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Succinct (ZK) Arguments [Kil99,Mic00]

P V
Given a language 𝐿𝐿

Accepts or 
Rejects

Completeness: ∀𝑥𝑥 ∈ 𝐿𝐿, 𝑃𝑃,𝑉𝑉 (𝑥𝑥) = 1 w.p. 1

Soundness: ∀𝑥𝑥 ∉ 𝐿𝐿,∀ PPT 𝑃𝑃∗, 𝑃𝑃∗,𝑉𝑉 (𝑥𝑥) = 1 w.p. ≤ 1
2
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘

cc = 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥 𝒙𝒙 ,𝒌𝒌

Zero-knowledge: ∀𝑥𝑥 ∈ 𝐿𝐿,∀PPT 𝑉𝑉∗, ∃ PPT 𝑆𝑆, s.t.

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑉𝑉∗ 𝑃𝑃,𝑉𝑉∗ (𝑥𝑥) ≈ 𝑆𝑆(𝑥𝑥) 2



Main Question
Do there exist complexity-preserving public-coin

succinct* arguments for NP from minimal assumptions?
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Time-preserving
Space-preserving

Complexity-
preserving
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Main Question
Do there exist complexity-preserving public-coin

succinct* arguments for NP from minimal assumptions?

This Talk YES*
* sublinear

• Succinct* vs Non-succinct
• Interactive vs Non-interactive
• Trusted setup vs No setup (transparent)
• ZK vs (only) Integrity
• Public-Key Crypto vs (only) Symmetric-Key 

Crypto

Time-preserving
Space-preserving

Complexity-
preserving
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1992: Sublinear ZK for NP [Kil92]
2000: CSProofs [Mic00]
2007: IKO [IKO07], IVC [V07]
2008: IVC [Val08]
2010: Short-PB-NIZKA [Groth10], Preprocessing-Verifiable-Computation [GGP10]
2012: QSP [GGPR12], EfficientPCP [IMS12], Succinct-NIArgs-LIP [BCIOP12]
2013: Pinocchio [PGHR13], SNARKs-for-C [BCGTV13], ZK-vonNeumann [BCTV13]
2014: Geppetto [CFHKKNPZ14], CyclesOfCurves [BCTV14]
2015: IP4Muggles [GKR15], SNARKs-for-MapReduce [CTV15]
2016: ZKBoo [GMO16], BulletproofsPrequel [BCCGP16], Groth16 [Groth16], HybIntZK [CGM16]
2017: Ligero (AHIV17), ZKB++ and Picnic [CDGORRSZ17] (discuss alongside ZKBoo), Hyrax [WTsTW], zk-vSQL [ZGKPP17] (can add to existing 
vSQL section), Bulletproofs [BBBPWM17], SnarkySigs [GM17]
2018: Aurora [BCRSVW18], FRI [BBHR18], ZKStarks [BBHR18], Picnic2 [KKW18], vRAM [ZGKPP18], DIZK [WZCPS18], UpdatableNIZK [GKMM18]
, HybNIZK [AGM18]
2019: Fractal [COS19], Halo [BGH19], Plonk [GWC19], RedShift [KPV19], Spartan [Setty19], DeepFRI [BGKS19], LatticeZKPs [ESLL19], Subversio
nResistant [Bag19], Darks [BFS19], LatticeSnarkArithmetic [Nit19], ZKPSetMembership [BCFGD19]
2020: HaloInfinite [BDFG20], Quarks (Xiphos and Kopis) [SL20], Dory [Lee20], 
Wolverine [WYKW20], Bulletproofs+ [CHJKS20], SPARKS [EFKP20], Plookup [GW20], SuperSonic [BFS20], CompressedSigma [AC20], LatticeZKv
iaOTC [LKS20], GeneralizedCompressedSigma [ACR20], PVZKfromBlockchain [SSV20], LinePointZK [DIO20], PublicCoinZKTime&Space [BHRRS2
0], Dory [Lee20], DoublyEfficientIP [ZLWZSXZ20], PqSnarks4Rsis-Rlwe [BCOS20], ZAPsAlgebraicLangs [CH20]
2021: Manta [CXZ21], Nova [KST21], Rinocchio [GNS21], Limbo [DGOT21], QuickSilver [YSWW21], Limbo [GOT21], IntRange [CKLR21], Subexp
DDH [JJ21], Cerberus [LSTW21], ConstOverZKRamProgs [FKLOW21]
2022: NIZK Multiple Verifiers [YW22], Feta [BJOSS22], gOTzilla [BCGHM22], ZK UNSAT [LAHPTW22]
Credits: ZKProof.org

