
Complexity-Preserving Sublinear-
Arguments

from Symmetric Key Primitives
Laasya Bangalore

Muthu Venkitasubramaniam
Georgetown University

Rishabh Bhadauria
Carmit Hazay

Bar-Ilan University
LIGERO

Succinct (ZK) Arguments [Kil99,Mic00]

P V
Given a language 𝐿𝐿

Accepts or
Rejects

Completeness: ∀𝑥𝑥 ∈ 𝐿𝐿, 𝑃𝑃,𝑉𝑉 (𝑥𝑥) = 1 w.p. 1

Soundness: ∀𝑥𝑥 ∉ 𝐿𝐿,∀ PPT 𝑃𝑃∗, 𝑃𝑃∗,𝑉𝑉 (𝑥𝑥) = 1 w.p. ≤ 1
2
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘

cc = 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥 𝒙𝒙 ,𝒌𝒌

Zero-knowledge: ∀𝑥𝑥 ∈ 𝐿𝐿,∀PPT 𝑉𝑉∗, ∃ PPT 𝑆𝑆, s.t.

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑉𝑉∗ 𝑃𝑃,𝑉𝑉∗ (𝑥𝑥) ≈ 𝑆𝑆(𝑥𝑥) 2

Main Question
Do there exist complexity-preserving public-coin

succinct* arguments for NP from minimal assumptions?

3

Main Question
Do there exist complexity-preserving public-coin

succinct* arguments for NP from minimal assumptions?

This Talk YES*
* sublinear

4

Main Question
Do there exist complexity-preserving public-coin

succinct* arguments for NP from minimal assumptions?

This Talk YES*
* sublinear

Time-preserving
Space-preserving

Complexity-
preserving

5

Main Question
Do there exist complexity-preserving public-coin

succinct* arguments for NP from minimal assumptions?

This Talk YES*
* sublinear

• Succinct* vs Non-succinct
• Interactive vs Non-interactive
• Trusted setup vs No setup (transparent)
• ZK vs (only) Integrity
• Public-Key Crypto vs (only) Symmetric-Key

Crypto

Time-preserving
Space-preserving

Complexity-
preserving

Ta
xo

no
m

y
of

 A
rg

um
en

ts

6

1992: Sublinear ZK for NP [Kil92]
2000: CSProofs [Mic00]
2007: IKO [IKO07], IVC [V07]
2008: IVC [Val08]
2010: Short-PB-NIZKA [Groth10], Preprocessing-Verifiable-Computation [GGP10]
2012: QSP [GGPR12], EfficientPCP [IMS12], Succinct-NIArgs-LIP [BCIOP12]
2013: Pinocchio [PGHR13], SNARKs-for-C [BCGTV13], ZK-vonNeumann [BCTV13]
2014: Geppetto [CFHKKNPZ14], CyclesOfCurves [BCTV14]
2015: IP4Muggles [GKR15], SNARKs-for-MapReduce [CTV15]
2016: ZKBoo [GMO16], BulletproofsPrequel [BCCGP16], Groth16 [Groth16], HybIntZK [CGM16]
2017: Ligero (AHIV17), ZKB++ and Picnic [CDGORRSZ17] (discuss alongside ZKBoo), Hyrax [WTsTW], zk-vSQL [ZGKPP17] (can add to existing
vSQL section), Bulletproofs [BBBPWM17], SnarkySigs [GM17]
2018: Aurora [BCRSVW18], FRI [BBHR18], ZKStarks [BBHR18], Picnic2 [KKW18], vRAM [ZGKPP18], DIZK [WZCPS18], UpdatableNIZK [GKMM18]
, HybNIZK [AGM18]
2019: Fractal [COS19], Halo [BGH19], Plonk [GWC19], RedShift [KPV19], Spartan [Setty19], DeepFRI [BGKS19], LatticeZKPs [ESLL19], Subversio
nResistant [Bag19], Darks [BFS19], LatticeSnarkArithmetic [Nit19], ZKPSetMembership [BCFGD19]
2020: HaloInfinite [BDFG20], Quarks (Xiphos and Kopis) [SL20], Dory [Lee20],
Wolverine [WYKW20], Bulletproofs+ [CHJKS20], SPARKS [EFKP20], Plookup [GW20], SuperSonic [BFS20], CompressedSigma [AC20], LatticeZKv
iaOTC [LKS20], GeneralizedCompressedSigma [ACR20], PVZKfromBlockchain [SSV20], LinePointZK [DIO20], PublicCoinZKTime&Space [BHRRS2
0], Dory [Lee20], DoublyEfficientIP [ZLWZSXZ20], PqSnarks4Rsis-Rlwe [BCOS20], ZAPsAlgebraicLangs [CH20]
2021: Manta [CXZ21], Nova [KST21], Rinocchio [GNS21], Limbo [DGOT21], QuickSilver [YSWW21], Limbo [GOT21], IntRange [CKLR21], Subexp
DDH [JJ21], Cerberus [LSTW21], ConstOverZKRamProgs [FKLOW21]
2022: NIZK Multiple Verifiers [YW22], Feta [BJOSS22], gOTzilla [BCGHM22], ZK UNSAT [LAHPTW22]
Credits: ZKProof.org

