Complexity-Preserving Sublinear-Arguments from Symmetric Key Primitives

Laasya Bangalore
Muthu Venkitasubramaniam
Georgetown University

Rishabh Bhadauria
Carmit Hazay
Bar-Ilan University
Succinct (ZK) Arguments [Kil99,Mic00]

Given a language L

Completeness: $\forall x \in L, \langle P, V \rangle(x) = 1$ w.p. 1

Soundness: $\forall x \notin L, \forall$ PPT P^*, $\langle P^*, V \rangle(x) = 1$ w.p. $\leq \text{negl}(k)$

Zero-knowledge: $\forall x \in L, \forall$ PPT V^*, \exists PPT S, s.t. $\{\text{view}_{V^*}\langle P, V^* \rangle(x)\} \approx \{S(x)\}$
Main Question

Do there exist complexity-preserving public-coin succinct* arguments for NP from minimal assumptions?
Main Question

Do there exist complexity-preserving public-coin succinct* arguments for NP from minimal assumptions?

This Talk YES*
* sublinear
Main Question

Do there exist complexity-preserving public-coin succinct* arguments for NP from minimal assumptions?

This Talk: YES*
* sublinear

Time-preserving
Space-preserving

Complexity-preserving
Main Question

Do there exist complexity-preserving public-coin succinct* arguments for NP from minimal assumptions?

This Talk

YES*

* sublinear

Taxonomy of Arguments

• Succinct* vs Non-succinct
• Interactive vs Non-interactive
• Trusted setup vs No setup (transparent)
• ZK vs (only) Integrity
• Public-Key Crypto vs (only) Symmetric-Key Crypto

Time-preserving
Space-preserving

Complexity-preserving
A SNARKy background

1992: Sublinear ZK for NP [Kil92]
2000: CSProofs [Mic00]
2007: IKO [IKO07], IVC [V07]
2008: IVC [Val08]
2010: Short-PB-NIZKA [Groth10], Preprocessing-Verifiable-Computation [GGP10]
2012: QSP [GGPR12], EfficientPCP [IMS12], Succinct-NIArguments [BCIO12]
2013: Pinocchio [PGHR13], SNARKs-for-C [BCGT13], ZK-vonNeumann [BCTV13]
2014: Geppetto [CFHKNPZ14], CyclesOfCurves [BCTV14]
2015: IP4Muggles [GKR15], SNARKs-for-MapReduce [CTV15]
2016: ZKBoo [GMO16], BulletproofsPrequel [BCGP16], Groth16 [Groth16], HybIntZK [CGM16]
2017: Ligero [AHIV17], ZKB++ and Picnic [CDGORRSZ17] (discuss alongside ZKBoo), Hyrax [WTSW], zk-vSQL [ZGKPP17] (can add to existing vSQL section), Bulletproofs [BBPFWM17], SnarkySigs [GM17]
2018: Aurora [BCRSVW18], FRIs [BBHR18], ZKStarks [BBHR18], Picnic2 [KKW18], vRAM [ZGKPP18], DIZK [WZCPS18], UpdatableNIZK [AKM18], HybNIZK [AGM18]
2019: Fractal [COS19], Halo [BGH19], Plonk [GWC19], RedShift [KPV19], Spartan [Setty19], DeepFRI [BGKS19], LatticeZKPs [ESL19], SubversionResistant [Bag19], Darks [BSF19], LatticeSnarkArithmetic [Nit19], ZKPSetMembership [BCFGD19]
2020: Halolfinite [BDFG20], Quarks (Xiphos and Kopis) [SL20], Dory [Lee20], Wolverine [WYKW20], Bulletproofs+ [CHJKS20], SPARKS [EFKP20], Plookup [GW20], SuperSonic [BFS20], CompressedSigma [AC20], LatticeKviaOTC [LKS20], GeneralizedCompressedSigma [ACR20], PVZKfromBlockchain [SSV20], LinePointZK [DIO20], PublicCoinZKTime&Space [BHRRS20], Dory [Lee20], DoublyEfficientIP [ZLWZX20], PQSnarks4Rsis-Rlwe [BCOS20], ZAPsAlgebraicLangs [CH20]
2021: Manta [CXZ21], Nova [KST21], Rinocchio [GNS21], Limbo [DGOT21], QuickSilver [YWW21], Limbo [GOT21], IntRange [CKLR21], SubexpDDH [JL12], Cerberus [LST21], ConstOverZKRamProgs [FKLW21]
2022: NIZK Multiple Verifiers [YW22], Feta [BJOSS22], GOTzilla [BCHM22], ZK UNSAT [LHPT22]