A SNARKy background
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A SNARKy background
(Uniform) RAM program that takes time T and uses space S
• Succinct
• Public-coin or publicly verifiable
• Time-preserving
• Space-preserving
• “Black-box” in the underlying assumption
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A SNARKy background
(Uniform) RAM program that takes time T and uses space S
• Succinct
• Public-coin or publicly verifiable
• Time-preserving
• Space-preserving
• “Black-box” in the underlying assumption

[BC12] Designated Verifier Sublinear Arguments
[HR18] Non-interactive Sublinear Arguments
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A SNARKy background
(Uniform) RAM program that takes time T and uses space S
• Succinct
• Public-coin or publicly verifiable
• Time-preserving
• Space-preserving
• “Black-box” in the underlying assumption

[WTSTW18,XZZPS19,S20,SL20,KMP20,BCG20a,BCG20,…]
All require Prover to use space proportional to T!
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A SNARKy background
(Uniform) RAM program that takes time T and uses space S
• Succinct
• Public-coin or publicly verifiable
• Time-preserving
• Space-preserving
• “Black-box” in the underlying assumption

[Val08,BCCT13] Complexity preserving via recursive composition
[EFKP20] SNARKs for parallel RAM comp. using CRH and SNARKs
[BGH21,BCMS20,COS20] “Heuristic” assumptions
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A SNARKy background
(Uniform) RAM program that takes time T and uses space S
• Succinct
• Public-coin or publicly verifiable
• Time-preserving
• Space-preserving
• “Black-box” in the underlying assumption

[BBHR18,BFHVXZ20] *Folklore
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A SNARKy background
(Uniform) RAM program that takes time T and uses space S
• Succinct
• Public-coin or publicly verifiable
• Time-preserving
• Space-preserving
• “Black-box” in the underlying assumption

[BHRRS20] Based on hardness of discrete log
[BHRRS21] Based on hardness assumptions on hidden order groups

Main Question: Can we get based on symmetric cryptography?
14



RAM Model

(Uniform) RAM program M(x,w) 
• Runs in time T(|x|) 
• Uses space S(|x|)
• It is of constant size

P

V

Modelled 
as a RAM

has 𝑥𝑥,𝑤𝑤 on (two) input tapes with linear access.

has 𝑥𝑥 on input tape with linear access. 15

Space = Size of work tape



Main Result – Upper Bound
Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine 
running in time 𝑻𝑻 and space 𝑺𝑺 ∃ public-coin (ZK) arg. with soundness 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒌𝒌 such 
that:

where the CRH is used in a black-box way and �𝑶𝑶 ignores 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥 𝑻𝑻 ,𝒌𝒌

�𝑶𝑶 𝑻𝑻P

Time Space

�𝑶𝑶 𝑺𝑺
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Complexity 
preserving

�𝑶𝑶 𝑻𝑻P

Time Space

�𝑶𝑶 𝑺𝑺
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Main Result – Upper Bound
Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine 
running in time 𝑻𝑻 and space 𝑺𝑺 ∃ public-coin (ZK) arg. with soundness 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒌𝒌 such 
that:

where the CRH is used in a black-box way and �𝑶𝑶 ignores 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥 𝑻𝑻 ,𝒌𝒌

Complexity 
preserving

�𝑶𝑶 𝑻𝑻

�𝑶𝑶 𝟏𝟏

P

V

Time Space

�𝑶𝑶 𝑺𝑺

�𝑶𝑶 𝑻𝑻
𝑺𝑺

+ 𝑺𝑺
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Main Result – Upper Bound
Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine 
running in time 𝑻𝑻 and space 𝑺𝑺 ∃ public-coin (ZK) arg. with soundness 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒌𝒌 such 
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Complexity 
preserving

�𝑶𝑶 𝑻𝑻

�𝑶𝑶 𝟏𝟏

�𝑶𝑶 𝑻𝑻
𝑺𝑺

P

V

Time Space

�𝑶𝑶 𝑺𝑺

�𝑶𝑶 𝑻𝑻
𝑺𝑺

+ 𝑺𝑺

Proof Length is
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Main Result – Upper Bound
Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine 
running in time 𝑻𝑻 and space 𝑺𝑺 ∃ public-coin (ZK) arg. with soundness 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒌𝒌 such 
that:

where the CRH is used in a black-box way and �𝑶𝑶 ignores 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥 𝑻𝑻 ,𝒌𝒌

Complexity 
preserving

Sublinear

�𝑶𝑶 𝑻𝑻

�𝑶𝑶 𝟏𝟏

�𝑶𝑶 𝑻𝑻
𝑺𝑺

P

V

Time Space

�𝑶𝑶 𝑺𝑺

�𝑶𝑶 𝑻𝑻
𝑺𝑺

+ 𝑺𝑺

Proof Length is
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Main Result – Lower Bound*
Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine 
running in time 𝑻𝑻 and space 𝑺𝑺 ∃ public-coin (ZK) arg. with soundness 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒌𝒌 such 
that:

where the CRH is used in a black-box way and �𝑶𝑶 ignores 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥 𝑻𝑻 ,𝒌𝒌