A SNARKy background

7

https://web.cs.ucla.edu/%7Erafail/PUBLIC/79.pdf
https://web.cs.ucla.edu/%7Erafail/PUBLIC/79.pdf
https://web.cs.ucla.edu/%7Erafail/PUBLIC/79.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/38663/163581090-MIT.pdf
https://web.cs.ucla.edu/%7Erafail/PUBLIC/79.pdf
https://www.iacr.org/archive/asiacrypt2010/6477323/6477323.pdf
https://ia.cr/2009/547
https://ia.cr/2012/215
https://doi.org/10.1007/978-3-642-28914-9_9
https://ia.cr/2012/718
https://ia.cr/2013/279
https://ia.cr/2013/507
https://ia.cr/2013/879
https://ia.cr/2014/976
https://ia.cr/2014/595
https://eccc.weizmann.ac.il/report/2017/108/
https://ia.cr/2015/377
https://ia.cr/2016/163
https://ia.cr/2016/263
https://ia.cr/2016/260
https://ia.cr/2016/583
https://acmccs.github.io/papers/p2087-amesA.pdf
https://ia.cr/2017/279
https://ia.cr/2017/1132
https://ia.cr/2017/1146
https://ia.cr/2017/1066
https://ia.cr/2017/540
https://ia.cr/2018/828
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://ia.cr/2018/046
https://ia.cr/2018/475
https://doi.org/10.1109/SP.2018.00013
https://ia.cr/2018/691
https://ia.cr/2018/280
https://ia.cr/2018/557
https://ia.cr/2019/1076
https://ia.cr/2019/1021
https://ia.cr/2019/953
https://ia.cr/2019/1400
https://ia.cr/2019/550
https://arxiv.org/abs/1903.12243
https://ia.cr/2019/445
https://ia.cr/2019/1162
https://ia.cr/2019/1229
https://ia.cr/2019/1251
https://ia.cr/2019/1255
https://ia.cr/2020/1536
https://ia.cr/2020/1275
https://ia.cr/2020/1274
https://ia.cr/2020/925
https://ia.cr/2020/735
https://ia.cr/2020/994
https://ia.cr/2020/315
https://ia.cr/2019/1229
https://ia.cr/2020/152
https://ia.cr/2020/1448
https://ia.cr/2020/1447
https://ia.cr/2020/1435
https://ia.cr/2020/1446
https://ia.cr/2020/1425
https://ia.cr/2020/1274
https://ia.cr/2020/1247
https://ia.cr/2020/1190
https://ia.cr/2020/286
https://ia.cr/2021/743
https://ia.cr/2021/370
https://ia.cr/2021/322
https://ia.cr/2021/215
https://ia.cr/2021/076
https://ia.cr/2021/215
https://ia.cr/2021/540
https://ia.cr/2021/514
https://ia.cr/2021/030
https://ia.cr/2021/979
https://ia.cr/2022/063
https://ia.cr/2022/082
https://ia.cr/2022/170
https://ia.cr/2022/206

A SNARKy background
(Uniform) RAM program that takes time T and uses space S
• Succinct
• Public-coin or publicly verifiable
• Time-preserving
• Space-preserving
• “Black-box” in the underlying assumption

8

A SNARKy background
(Uniform) RAM program that takes time T and uses space S
• Succinct
• Public-coin or publicly verifiable
• Time-preserving
• Space-preserving
• “Black-box” in the underlying assumption

[BC12] Designated Verifier Sublinear Arguments
[HR18] Non-interactive Sublinear Arguments

9

A SNARKy background
(Uniform) RAM program that takes time T and uses space S
• Succinct
• Public-coin or publicly verifiable
• Time-preserving
• Space-preserving
• “Black-box” in the underlying assumption

[WTSTW18,XZZPS19,S20,SL20,KMP20,BCG20a,BCG20,…]
All require Prover to use space proportional to T!