Credits: ZKProof.org
A SNARKy background

(Uniform) RAM program that takes time T and uses space S

- Succinct
- Public-coin or publicly verifiable
- Time-preserving
- Space-preserving
- “Black-box” in the underlying assumption
A SNARKy background

(Uniform) RAM program that takes time T and uses space S
- Succinct
- Public-coin or publicly verifiable
- Time-preserving
- Space-preserving
- “Black-box” in the underlying assumption

[BC12] Designated Verifier Sublinear Arguments
[HR18] Non-interactive Sublinear Arguments
A SNARKy background

(Uniform) RAM program that takes time T and uses space S

• Succinct
• Public-coin or publicly verifiable
• Time-preserving
• Space-preserving

❌ “Black-box” in the underlying assumption

[WTSTW18,XZZPS19,S20,SL20,KMP20,BCG20a,BCG20,...]
All require Prover to use space proportional to T!
A SNARKy background

(Uniform) RAM program that takes time T and uses space S

- Succinct
- Public-coin or publicly verifiable
- Time-preserving
- Space-preserving
- “Black-box” in the underlying assumption

[Val08, BCCT13] Complexity preserving via recursive composition

[EFKP20] SNARKs for parallel RAM comp. using CRH and SNARKs

[BGH21, BCMS20, COS20] “Heuristic” assumptions
A SNARKy background

(Uniform) RAM program that takes time T and uses space S

- Succinct
- Public-coin or publicly verifiable
- **Time-preserving**
- Space-preserving
- “Black-box” in the underlying assumption

[BBHR18,BFHVXZ20] *Folklore*
A SNARKy background

(Uniform) RAM program that takes time T and uses space S

- Succinct
- Public-coin or publicly verifiable
- Time-preserving
- Space-preserving
- “Black-box” in the underlying assumption

[BHRRS20] Based on hardness of discrete log
[BHRRS21] Based on hardness assumptions on hidden order groups
A SNARKy background

(Uniform) RAM program that takes time T and uses space S

- Succinct
- Public-coin or publicly verifiable
- Time-preserving
- Space-preserving
- “Black-box” in the underlying assumption

[BHRRS20] Based on hardness of discrete log
[BHRRS21] Based on hardness assumptions on hidden order groups

Main Question: Can we get based on symmetric cryptography?
(Uniform) RAM program $M(x,w)$

- Runs in time $T(|x|)$
- Uses space $S(|x|)$
- It is of constant size

Modelled as a RAM

- Input Tape - Linear Access
- Work Tape - RAM Access

Space = Size of work tape

$\begin{align*}
P & \quad \text{has } x, w \text{ on (two) input tapes with linear access.} \\
V & \quad \text{has } x \text{ on input tape with linear access.}
\end{align*}$
Main Result – Upper Bound

Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine running in time T and space S ∃ public-coin (ZK) arg. with soundness $\text{negl}(k)$ such that:

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{P}</td>
<td>$\tilde{O}(T)$</td>
<td>$\tilde{O}(S)$</td>
</tr>
</tbody>
</table>

where the CRH is used in a black-box way and $\tilde{O}(\cdot)$ ignores $\text{poly}(\log(T), k)$
Main Result – Upper Bound

Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine running in time T and space S ∃ public-coin (ZK) arg. with soundness $\text{negl}(k)$ such that:

where the CRH is used in a black-box way and $\tilde{O}(\cdot)$ ignores $\text{poly}(\log(T), k)$
Main Result – Upper Bound

Theorem: Assume CRH exists. \(\forall \) NP language verified by a uniform RAM machine running in time \(T \) and space \(S \) \(\exists \) public-coin (ZK) arg. with soundness \(\text{negl}(k) \) such that:

\[
\begin{align*}
\text{Time} & : P & \tilde{O}(T) \\
\text{Space} & : V & \tilde{O}(\frac{T}{S} + S) & \tilde{O}(1)
\end{align*}
\]

where the CRH is used in a black-box way and \(\tilde{O}(\quad) \) ignores \(\text{poly}(\log(T), k) \)
Main Result – Upper Bound

Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine running in time T and space S ∃ public-coin (ZK) arg. with soundness $\text{negl}(k)$ such that:

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{O}(T)$</td>
<td>$\tilde{O}(S)$</td>
</tr>
<tr>
<td>$\tilde{O}\left(\frac{T}{S} + S\right)$</td>
<td>$\tilde{O}(1)$</td>
</tr>
</tbody>
</table>

Proof Length is $\tilde{O}\left(\frac{T}{S}\right)$

where the CRH is used in a black-box way and $\tilde{O}(\cdot)$ ignores $\text{poly}(\log(T), k)$
Main Result – Upper Bound

Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine running in time T and space S ∃ public-coin (ZK) arg. with soundness $\text{negl}(k)$ such that:

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
<th>Complexity preserving</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>$\tilde{O}(T)$</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>$\tilde{O}\left(\frac{T}{S} + S\right)$</td>
<td></td>
</tr>
<tr>
<td>Proof Length is $\tilde{O}\left(\frac{T}{S}\right)$</td>
<td>$\tilde{O}(1)$</td>
<td>Sublinear</td>
</tr>
</tbody>
</table>

where the CRH is used in a black-box way and $\tilde{O}(\quad)$ ignores $\text{poly}(\log(T), k)$
Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine running in time T and space S \exists public-coin (ZK) arg. with soundness $\text{negl}(k)$ such that:

- Time:
 - Prover: $\tilde{O}(T)$
 - Verifier: $\tilde{O}\left(\frac{T}{S} + S\right)$

Proof Length is $\tilde{O}\left(\frac{T}{S}\right)$

where the CRH is used in a black-box way and $\tilde{O}(\cdot)$ ignores $\text{poly}(\log(T), k)$

Our lower bound shows why it’s hard to further improve the proof length.
Ligero [AHIV17]
Proof Schematic
Given a circuit C
Prove that $\exists z$, such that $C(z) = 1$
Extended witness \bar{w}
Extended witness \bar{w}

\[a \cdot b \geq X \cdot \# \text{gates} \]
Compute Merkle Root

Root()
\[\text{Root}(v_1, v_2, v_3, \ldots, f_1, f_2, f_3, \ldots, i_1, i_2, i_3, \ldots) \]
Proof Length: $O(b + \kappa \cdot a)$

Prover Computation: $O(a)$ FFTs of $O(b)$

Set $a = T/S$ and $b = S$
Compute Merkle Root

Compute Row Aggregates

Decommit Columns

Root(), \(f_1, f_2, f_3, \ldots\)

\(i_1, i_2, i_3, \ldots\)

Proof Length:
\(\tilde{O}\left(\frac{T}{S} + S\right)\)

Prover Computation:
\(\tilde{O}(T)\)

Set \(a = T/S\) and \(b = S\)
What about space-efficiency?

- Compute Merkle Root
- Compute Row Aggregates
- Decommit Columns

$O(S)$ space if the matrix can be computed row by row
What about space-efficiency?