Complexity 
preserving

Sublinear

�𝑶𝑶 𝑻𝑻

�𝑶𝑶 𝟏𝟏

�𝑶𝑶 𝑻𝑻
𝑺𝑺

P

V

Time Space

�𝑶𝑶 𝑺𝑺

�𝑶𝑶 𝑻𝑻
𝑺𝑺

+ 𝑺𝑺

Proof Length is

Our lower bound shows 
why it’s hard to further 

improve the proof length.
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Ligero [AHIV17]
Proof Schematic
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Given a circuit 𝐶𝐶
Prove that ∃𝑧𝑧, such that 𝐶𝐶 𝑧𝑧 = 1

23



Extended witness �𝑤𝑤
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𝑎𝑎

𝑏𝑏

𝑎𝑎 � 𝑏𝑏 ≥ 𝑋𝑋 � #𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Extended witness �𝑤𝑤

ith row �𝑤𝑤𝑖𝑖
is ith chunk of �𝑤𝑤

ith chunk
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ENCODE

P V
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Root(    )

P V

Compute Merkle 
Root
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𝑓𝑓1,𝑓𝑓2,𝑓𝑓3, …

Root(    )

Row-wise

P V

Compute Merkle 
Root

Compute Row 
Aggregates Row Aggregates
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P V

Root(    )

𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3, …

𝑓𝑓1,𝑓𝑓2,𝑓𝑓3, …

Opened 
Columns

Auth. 
paths

Compute Merkle 
Root

Compute Row 
Aggregates

Decommit 
Columns

Column-wise
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P V

Root(    )

𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3, …

Proof Length:
O 𝑏𝑏 + 𝜅𝜅 � 𝑎𝑎
Prover Computation:
O 𝑎𝑎 FFTs of O 𝑏𝑏

Set 𝑎𝑎 = 𝑇𝑇/𝑆𝑆 and 𝑏𝑏 = 𝑆𝑆

𝑓𝑓1,𝑓𝑓2,𝑓𝑓3, …

Opened 
Columns

Auth. 
paths

Compute Merkle 
Root

Compute Row 
Aggregates

Decommit 
Columns

Column-wise
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P V

Root(    )

𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3, …

𝑓𝑓1,𝑓𝑓2,𝑓𝑓3, …

Compute Merkle 
Root

Compute Row 
Aggregates

Decommit 
Columns

Proof Length:
�O 𝑇𝑇

𝑆𝑆
+ 𝑆𝑆

Prover Computation:
�𝑶𝑶 𝑇𝑇

Set 𝑎𝑎 = 𝑇𝑇/𝑆𝑆 and 𝑏𝑏 = 𝑆𝑆
31



What about space-efficiency?
𝑂𝑂 𝑆𝑆 space if the 

matrix can be 
computed row by row 

Compute Row Aggregates

Decommit Columns

Compute Merkle Root

33



What about space-efficiency?
𝑂𝑂 𝑆𝑆 space if the 

matrix can be 
computed row by row 

Compute Row Aggregates

Decommit Columns

Compute Merkle Root

33

[BCGT13] RAM program => succinct circuits 
=> Transcript generated in time T and space S



Computing Merkle Root Space Efficiently
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Computing Merkle Root Space Efficiently
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What about space-efficiency of Row Aggregates?
Code test - the prover encoded
each row correctly

Quadratic test - the prover 
computed multiplication gates 
correctly

Linear test - the prover computed 
“linear” gates correctly

Compute Merkle Root

Decommit Columns

Row Aggregate

Compute Row Aggregates
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Code test - the prover encoded
each row correctly

Quadratic test - the prover 
computed multiplication gates 
correctly

Linear test - the prover computed 
“linear” gates correctly

Compute Merkle Root

Decommit Columns

Row Aggregate

Compute Row Aggregates

35

What about space-efficiency of Row Aggregates?



Linear gates were correct
Linear constraints can be expressed as 𝐴𝐴�𝑤𝑤 = �𝑏𝑏

P V
𝑟̅𝑟 Check if �𝑞𝑞 is a valid 

codeword encoding 𝑟̅𝑟𝑇𝑇 �𝑏𝑏
and agrees on revealed 
columns

36

�𝑞𝑞 = Encoding of 𝑟̅𝑟𝑇𝑇𝐴𝐴�𝑤𝑤



Linear gates were correct
Linear constraints can be expressed as 𝐴𝐴�𝑤𝑤 = �𝑏𝑏

P V
𝑟̅𝑟

�𝑞𝑞 = Encoding of 𝑟̅𝑟𝑇𝑇𝐴𝐴�𝑤𝑤

Check if �𝑞𝑞 is a valid 
codeword encoding 𝑟̅𝑟𝑇𝑇 �𝑏𝑏
and agrees on revealed 
columns