10

A SNARKy background
(Uniform) RAM program that takes time T and uses space S
• Succinct
• Public-coin or publicly verifiable
• Time-preserving
• Space-preserving
• “Black-box” in the underlying assumption

[Val08,BCCT13] Complexity preserving via recursive composition
[EFKP20] SNARKs for parallel RAM comp. using CRH and SNARKs
[BGH21,BCMS20,COS20] “Heuristic” assumptions

11

A SNARKy background
(Uniform) RAM program that takes time T and uses space S
• Succinct
• Public-coin or publicly verifiable
• Time-preserving
• Space-preserving
• “Black-box” in the underlying assumption

[BBHR18,BFHVXZ20] *Folklore

12

A SNARKy background
(Uniform) RAM program that takes time T and uses space S
• Succinct
• Public-coin or publicly verifiable
• Time-preserving
• Space-preserving
• “Black-box” in the underlying assumption

[BHRRS20] Based on hardness of discrete log
[BHRRS21] Based on hardness assumptions on hidden order groups

13

A SNARKy background
(Uniform) RAM program that takes time T and uses space S
• Succinct
• Public-coin or publicly verifiable
• Time-preserving
• Space-preserving
• “Black-box” in the underlying assumption

[BHRRS20] Based on hardness of discrete log
[BHRRS21] Based on hardness assumptions on hidden order groups

Main Question: Can we get based on symmetric cryptography?
14

RAM Model

(Uniform) RAM program M(x,w)
• Runs in time T(|x|)
• Uses space S(|x|)
• It is of constant size

P

V

Modelled
as a RAM

has 𝑥𝑥,𝑤𝑤 on (two) input tapes with linear access.

has 𝑥𝑥 on input tape with linear access. 15

Space = Size of work tape

Main Result – Upper Bound
Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine
running in time 𝑻𝑻 and space 𝑺𝑺 ∃ public-coin (ZK) arg. with soundness 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒌𝒌 such
that:

where the CRH is used in a black-box way and �𝑶𝑶 ignores 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥 𝑻𝑻 ,𝒌𝒌

�𝑶𝑶 𝑻𝑻P

Time Space

�𝑶𝑶 𝑺𝑺

16

Main Result – Upper Bound
Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine
running in time 𝑻𝑻 and space 𝑺𝑺 ∃ public-coin (ZK) arg. with soundness 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒌𝒌 such
that:

where the CRH is used in a black-box way and �𝑶𝑶 ignores 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥 𝑻𝑻 ,𝒌𝒌

Complexity
preserving

�𝑶𝑶 𝑻𝑻P

Time Space

�𝑶𝑶 𝑺𝑺

17

Main Result – Upper Bound
Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine
running in time 𝑻𝑻 and space 𝑺𝑺 ∃ public-coin (ZK) arg. with soundness 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒌𝒌 such
that:

where the CRH is used in a black-box way and �𝑶𝑶 ignores 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥 𝑻𝑻 ,𝒌𝒌

Complexity
preserving

�𝑶𝑶 𝑻𝑻

�𝑶𝑶 𝟏𝟏

P

V

Time Space

�𝑶𝑶 𝑺𝑺

�𝑶𝑶 𝑻𝑻
𝑺𝑺

+ 𝑺𝑺

18

Main Result – Upper Bound
Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine
running in time 𝑻𝑻 and space 𝑺𝑺 ∃ public-coin (ZK) arg. with soundness 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒌𝒌 such
that:

where the CRH is used in a black-box way and �𝑶𝑶 ignores 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥 𝑻𝑻 ,𝒌𝒌

