
Computation

Prover P

Verifier V

lgnoring poly(A)

terms
Completeness: Soundness: PSS
o Ify=M(x), o [fy!=M(x), PPT P* e || and runtimelof V are
T convinces V. cannot generate a at most polylog(T)

convincing Tt. where T = Timewm(Xx).

Delegating RAM
Computation

Prover P

Verifier V

Completeness: Soundness: Succinctness:
o Ify=M(x), o [fy!=M(x), PPT P* e |1l and runtime of V are
T convinces V. cannot generate a at most polylog(T)

convincing Tt. where T = Timewm(Xx).

Delegating RAM

Computation
Prover P CRS

Verifier V

M, X

y; T

Completeness: Soundness: Succinctness:
o Ify=M(x), o [fy!=M(x), PPT P* e |1l and runtime of V are
T convinces V. cannot generate a at most polylog(T)
convincing Tt. where T = Timewm(Xx).

Delegating RAN
ICRS| <=

COmPUtatl ® polylog(T)

Prover P

Completeness: Soundness: Succinctness:
o Ify=M(x), o [fy!=M(x), PPT P* e |1l and runtime of V are
T convinces V. cannot generate a at most polylog(T)

convincing Tt. where T = Timewm(Xx).

gi*a \What does the prover do?

gi* .. \What does the prover do?

Wall-clock
time

gi"a \What does the prover do?

Wall-clock
time | |

O0O—M8M8 T

Compute M(x)

¥l \What does the prover do?

Wall-clock
time | |

oO—mMmMmMMM ™I —mmm—— T*polyllog(T)

Compute M(x) Compute proof m

s \What does the prover do?

1 hour
oO—mMmMmMMM ™I —mmm—— T*polyllog(T)

Wall-clock
time | |

Compute M(x) Compute proof m

¥l \What does the prover do?

1 hour 100 hours
0 Tr— T*polyllog(T)

Wall-clock
time | |

Compute M(x) Compute proof m

What does the prover do?

1 hour 100 hours
oOr————————7Ff7 T*polyllog(T)

Wall-clock
time | |

Compute M(x) Compute proof m

Quasi-linear T*polylog(T) prover efficiency:

What does the prover do?

1 hour 100 hours

Wall-clock 0 T T*polyllog (T)

time | |

Compute M(x) Compute proof m

Quasi-linear T*polylog(T) prover efficiency:
e from ROM or SNARKs [M94, BS05, BCCT13].

What does the prover do?

1 hour 100 hours

Wall-clock 0 T T*polyllog (T)

time | |

Compute M(x) Compute proof m

Quasi-linear T*polylog(T) prover efficiency:
e from ROM or SNARKs [M94, BS05, BCCT13].
e from LWE [CJJ21].

SPARG:
Parallelizable Delegation for RAM

1 hour

WaII_-cIock 0 T
time | |

Compute M(x)

Parallelizable Deleghii

Succinct
1 hour :
Wall-clock 0 - Parallelizable
time | | Argument

Compute M(x)

SPARG:
Parallelizable Delegation for RAM

1 hour

WaII_-cIock 0 T
time | |

Compute M(x)

SPARG:
Parallelizable Delegation for RAM

1 hour

WaII_-cIock 0 T
time | |

Compute M(x) Compute the proof
In parallel
to the computation

SPARG:
Parallelizable Delegation for RAM

1 hour
O——— T-T + polylog(T)

Wall-clock
time | |

Compute M(x) Compute the proof
In parallel
to the computation

Compute proof m

SPARG:
Parallelizable Delegation for RAM

1 hour
Q ———— T T-T + polylog(T)

Wall-clock
time | |

Compute the proof
In parallel
T to the computation

Compute M(x)

polylog(T)
procs

J

Compute proof m

SPARG:
Parallelizable Delegation for PRAM

1 hour
Wall-clock
tme 0 ——————— T-T + polylog(T)
L
Compute M(x) p procs Compute the proof

