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Wall-clock 

time 0 T

Compute M(x)

Compute proof π

T + polylog(T)

p*polylog(T) 
procs

p procs
Theorem:
Assuming LWE, there 
exists parallelizable 
delegation for any 
PRAM computation.
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0 T?

Compute M(x)? …

Compute proof π?

Observation: 
For standard arguments, can 
know the time bound T when 

you compute the proof.

For SPARGs:

Theorem (informal):
Given any SPARG, can construct a 

time-independent SPARG.

Key idea:  
Tree-based construction to 


“non-deterministically guess” 
binary representation of T.
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w

P(w) computes π
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[EFKP20]

MT update paths

Somewhere extractable 
commitment 


+ batch argument

from [CJJ21]
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k1 steps km…
aux0

k2 steps k3

Time: 0 T

aux1 aux2

w1 w2

aux3

P(w1) -> π1 for k1 steps

π2

w3

π3

…

Efficiently 
computable at 

start

• Split computation into pieces of size k1,k2,… km steps 
of geometrically decreasing size.

• Set ki so that “i”th proof finished by time T. 
• Final proof consists of m = polylog(T) sub-proofs.



Questions?
M, x

y, π

0 T

Compute y = M(x)

Compute proof π

T + polylog(T)

Result 1:
Assuming LWE, exist 
SPARGs for PRAM.

Result 3:
VDFs from LWE + any 
sequential function

Result 2:
SPARGs => 

time-independent SPARGs

Result 4:
Mem-hard VDFs without 
“knowledge” assumptions