Complexity
preserving

�𝑶𝑶 𝑻𝑻

�𝑶𝑶 𝟏𝟏

�𝑶𝑶 𝑻𝑻
𝑺𝑺

P

V

Time Space

�𝑶𝑶 𝑺𝑺

�𝑶𝑶 𝑻𝑻
𝑺𝑺

+ 𝑺𝑺

Proof Length is

19

Main Result – Upper Bound
Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine
running in time 𝑻𝑻 and space 𝑺𝑺 ∃ public-coin (ZK) arg. with soundness 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒌𝒌 such
that:

where the CRH is used in a black-box way and �𝑶𝑶 ignores 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥 𝑻𝑻 ,𝒌𝒌

Complexity
preserving

Sublinear

�𝑶𝑶 𝑻𝑻

�𝑶𝑶 𝟏𝟏

�𝑶𝑶 𝑻𝑻
𝑺𝑺

P

V

Time Space

�𝑶𝑶 𝑺𝑺

�𝑶𝑶 𝑻𝑻
𝑺𝑺

+ 𝑺𝑺

Proof Length is

20

Main Result – Lower Bound*
Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine
running in time 𝑻𝑻 and space 𝑺𝑺 ∃ public-coin (ZK) arg. with soundness 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒌𝒌 such
that:

where the CRH is used in a black-box way and �𝑶𝑶 ignores 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥 𝑻𝑻 ,𝒌𝒌

Complexity
preserving

Sublinear

�𝑶𝑶 𝑻𝑻

�𝑶𝑶 𝟏𝟏

�𝑶𝑶 𝑻𝑻
𝑺𝑺

P

V

Time Space

�𝑶𝑶 𝑺𝑺

�𝑶𝑶 𝑻𝑻
𝑺𝑺

+ 𝑺𝑺

Proof Length is

Our lower bound shows
why it’s hard to further

improve the proof length.

21

Ligero [AHIV17]
Proof Schematic

22

Given a circuit 𝐶𝐶
Prove that ∃𝑧𝑧, such that 𝐶𝐶 𝑧𝑧 = 1

23

Extended witness �𝑤𝑤

24

𝑎𝑎

𝑏𝑏

𝑎𝑎 � 𝑏𝑏 ≥ 𝑋𝑋 � #𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Extended witness �𝑤𝑤

ith row �𝑤𝑤𝑖𝑖
is ith chunk of �𝑤𝑤

ith chunk

25

ENCODE

P V

26

Root()

P V

Compute Merkle
Root

27

𝑓𝑓1,𝑓𝑓2,𝑓𝑓3, …

Root()

Row-wise

P V

Compute Merkle
Root

Compute Row
Aggregates Row Aggregates

28

P V

Root()

𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3, …

𝑓𝑓1,𝑓𝑓2,𝑓𝑓3, …

Opened
Columns

Auth.
paths

Compute Merkle
Root

Compute Row
Aggregates

Decommit
Columns

Column-wise

29

P V

Root()

𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3, …

Proof Length:
O 𝑏𝑏 + 𝜅𝜅 � 𝑎𝑎
Prover Computation:
O 𝑎𝑎 FFTs of O 𝑏𝑏

Set 𝑎𝑎 = 𝑇𝑇/𝑆𝑆 and 𝑏𝑏 = 𝑆𝑆

𝑓𝑓1,𝑓𝑓2,𝑓𝑓3, …

Opened
Columns

Auth.
paths

Compute Merkle
Root

Compute Row
Aggregates

Decommit
Columns

Column-wise

30

P V

Root()

𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3, …

𝑓𝑓1,𝑓𝑓2,𝑓𝑓3, …

Compute Merkle
Root

Compute Row
Aggregates

Decommit
Columns

Proof Length:
�O 𝑇𝑇

𝑆𝑆
+ 𝑆𝑆

Prover Computation:
�𝑶𝑶 𝑇𝑇

Set 𝑎𝑎 = 𝑇𝑇/𝑆𝑆 and 𝑏𝑏 = 𝑆𝑆
31

What about space-efficiency?
𝑂𝑂 𝑆𝑆 space if the

matrix can be
computed row by row

Compute Row Aggregates

Decommit Columns

Compute Merkle Root

33

What about space-efficiency?
𝑂𝑂 𝑆𝑆 space if the

matrix can be
computed row by row

Compute Row Aggregates

Decommit Columns

Compute Merkle Root

33

[BCGT13] RAM program => succinct circuits
=> Transcript generated in time T and space S