In parallel
to the computation

—F

p*polylog(T)
procs

Compute proof m

|7

SPARG:
Parallelizable Delegation for PRAM

1 hour
Wall-clock
tme) 1~T+polyiog(®
Compute M(x) p procs Compute the proof
— in parallel
T to the computation
p*polylog(T)
Compute proof m orocs * Only known from

J SNARKs [EFKP20]

Main Result

Wall-clock
time | |

Q ———— T T-T + polylog(T)

-
D procs

i
p*polylog(T)
procs

J

Compute M(x)

Compute proof m

Main Result

Wall-clock
b o (I) T T + polylog(T)
Compute M(x) P procs
1

Theorem:
Assuming LWE, there

exists parallelizable
Compute proof 1t po::;lé)g(T) delegation for an.y
P PRAM computation.

Application:
Verifiable Delay Functions [BBBF18]}

Application:
Verifiable Delay Functions [BBBF18]}

e \erifiable function that cannot be sped up with many processors

Application:

Verifiable Delay Functions [BBBF18]}
S5

o . e . " M
Verifiable function that cannot be sped up with many processors — ,

Application:

Verifiable Delay Functions [BBBF18]}
S5

o . e . " M
Verifiable function that cannot be sped up with many processors — ,

Plain model
constructions:

Application:
Verifiable Delay Functions [BBBF18]}

* \lerifiable function that cannot be sped up with many processors @5
—
Iterated Sequential
Plain model Function
constructions: + SNARGs for P

[BBBF18]

Application:

Verifiable Delay Functions [BBBF18]}
S5

o . e : " M
Verifiable function that cannot be sped up with many processors — ,

Iterated Sequential Any Sequential
Plain model Function Function
constructions: + SNARGs for P + SNARKSs for NP
[BBBF18] [EFKP20]

Application:
Verifiable Delay Functions [BBBF18]}

e Verifiable function that cannot be sped up with many processors \——
—
Iterated Sequential Any Sequential :
Plain model Function Function Repeated Squaring

constructions: | +SNARGs for P + SNARKs for Np || ¥ FWE [BCHKLPR22]

[BBBF18] [EFKP20]

(Previous talk)

Application:
Verifiable Delay Functions [BBBF18]}

e Verifiable function that cannot be sped up with many processors \——
—
Iterated Sequential Any Sequential :
Plain model Function Function Repeated Squaring

+ LWE [BCHKLPR22]
(Previous talk)

constructions: + SNARGSs for P + SNARKSs for NP
[BBBF18] [EFKP20]

SPARG Paradigm:
Any Function + SPARG => Verifiable Function

Application:
Verifiable Delay Functions [BBBF18]}

e Verifiable function that cannot be sped up with many processors \——
—
Iterated Sequential Any Sequential :
Plain model Function Function Repeated Squaring

+ LWE [BCHKLPR22]

constructions: + SNARGs for P + SNARKSs for NP (Previous talk)

[BBBF18] [EFKP20]

SPARG Paradigm:
Any Function + SPARG => Verifiable Function

preserves parallel running time!

Application:
Verifiable Delay Functions [BBBF18]}

e Verifiable function that cannot be sped up with many processors \——
—
Iterated Sequential Any Sequential :
Plain model Function Function Repeated Squaring

constructions: | +SNARGs for P + SNARKs for Np || ¥ FWE [BCHKLPR22]

[BBBF18] [EFKP20]

(Previous talk)

Application:
Verifiable Delay Functions [BBBF18]}

e Verifiable function that cannot be sped up with many processors \——
—
Iterated Sequential Any Sequential :
Plain model Function Function Repeated Squaring

+ LWE [BCHKLPR22]

constructions: + SNARGs for P + SNARKSs for NP (Previous talk)

[BBBF18] [EFKP20]

Theorem:
Assuming LWE and any

sequential function,
there exists a VDF.

