Complexity-Preserving Sublinear-

Arguments
from Symmetric Key Primitives
Laasya Bangalore Rishabh Bhadauria
Muthu Venkitasubramaniam 4[LIGERO } Carmit Hazay
Georgetown University Bar-llan University

GEORGETOWN_ UNIVERSITY

Succinct (ZK) Arguments [Kil99,MicO0]

Given a language L

)
= poly(log|x| , k) Accepts or
P A CTPR R V \[Rejects }
ey
Completeness: Vx €L, (P,V)(x) =1w.p.1
Soundness: Vx & L,V PPT P*, (P*,V)(x) = 1 w.p. < negl(k)

Zero-knowledge: Vx € L,VPPTV™, 3 PPTS, s.t.
{viewy+(P,V*)(x)} = {S(x)} 2

Main Question

Do there exist complexity-preserving public-coin
succinct* arguments for NP from minimal assumptions?

Main Question

Do there exist complexity-preserving public-coin
succinct* arguments for NP from minimal assumptions?

This Talk YES*

* sublinear

Main Question

Do there exist complexity-preserving public-coin
succinct* arguments for NP from minimal assumptions?

This Talk YES*

* sublinear

Complexity-
preserving

Time-preserving
Space-preserving

Taxonomy of Arguments

Main Question

Do there exist complexity-preserving public-coin
succinct* arguments for NP from minimal assumptions?

This Talk

Succinct® vs Non-succinct

Interactive vs Non-interactive

Trusted setup vs No setup (transparent)
/K vs (only) Integrity

Public-Key Crypto vs (only) Symmetric-Key
Crypto

YES*

* sublinear

Complexity-
preserving

Time-preserving
Space-preserving

A SNARKy background

1992: Sublinear ZK for NP [Kil92]

2000: CSProofs [Mic00]

2007: IKO [IKOO07], IVC [V07]

2008: |\VC [Val08]

2010: Short-PB-NIZKA [Groth10], Preprocessing-Verifiable-Computation [GGP10]

2012: QSP [GGPR12], EfficientPCP [IMS12], Succinct-NIArgs-LIP [BCIOP12]

2013: Pinocchio [PGHR13], SNARKs-for-C [BCGTV13], ZK-vonNeumann [BCTV13]

2014: Geppetto [CFHKKNPZ14], CyclesOfCurves [BCTV14]

2015: IP4AMuggles [GKR15], SNARKs-for-MapReduce [CTV15]

2016: ZKBoo [GMO16], BulletproofsPrequel [BCCGP16], Groth16 [Groth16], HybIntZK [CGM16]

2017: Ligero (AHIV17), ZKB++ and Picnic [CDGORRSZ17] (discuss alongside ZKBoo), Hyrax [WTsTW], zk-vSQL [ZGKPP17] (can add to existing
vSQL section), Bulletproofs [BBBPWM17], SnarkySigs [GM17]

2018: Aurora [BCRSVW18], FRI [BBHR18], ZKStarks [BBHR18], Picnic2 [KKW18], vRAM [ZGKPP18], DIZK [WZCPS18], UpdatableNIZK [GKMM18]
, HYbNIZK [AGM 18]

2019: Fractal [COS19], Halo [BGH19], Plonk [GWC19], RedShift [KPV19], Spartan [Setty19], DeepFRI [BGKS19], LatticeZKPs [ESLL19], Subversio
nResistant [Bag19], Darks [BFS19], LatticeSnarkArithmetic [Nit19], ZKPSetMembership [BCFGD19]

2020: Halolnfinite [BDFG20], Quarks (Xiphos and Kopis) [SL20], Dory [Lee20],

Wolverine [WYKW20], Bulletproofs+ [CHIKS20], SPARKS [EFKP20], Plookup [GW20], SuperSonic [BFS20], CompressedSigma [AC20], LatticeZKv
iaOTC [LKS20], GeneralizedCompressedSigma [ACR20], PVZKfromBlockchain [SSV20], LinePointZK [DI020], PublicCoinZKTime&Space [BHRRS2
0], Dory [Lee20], DoublyEfficientIP [ZLWZSXZ20], PgSnarks4Rsis-Rlwe [BCOS20], ZAPsAlgebraicLangs [CH20]

2021: Manta [CXZ21], Nova [KST21], Rinocchio [GNS21], Limbo [DGOT21], QuickSilver [YSWW?21], Limbo [GOT21], IntRange [CKLR21], Subexp
DDH [JJ21], Cerberus [LSTW21], ConstOverZKRamProgs [FKLOW21]

2022: NIZK Multiple Verifiers [YW22], Feta [BJOSS22], gOTzilla [BCGHM22], ZK UNSAT [LAHPTW22]