Computing Merkle Root Space Efficiently

34

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

32

What about space-efficiency of Row Aggregates?
Code test - the prover encoded
each row correctly

Quadratic test - the prover
computed multiplication gates
correctly

Linear test - the prover computed
“linear” gates correctly

Compute Merkle Root

Decommit Columns

Row Aggregate

Compute Row Aggregates

34

Code test - the prover encoded
each row correctly

Quadratic test - the prover
computed multiplication gates
correctly

Linear test - the prover computed
“linear” gates correctly

Compute Merkle Root

Decommit Columns

Row Aggregate

Compute Row Aggregates

35

What about space-efficiency of Row Aggregates?

Linear gates were correct
Linear constraints can be expressed as 𝐴𝐴�𝑤𝑤 = �𝑏𝑏

P V
𝑟̅𝑟 Check if �𝑞𝑞 is a valid

codeword encoding 𝑟̅𝑟𝑇𝑇 �𝑏𝑏
and agrees on revealed
columns

36

�𝑞𝑞 = Encoding of 𝑟̅𝑟𝑇𝑇𝐴𝐴�𝑤𝑤

Linear gates were correct
Linear constraints can be expressed as 𝐴𝐴�𝑤𝑤 = �𝑏𝑏

P V
𝑟̅𝑟

�𝑞𝑞 = Encoding of 𝑟̅𝑟𝑇𝑇𝐴𝐴�𝑤𝑤

Check if �𝑞𝑞 is a valid
codeword encoding 𝑟̅𝑟𝑇𝑇 �𝑏𝑏
and agrees on revealed
columns

Main Challenge: How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?

37

Linear gates were correct
Linear constraints can be expressed as 𝐴𝐴�𝑤𝑤 = �𝑏𝑏

P V
𝑟̅𝑟 Check if �𝑞𝑞 is a valid

codeword encoding 𝑟̅𝑟𝑇𝑇 �𝑏𝑏
and agrees on revealed
columns

Main Challenge: How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?
Size of A: �𝑂𝑂 𝑇𝑇 × �𝑂𝑂(𝑇𝑇)

Size of r: �𝑂𝑂 𝑇𝑇

38

�𝑞𝑞 = Encoding of 𝑟̅𝑟𝑇𝑇𝐴𝐴�𝑤𝑤

Linear gates were correct
Linear constraints can be expressed as 𝐴𝐴�𝑤𝑤 = �𝑏𝑏

P V
𝑟̅𝑟 Check if �𝑞𝑞 is a valid

codeword encoding 𝑟̅𝑟𝑇𝑇 �𝑏𝑏
and agrees on revealed
columns

Naive Approach: �𝑂𝑂 𝑇𝑇2 time & �𝑂𝑂 𝑇𝑇2 space.

Main Challenge: How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?
Size of A: �𝑂𝑂 𝑇𝑇 × �𝑂𝑂(𝑇𝑇)

Size of r: �𝑂𝑂 𝑇𝑇

39

�𝑞𝑞 = Encoding of 𝑟̅𝑟𝑇𝑇𝐴𝐴�𝑤𝑤

How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?

𝑇𝑇

𝑟𝑟

𝑟𝑟 requires 𝑂𝑂(𝑇𝑇) space!

40

How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?

𝑇𝑇

𝑟𝑟

• Generate 𝑟𝑟 from a seed

• Required space: �𝑂𝑂(1)

𝑟𝑟 requires 𝑂𝑂(𝑇𝑇) space!

41

How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?

𝑇𝑇

𝑟𝑟 𝐴𝐴 𝐴𝐴 is a large matrix!

• Generate r from a seed

• Required space: �𝑂𝑂(1)

𝑟𝑟 requires 𝑂𝑂(𝑇𝑇) space!

𝑇𝑇

𝑇𝑇

42

How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?

𝑇𝑇

𝑟𝑟 𝐴𝐴 𝐴𝐴 is a large matrix!

• Generate r from a seed

• Required space: �𝑂𝑂(1)

• 𝐴𝐴 is sparse and structured

𝑟𝑟 requires 𝑂𝑂(𝑇𝑇) space!

𝑇𝑇

𝑇𝑇

42

How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?