Application:

Verifiable Delay Functions [BBBF18]}
S5

o . e . " M
Verifiable function that cannot be sped up with many processors — ,

Iterated Sequential
Function

+ SNARGs for P

Any Sequential
Function

+ SNARKSs for NP

[EFKP20]

Repeated Squaring

Plain model

. + LWE [BCHKLPR22]
constructions:

(Previous talk)

Minimal
Theorem: assumption
Assuming LWE ghd any

sequential function,
there exists a VDF.

Application:
Verifiable Delay Functions [BBBF18]}

e Verifiable function that cannot be sped up with many processors \——
—
Iterated Sequential Any Sequential :
Plain model Function Function Repeated Squaring

+ LWE [BCHKLPR22]

constructions: + SNARGs for P + SNARKSs for NP (Previous talk)

[BBBF18] [EFKP20]

Theorem:
Assuming LWE and any

sequential function,
there exists a VDF.

Application:

Verifiable Delay Functions [BBBF18]}
S5

o . e : " M
Verifiable function that cannot be sped up with many processors — ,

Iterated Sequential Any Sequential
Plain model Function Function
constructions: + SNARGs for P + SNARKSs for NP
[BBBF18] [EFKP20]

Repeated Squaring
+ LWE [BCHKLPR22]
(Previous talk)

Theorem: Theorem:
Assuming LWE and any Assuming LWE and any

sequential function, memory-hard sequential function,
there exists a VDF. there exists a memory-hard VDF.

Application:

Verifiable Delay Functions [BBBF18]}
S5

o . e . " M
Verifiable function that cannot be sped up with many processors t—

Iterated Sequential
Plain model Function

constructions: + SNARGSs for P
[BBBF18]

Any Sequential

Function _ _
+ SNARKS fo First construction

122G without “knowledge”
assumptions

Theorem: Theorem:

Assuming LWE and any
memory-hard sequential function,
there exists a memory-hard VDF.

Assuming LWE and any

sequential function,
there exists a VDF.

Application:

Verifiable Delay Functions [BBBF18]}
S5

o . e : " M
Verifiable function that cannot be sped up with many processors — ,

Iterated Sequential Any Sequential
Plain model Function Function
constructions: + SNARGs for P + SNARKSs for NP
[BBBF18] [EFKP20]

Repeated Squaring
+ LWE [BCHKLPR22]
(Previous talk)

Theorem: Theorem:
Assuming LWE and any Assuming LWE and any

sequential function, memory-hard sequential function,
there exists a VDF. there exists a memory-hard VDF.

Additional Result:
Time-Independent SPARGs

Additional Result:
Time-Independent SPARGs

Observation:
For standard arguments, can

know the time bound T when
you compute the proof.

Additional Result:
Time-Independent SPARGs

For SPARGSs:

Observation:
For standard arguments, can

know the time bound T when
you compute the proof.

T?

Additional Result:
Time-Independent SPARGs

For SPARGSs:

Observation:
For standard arguments, can

know the time bound T when

you compute the proof. -
Compute proof n?

Additional Result:
Time-Independent SPARGs

For SPARGSs:

Observation:
For standard arguments, can

know the time bound T when

you compute the proof. -
Compute proof n?

e EFKP20] relied on knowing T in advance

Additional Result:
Time-Independent SPARGs

For SPARGSs:

Observation:
For standard arguments, can

know the time bound T when

you compute the proof. -
Compute proof n?

e EFKP20] relied on knowing T in advance

Is this necessary?

Additional Result:
Time-Independent SPARGs

For SPARGSs:

Observation:
For standard arguments, can

know the time bound T when

you compute the proof. -
Compute proof n?

e EFKP20] relied on knowing T in advance

Is this necessary?

Additional Result:
Time-Independent SPARGs

For SPARGSs:

Observation:
For standard arguments, can

know the time bound T when

you compute the proof. -
Compute proof n?