Main Challenge: How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?
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Linear gates were correct
Linear constraints can be expressed as 𝐴𝐴�𝑤𝑤 = �𝑏𝑏

P V
𝑟̅𝑟 Check if �𝑞𝑞 is a valid 

codeword encoding 𝑟̅𝑟𝑇𝑇 �𝑏𝑏
and agrees on revealed 
columns

Main Challenge: How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?
Size of A: �𝑂𝑂 𝑇𝑇 × �𝑂𝑂(𝑇𝑇)

Size of r: �𝑂𝑂 𝑇𝑇
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Linear gates were correct
Linear constraints can be expressed as 𝐴𝐴�𝑤𝑤 = �𝑏𝑏

P V
𝑟̅𝑟 Check if �𝑞𝑞 is a valid 

codeword encoding 𝑟̅𝑟𝑇𝑇 �𝑏𝑏
and agrees on revealed 
columns

Naive Approach: �𝑂𝑂 𝑇𝑇2 time & �𝑂𝑂 𝑇𝑇2 space.

Main Challenge: How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?
Size of A: �𝑂𝑂 𝑇𝑇 × �𝑂𝑂(𝑇𝑇)

Size of r: �𝑂𝑂 𝑇𝑇
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How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?

𝑇𝑇

𝑟𝑟

𝑟𝑟 requires 𝑂𝑂(𝑇𝑇) space!
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How to compute 𝑟̅𝑟𝑇𝑇𝐴𝐴 efficiently?

𝑇𝑇

𝑟𝑟

• Generate 𝑟𝑟 from a seed

• Required space: �𝑂𝑂(1)

𝑟𝑟 requires 𝑂𝑂(𝑇𝑇) space!
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Main Result – Lower Bound*
Theorem: Assume CRH exists. ∀ NP language verified by a uniform RAM machine 
running in time 𝑻𝑻 and space 𝑺𝑺 ∃ public-coin (ZK) arg. with soundness 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒌𝒌 such 
that:

where the CRH is used in a black-box way and �𝑶𝑶 ignores 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥 𝑻𝑻 ,𝒌𝒌

Complexity 
preserving

Sublinear

�𝑶𝑶 𝑻𝑻

�𝑶𝑶 𝟏𝟏

�𝑶𝑶 𝑻𝑻
𝑺𝑺

P

V

Time Space

�𝑶𝑶 𝑺𝑺

�𝑶𝑶 𝑻𝑻
𝑺𝑺

+ 𝑺𝑺

Proof Length is

Our lower bound shows 
why it’s hard to further 

improve the proof length.
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RAM Transcript Encoded
Transcript

Size 𝑇𝑇Time 𝑇𝑇
Space 𝑆𝑆 Using Codes with 

Constant Relative 
Distance

Current Techniques*: Most ZK-SNARKs rely on 
Codes…
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Lower Bound*

Theorem: Let 𝐶𝐶 be [𝑛𝑛,𝑚𝑚, 𝛿𝛿𝛿𝛿] code over 𝔽𝔽 then any r-pass Encode 
RAM algorithm requires space

𝑆𝑆 >
𝛿𝛿𝛿𝛿
𝑟𝑟

log 𝔽𝔽
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Lower Bound*

Theorem: Let 𝐶𝐶 be [𝑛𝑛,𝑚𝑚, 𝛿𝛿𝛿𝛿] code over 𝔽𝔽 then any r-pass Encode 
RAM algorithm requires space

𝑆𝑆 >
𝛿𝛿𝛿𝛿
𝑟𝑟

log 𝔽𝔽

Setting 𝑛𝑛 = 𝑇𝑇 and 𝔽𝔽 = log𝑇𝑇 we get that 𝛿𝛿 < 𝑆𝑆�𝑟𝑟
𝑇𝑇�log 𝑇𝑇

=> Minimum number of oracle queries is �𝑂𝑂 1
𝛿𝛿

[YRST02] Proved the lower bound for 1-pass algorithm

= �𝑂𝑂 𝑇𝑇
𝑆𝑆
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Summary
• First construction of complexity-preserving sublinear 

(ZK) arguments from CRH in a black-box way

• Improving the communication will require new
techniques – i.e., getting around constant-distance 
codes.
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Additional Slides



Warmup Lower Bound
Simplifying assumptions:

1. Only one pass over the message
2. No work tape
3. Codeword head is independent of the contents of the message
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Warmup Lower Bound

𝑛𝑛/𝑘𝑘 𝑛𝑛/𝑘𝑘 𝑛𝑛/𝑘𝑘

≤ 𝑚𝑚/𝑘𝑘

Simplifying assumptions:
1. Only one pass over the message
2. No work tape
3. Codeword head is independent of the contents of the message
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