- Compute Merkle Root
- Compute Row Aggregates
- Decommit Columns

$O(S)$ space if the matrix can be computed row by row

[BCGT13] RAM program \Rightarrow succinct circuits \Rightarrow Transcript generated in time T and space S
Computing Merkle Root Space Efficiently

\[S \]

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{merkle_tree}
\caption{Merkle tree representation.}
\end{figure}
Computing Merkle Root Space Efficiently
Computing Merkle Root Space Efficiently

S
What about space-efficiency of Row Aggregates?

- **Code test** - the prover encoded each row correctly
- **Quadratic test** - the prover computed multiplication gates correctly
- **Linear test** - the prover computed “linear” gates correctly

Compute Merkle Root

Compute Row Aggregates

Decommit Columns
What about space-efficiency of Row Aggregates?

- **Code test** - the prover **encoded** each row correctly
- **Quadratic test** - the prover computed **multiplication** gates correctly
- **Linear test** - the prover computed "linear" gates correctly

- **Compute Merkle Root**
- **Compute Row Aggregates**
- **Decommit Columns**
Linear gates were correct

Linear constraints can be expressed as $A\bar{w} = \bar{b}$

Check if \bar{q} is a valid codeword encoding $\bar{r}^T\bar{b}$ and agrees on revealed columns.
Linear gates were correct

Linear constraints can be expressed as $A\bar{w} = \bar{b}$

Check if \bar{q} is a valid codeword encoding $\bar{r}^T\bar{b}$ and agrees on revealed columns

Main Challenge: How to compute $\bar{r}^T A$ efficiently?
Linear gates were correct

Linear constraints can be expressed as $A\bar{w} = \bar{b}$

Check if \bar{q} is a valid codeword encoding $\bar{r}^T\bar{b}$ and agrees on revealed columns

Main Challenge: How to compute $\bar{r}^T A$ efficiently?

Size of r: $\tilde{O}(T)$

Size of A: $\tilde{O}(T) \times \tilde{O}(T)$
Linear gates were correct

Linear constraints can be expressed as $A\bar{w} = \bar{b}$

Check if \bar{q} is a valid codeword encoding $\bar{r}^T \bar{b}$ and agrees on revealed columns

Main Challenge: How to compute $\bar{r}^T A$ efficiently?

Naive Approach: $\tilde{O}(T^2)$ time & $\tilde{O}(T^2)$ space.

Size of A: $\tilde{O}(T) \times \tilde{O}(T)$

Size of r: $\tilde{O}(T)$
How to compute $\bar{r}^T A$ efficiently?

\[r \]

\[r \text{ requires } O(T) \text{ space!} \]
How to compute $\bar{r}^T A$ efficiently?

r

- Generate r from a seed
- Required space: $\tilde{O}(1)$
How to compute $\bar{r}^T A$ efficiently?

\bar{r} requires $O(T)$ space!

- Generate r from a seed
- Required space: $\tilde{O}(1)$

A is a large matrix!
How to compute $\bar{r}^T A$ efficiently?

- Generate \bar{r} from a seed
- Required space: $\tilde{O}(1)$

A is a large matrix!

- A is sparse and structured
How to compute $\bar{r}^T A$ efficiently?

- A is a large matrix!
- A is sparse and structured
- $[BCGT13]$ Uniform RAM machine \Rightarrow Succinct Circuit \Rightarrow Succinct matrix

r requires $O(T)$ space!

- Generate r from a seed
- Required space: $\tilde{O}(1)$
How to compute $\bar{r}^T A$ efficiently?

r requires $O(T)$ space!

- Generate r from a seed
- Required space: $\tilde{O}(1)$

A is a large matrix!

- A is sparse and structured
- [BCGT13] Uniform RAM machine \Rightarrow Succinct Circuit \Rightarrow Succinct matrix
- Non-zero elements in each column can be computed in $\tilde{O}(1)$ time without storing A.
How to compute $\bar{r}^T A$ efficiently?

r is a large matrix!