Additional Result:
Time-Independent SPARGs

For SPARGSs:

Observation:
For standard arguments, can
know the time bound T when

you compute the proof. -
Compute proof n?

Theorem (informal):

Given any SPARG, can construct a
time-independent SPARG.

Additional Result:
Time-Independent SPARGs

For SPARGSs:

Observation:
For standard arguments, can
know the time bound T when

you compute the proof. -
Compute proof n?

Theorem (informal): Key idea:

Tree-based construction to
“non-deterministically guess”
binary representation of T.

Given any SPARG, can construct a
time-independent SPARG.

Big Picture for
Our Main Result

Big Picture for

Our Main Result
[EFKP20]

Big Picture for

Our Main Result
[EFKP20]

Quasi-linear
A“}’of':l‘:RK > SNARK

[BCCT13] for NP

Big Picture for
Our Main Result

[EFKP20]
Any SNARK Quasi-linear /\
c e NP =S SNARK generic SPARKSs
transformation for NP

[BCCT13] for NP

Big Picture for

Our Main Result
[EFKP20]

Quasi-linear .
Any SNARK _~ SNARK m SPARKSs

for NP 'BCCT13] for NP transformation for NP

Our Work

Big Picture for
Our Main Result

[EFKP20]
Any SNARK . Qu;;;'én:ar m SPARKS
for NP 'BCCT13] for NP transformation for NP
Our Work
Specific Quasi-linear
SNARG for P —- |updatable RAM
from LWE delegation

[CJJ21]

Big Picture for
Our Main Result

[EFKP20]
Any SNARK Q”;;Z'I'R": A _~"generic ~_ SPARKs
for NP 'BCCT13] for NP transformation for NP
Our Work
Specific Quasi-linear m
SNARG for P —- |updatable RAM " gf " x« SPARGs

[CJJ21]

Quasi-linear Updatable
RAM Delegation

Quasi-linear Updatable
RAM Delegation

t steps

cf’

Quasi-linear Updatable
RAM Delegation

t steps

cf cf’

Update in parallel

dUXx ————— > | auX’

cf

dux

Quasi-linear Updatable
RAM Delegation

t steps

Update in parallel

—_——m—m—m—

cf’

aux’

w
“withess”

P(w) computes 1t

for (cf, cf’, t)

cf

dux

Quasi-linear Updatable
RAM Delegation

t steps

Update in parallel

—_——m—m—m—

cf’

aux’

w
“withess”

—mm)

P(w) computes 1t

for (cf, cf’, t)

Quasi-linear Updatable
RAM Delegation

t steps
cf cf’
Update in parallel
aux | ————————— > | aux’ —
- Can compute aux’ given aux in w
“witness” P(w) computes m

parallel time t + polylog(t)

for (cf, cf’, t)

Quasi-linear Updatable
RAM Delegation

t steps
cf cf’
Update in parallel
aux | ————————— > | aux’ —
- Can compute aux’ given aux in w
“witness” P(w) computes m

parallel time t + polylog(t)
- Given w, can compute a proof 1t for
cf->cf’ in time t *polylog(t)

for (cf, cf’, t)

Quasi-linear Updatable
RAM Delegation

t steps
cf cf’
Update in parallel
aux | — > | aux’ ’
Without w, wW

- Can compute aux’ given a depends on [cf|.
parallel time t + polylog(t)

- Given w, can compute a gfoof 1t for
cf->cf’ in time t *polylog(t)

sg” P(w) computes 1t

for (cf, cf’, t)

Instantiating from LWE

t steps
cf cti | ——
Update in parallel
aux | ————————— > | aux’ >
- Can compute aux’ given aux in w
“witness” P(w) computes m

parallel time t + polylog(t)
- Given w, can compute a proof 1t for
cf->cf’ in time t *polylog(t)

for (cf, cf’, t)