𝑇𝑇

𝑟𝑟 𝐴𝐴 𝐴𝐴 is a large matrix!

• Generate r from a seed

• Required space: �𝑂𝑂(1)

• 𝐴𝐴 is sparse and structured

• [BCGT13] Uniform RAM
machine => Succinct Circuit =>
Succinct matrix

𝑟𝑟 requires 𝑂𝑂(𝑇𝑇) space!

𝑇𝑇

𝑇𝑇

43

How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?

𝑇𝑇

𝑟𝑟 𝐴𝐴 𝐴𝐴 is a large matrix!

• Generate r from a seed

• Required space: �𝑂𝑂(1)

• 𝐴𝐴 is sparse and structured

• [BCGT13] Uniform RAM
machine => Succinct Circuit =>
Succinct matrix

• Non-zero elements in each
column can be computed in
�𝑂𝑂(1) time without storing 𝐴𝐴.

𝑟𝑟 requires 𝑂𝑂(𝑇𝑇) space!

𝑇𝑇

𝑇𝑇

44

How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?

𝑇𝑇

𝑟𝑟 𝐴𝐴 𝐴𝐴 is a large matrix!

• Generate r from a seed

• Required space: �𝑂𝑂(1)

• 𝐴𝐴 is sparse and structured

• [BCGT13] Uniform RAM
machine => Succinct Circuit =>
Succinct matrix

• Non-zero elements in each
column can be computed in
�𝑂𝑂(1) time without storing 𝐴𝐴.

𝑟𝑟 requires 𝑂𝑂(𝑇𝑇) space!

𝑇𝑇

𝑇𝑇

Hence 𝑟𝑟𝑇𝑇𝐴𝐴 can be computed row-by-row in
time �𝑂𝑂(𝑇𝑇) and space �𝑂𝑂(𝑆𝑆) 45

How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?

𝑇𝑇

𝑟𝑟 𝐴𝐴 𝐴𝐴 is a large matrix!

• Generate r from a seed

• Required space: �𝑂𝑂(1)

• 𝐴𝐴 is sparse and structured

• [BCGT13] Uniform RAM
machine => Succinct Circuit =>
Succinct matrix

• Non-zero elements in each
column can be computed in
�𝑂𝑂(1) time without storing 𝐴𝐴.

𝑟𝑟 requires 𝑂𝑂(𝑇𝑇) space!

𝑇𝑇

𝑇𝑇

P is complexity-preserving.
Hence 𝑟𝑟𝑇𝑇𝐴𝐴 can be computed row-by-row in

time �𝑂𝑂(𝑇𝑇) and space �𝑂𝑂(𝑆𝑆) 46

Main Result – Lower Bound*
Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine
running in time 𝑻𝑻 and space 𝑺𝑺 ∃ public-coin (ZK) arg. with soundness 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒌𝒌 such
that:

where the CRH is used in a black-box way and �𝑶𝑶 ignores 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥 𝑻𝑻 ,𝒌𝒌

Complexity
preserving

Sublinear

�𝑶𝑶 𝑻𝑻

�𝑶𝑶 𝟏𝟏

�𝑶𝑶 𝑻𝑻
𝑺𝑺

P

V

Time Space

�𝑶𝑶 𝑺𝑺

�𝑶𝑶 𝑻𝑻
𝑺𝑺

+ 𝑺𝑺

Proof Length is

Our lower bound shows
why it’s hard to further

improve the proof length.

62

RAM Transcript Encoded
Transcript

Size 𝑇𝑇Time 𝑇𝑇
Space 𝑆𝑆 Using Codes with

Constant Relative
Distance

Current Techniques*: Most ZK-SNARKs rely on
Codes…

49

RAM Transcript Encoded
Transcript

Size 𝑇𝑇Time 𝑇𝑇
Space 𝑆𝑆 Using Codes with

Constant Relative
Distance

Current Techniques*: Most ZK-SNARKs rely on
Codes…

49

“Lower bound” on
the encoding

algorithm
provides evidence

RAM Transcript Encoded
Transcript

Size 𝑇𝑇Time 𝑇𝑇
Space 𝑆𝑆 Using Codes with

Constant Relative
Distance

Current Techniques*: Most ZK-SNARKs rely on
Codes…

49

“Hard” to reduce
the proof length

below �𝑂𝑂 𝑇𝑇
𝑆𝑆

“Lower bound” on
the encoding

algorithm
provides evidence

Lower Bound*

Theorem: Let 𝐶𝐶 be [𝑛𝑛,𝑚𝑚, 𝛿𝛿𝛿𝛿] code over 𝔽𝔽 then any r-pass Encode
RAM algorithm requires space