- Generate r from a seed
- Required space: $\tilde{O}(1)$
- A is sparse and structured
- [BCGT13] Uniform RAM machine => Succinct Circuit => Succinct matrix
- Non-zero elements in each column can be computed in $\tilde{O}(1)$ time without storing A.

r requires $O(T)$ space!

$r^T A$ can be computed row-by-row in time $\tilde{O}(T)$ and space $\tilde{O}(S)$
How to compute $\bar{r}^T A$ efficiently?

r requires $O(T)$ space!

- Generate r from a seed
- Required space: $\tilde{O}(1)$

Hence $r^T A$ can be computed row-by-row in time $\tilde{O}(T)$ and space $\tilde{O}(S)$

- A is sparse and structured
- [BCGT13] Uniform RAM machine => Succinct Circuit => Succinct matrix
- Non-zero elements in each column can be computed in $\tilde{O}(1)$ time without storing A.

P is complexity-preserving.
Main Result – Lower Bound*

Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine running in time T and space S ∃ public-coin (ZK) arg. with soundness $\text{negl}(k)$ such that:

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{O}(T)$</td>
<td>$\tilde{O}(\frac{T}{S} + S)$</td>
</tr>
</tbody>
</table>

Proof Length is $\tilde{O}\left(\frac{T}{S}\right)$

where the CRH is used in a black-box way and $\tilde{O}(\)$ ignores $\text{poly}(\log(T), k)$.
Current Techniques*: Most ZK-SNARKs rely on Codes...

RAM

Time T
Space S

Transcript

Size T

Encoded Transcript

Using Codes with Constant Relative Distance
Current Techniques*: Most ZK-SNARKs rely on Codes...

RAM

Time T
Space S

Transcript

Size T

Encoded Transcript

Using Codes with Constant Relative Distance

“Lower bound” on the encoding algorithm

provides evidence
Current Techniques*: Most ZK-SNARKs rely on Codes...

Using Codes with Constant Relative Distance

“Lower bound” on the encoding algorithm

provides evidence

“Hard” to reduce the proof length below $\tilde{O}\left(\frac{T}{S}\right)$
Lower Bound*

Theorem: Let C be $[n, m, \delta m]$ code over \mathbb{F} then any r-pass Encode RAM algorithm requires space

$$S > \frac{\delta n}{r} \log |\mathbb{F}|$$
Lower Bound*

Theorem: Let C be $[n, m, \delta m]$ code over \mathbb{F} then any r-pass Encode RAM algorithm requires space

$$S > \frac{\delta n}{r} \log|\mathbb{F}|$$

[YRST02] Proved the lower bound for 1-pass algorithm
Lower Bound*

Theorem: Let C be $[n, m, \delta m]$ code over \mathbb{F} then any r-pass Encode RAM algorithm requires space

$$S > \frac{\delta n}{r} \log |\mathbb{F}|$$

[YRST02] Proved the lower bound for 1-pass algorithm

Setting $n = T$ and $|\mathbb{F}| = \log T$ we get that $\delta < \frac{S \cdot r}{T \cdot \log T}$

=>$\text{Minimum number of oracle queries is } \tilde{O} \left(\frac{1}{\delta} \right) = \tilde{O} \left(\frac{T}{S} \right)$
Summary

• First construction of complexity-preserving sublinear (ZK) arguments from CRH in a black-box way

• Improving the communication will require new techniques – i.e., getting around constant-distance codes.

Thank You
Additional Slides
Warmup Lower Bound

Simplifying assumptions:
1. Only one pass over the message
2. No work tape
3. Codeword head is independent of the contents of the message
Warmup Lower Bound

Simplifying assumptions:
1. Only one pass over the message
2. No work tape
3. Codeword head is independent of the contents of the message