Instantiating from LWE

; Concurrently
C updatable MT from
[EFKP20]
Update in parallel
aux | ——————————— > | auXx’ ”
- Can compute aux’ given aux in w
“witness” P(w) computes m

parallel time t + polylog(t)
- Given w, can compute a proof 1t for
cf->cf’ in time t *polylog(t)

for (cf, cf’, t)

Instantiating from LWE

; Concurrently
C updatable MT from
[EFKP20]
Update in parallel MT update paths
aux | ————————— > | aux’
- Can compute aux’ given aux in m
“witness” P(w) computes m

parallel time t + polylog(t)
- Given w, can compute a proof 1t for
cf->cf’ in time t *polylog(t)

for (cf, cf’, t)

Instantiating from LWE

f Concurrently
C updatable MT from
[EFKP20]
Update in parallel MT update paths

-an compute aux’ given au Somewhere extractable P(w) comput
| W
parallel time t + polylog(t) commitment for (cf E;J’ etc;, Tt

- Given w, can compute a prc¢ + batch argument
cf->cf’ in time t *polylog(t) from [CJJ21]

Putting It all together with
I[EFKP20] transformation

Putting It all together with
I[EFKP20] transformation

Time: 0

Putting it all together with
|[EFKP20] transformation

K1 steps

Time: 0O

Putting it all together with
|[EFKP20] transformation

K1 steps

adUXo | — > |aAUXj

Time: 0O

Putting It all together with
I[EFKP20] transformation

K1 steps

aUXo | — > [aUX1

Time: 0

Efficiently

computable at
start

Putting It all together with
I[EFKP20] transformation

Time: QO —mMmMmMmM8M8M8M M ™ ™Mmmmmmmmm™m™m™m™m™m™m8M8 8 ™ ™™™ T

K1 steps
auxo|

Efficiently

P(w1) -> 11 for ki steps

computable at
start

Putting It all together with
I[EFKP20] transformation

Time: QO —mMmMmMmM8M8M8M M ™ ™Mmmmmmmmm™m™m™m™m™m™m8M8 8 ™ ™™™ T

k1 steps ko steps
auxo|

Efficiently

computable at
start

Putting It all together with
I[EFKP20] transformation

Tme:) —m—m—m—m—m————m—mMm@m™m™m™m™m@———————mm—m™™™™8@8@8 ™8 ™ —T

aUXo |

k1 steps ko steps Ks Km

Efficiently

computable at
start

Putting It all together with
I[EFKP20] transformation

Tme:) —m—m—m—m—m————m—mMm@m™m™m™m™m@———————mm—m™™™™8@8@8 ™8 ™ —T

k1 steps ko steps Ks Km
auxo|

Efficiently

computable at
start

e Split computation into pieces of size ki,Ka,... km steps
of geometrically decreasing size.

Putting It all together with
I[EFKP20] transformation

Tme:) —m—m—m—m—m————m—mMm@m™m™m™m™m@———————mm—m™™™™8@8@8 ™8 ™ —T

k1 steps ko steps Ks Km
auxo|

Efficiently

computable at
start

e Split computation into pieces of size ki,Ka,... km steps
of geometrically decreasing size.
e Set kiso that “i"th proof finished by time T.

Putting It all together with
I[EFKP20] transformation

Tme:) —m—m—m—m—m————m—mMm@m™m™m™m™m@———————mm—m™™™™8@8@8 ™8 ™ —T

k1 steps ko steps Ks Km
auxo|

Efficiently

computable at
start

e Split computation into pieces of size ki,Ka,... km steps
of geometrically decreasing size.
e Set kiso that “i"th proof finished by time T.

* Final proof consists of m = polylog(T) sub-proofs.

Questions?

0 ————— T-T + polylog(T)

Compute y = M(x)

Result 1: Result 2:

Assuming LWE, exist SPARGSs =>
Compute proof m SPARGs for PRAM. time-independent SPARGs

Result 3: Result 4:

VDFs from LWE + any Mem-hard VDFs without
sequential function “knowledge™ assumptions