𝑆𝑆 >
𝛿𝛿𝛿𝛿
𝑟𝑟

log 𝔽𝔽

50

Lower Bound*

Theorem: Let 𝐶𝐶 be [𝑛𝑛,𝑚𝑚, 𝛿𝛿𝛿𝛿] code over 𝔽𝔽 then any r-pass Encode
RAM algorithm requires space

𝑆𝑆 >
𝛿𝛿𝛿𝛿
𝑟𝑟

log 𝔽𝔽

[YRST02] Proved the lower bound for 1-pass algorithm

50

Lower Bound*

Theorem: Let 𝐶𝐶 be [𝑛𝑛,𝑚𝑚, 𝛿𝛿𝛿𝛿] code over 𝔽𝔽 then any r-pass Encode
RAM algorithm requires space

𝑆𝑆 >
𝛿𝛿𝛿𝛿
𝑟𝑟

log 𝔽𝔽

Setting 𝑛𝑛 = 𝑇𝑇 and 𝔽𝔽 = log𝑇𝑇 we get that 𝛿𝛿 < 𝑆𝑆�𝑟𝑟
𝑇𝑇�log 𝑇𝑇

=> Minimum number of oracle queries is �𝑂𝑂 1
𝛿𝛿

[YRST02] Proved the lower bound for 1-pass algorithm

= �𝑂𝑂 𝑇𝑇
𝑆𝑆

50

Summary
• First construction of complexity-preserving sublinear

(ZK) arguments from CRH in a black-box way

• Improving the communication will require new
techniques – i.e., getting around constant-distance
codes.

51

Additional Slides

Warmup Lower Bound
Simplifying assumptions:

1. Only one pass over the message
2. No work tape
3. Codeword head is independent of the contents of the message

52

Warmup Lower Bound

𝑛𝑛/𝑘𝑘 𝑛𝑛/𝑘𝑘 𝑛𝑛/𝑘𝑘

≤ 𝑚𝑚/𝑘𝑘

Simplifying assumptions:
1. Only one pass over the message
2. No work tape
3. Codeword head is independent of the contents of the message

53

	Complexity-Preserving Sublinear-Arguments�from Symmetric Key Primitives
	Succinct (ZK) Arguments [Kil99,Mic00]
	Main Question
	Main Question
	Main Question
	Main Question
	A SNARKy background
	A SNARKy background
	A SNARKy background
	A SNARKy background
	A SNARKy background
	A SNARKy background
	A SNARKy background
	A SNARKy background
	RAM Model
	Main Result – Upper Bound
	Main Result – Upper Bound
	Main Result – Upper Bound
	Main Result – Upper Bound
	Main Result – Upper Bound
	Main Result – Lower Bound*
	Ligero [AHIV17]�Proof Schematic
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	What about space-efficiency?
	What about space-efficiency?
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	What about space-efficiency of Row Aggregates?
	Slide Number 49
	Linear gates were correct
	Linear gates were correct
	Linear gates were correct
	Linear gates were correct
	How to compute 𝑟 𝑇 𝐴 efficiently?
	How to compute 𝑟 𝑇 𝐴 efficiently?
	How to compute 𝑟 𝑇 𝐴 efficiently?
	How to compute 𝑟 𝑇 𝐴 efficiently?
	How to compute 𝑟 𝑇 𝐴 efficiently?
	How to compute 𝑟 𝑇 𝐴 efficiently?
	How to compute 𝑟 𝑇 𝐴 efficiently?
	How to compute 𝑟 𝑇 𝐴 efficiently?
	Main Result – Lower Bound*
	Current Techniques*: Most ZK-SNARKs rely on Codes…
	Current Techniques*: Most ZK-SNARKs rely on Codes…
	Current Techniques*: Most ZK-SNARKs rely on Codes…
	Lower Bound*
	Lower Bound*
	Lower Bound*
	Summary
	Additional Slides
	Warmup Lower Bound
	Warmup Lower Bound