Credits: ZKProof.org 7

https://web.cs.ucla.edu/%7Erafail/PUBLIC/79.pdf
https://web.cs.ucla.edu/%7Erafail/PUBLIC/79.pdf
https://web.cs.ucla.edu/%7Erafail/PUBLIC/79.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/38663/163581090-MIT.pdf
https://web.cs.ucla.edu/%7Erafail/PUBLIC/79.pdf
https://www.iacr.org/archive/asiacrypt2010/6477323/6477323.pdf
https://ia.cr/2009/547
https://ia.cr/2012/215
https://doi.org/10.1007/978-3-642-28914-9_9
https://ia.cr/2012/718
https://ia.cr/2013/279
https://ia.cr/2013/507
https://ia.cr/2013/879
https://ia.cr/2014/976
https://ia.cr/2014/595
https://eccc.weizmann.ac.il/report/2017/108/
https://ia.cr/2015/377
https://ia.cr/2016/163
https://ia.cr/2016/263
https://ia.cr/2016/260
https://ia.cr/2016/583
https://acmccs.github.io/papers/p2087-amesA.pdf
https://ia.cr/2017/279
https://ia.cr/2017/1132
https://ia.cr/2017/1146
https://ia.cr/2017/1066
https://ia.cr/2017/540
https://ia.cr/2018/828
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://ia.cr/2018/046
https://ia.cr/2018/475
https://doi.org/10.1109/SP.2018.00013
https://ia.cr/2018/691
https://ia.cr/2018/280
https://ia.cr/2018/557
https://ia.cr/2019/1076
https://ia.cr/2019/1021
https://ia.cr/2019/953
https://ia.cr/2019/1400
https://ia.cr/2019/550
https://arxiv.org/abs/1903.12243
https://ia.cr/2019/445
https://ia.cr/2019/1162
https://ia.cr/2019/1229
https://ia.cr/2019/1251
https://ia.cr/2019/1255
https://ia.cr/2020/1536
https://ia.cr/2020/1275
https://ia.cr/2020/1274
https://ia.cr/2020/925
https://ia.cr/2020/735
https://ia.cr/2020/994
https://ia.cr/2020/315
https://ia.cr/2019/1229
https://ia.cr/2020/152
https://ia.cr/2020/1448
https://ia.cr/2020/1447
https://ia.cr/2020/1435
https://ia.cr/2020/1446
https://ia.cr/2020/1425
https://ia.cr/2020/1274
https://ia.cr/2020/1247
https://ia.cr/2020/1190
https://ia.cr/2020/286
https://ia.cr/2021/743
https://ia.cr/2021/370
https://ia.cr/2021/322
https://ia.cr/2021/215
https://ia.cr/2021/076
https://ia.cr/2021/215
https://ia.cr/2021/540
https://ia.cr/2021/514
https://ia.cr/2021/030
https://ia.cr/2021/979
https://ia.cr/2022/063
https://ia.cr/2022/082
https://ia.cr/2022/170
https://ia.cr/2022/206

A SNARKy background

(Uniform) RAM program that takes time T and uses space S
* Succinct

* Public-coin or publicly verifiable

* Time-preserving

* Space-preserving

* “Black-box” in the underlying assumption

A SNARKy background

(Uniform) RAM program that takes time T and uses space S
* Succinct
X Public-coin or publicly verifiable
* Time-preserving
* Space-preserving
* “Black-box” in the underlying assumption

P
[BC12] Designated Verifier Sublinear Arguments
\[HR18] Non-interactive Sublinear Arguments

A SNARKy background

(Uniform) RAM program that takes time T and uses space S
* Succinct

* Public-coin or publicly verifiable
* Time-preserving
X * Space-preserving
* “Black-box” in the underlying assumption

-
[WTSTW18,XZZP519,520,5L20,KMP20,BCG20a,BCG20,...]

\AII require Prover to use space proportional to T!

10

A SNARKy background

(Uniform) RAM program that takes time T and uses space S

* Succinct

* Public-coin or publicly verifiable

* Time-preserving

* Space-preserving
>+ “Black-box” in the underlying assumption
4 N
Val08,BCCT13] Complexity preserving via recursive composition
EFKP20] SNARKSs for parallel RAM comp. using CRH and SNARKSs
k:BGH21,BCI\/ISZO,COSZO] “Heuristic” assumptions

/

11

A SNARKy background

(Uniform) RAM program that takes time T and uses space S
* Succinct
* Public-coin or publicly verifiable
) & Time-preserving
* Space-preserving
* “Black-box” in the underlying assumption

{[BBHRIS,BFHVXZZO] *Folklore

12

A SNARKy background

(Uniform) RAM program that takes time T and uses space S
\/ * Succinct
/' * Public-coin or publicly verifiable
\/ * Time-preserving
\/ * Space-preserving
/ * “Black-box” in the underlying assumption

s ™
IBHRRS20] Based on hardness of discrete log

IBHRRS21] Based on hardness assumptions on hidden order groups
\ Y

13

A SNARKy background

(Uniform) RAM program that takes time T and uses space S
\/ * Succinct
/' * Public-coin or publicly verifiable
\/ * Time-preserving
\/ * Space-preserving
/ * “Black-box” in the underlying assumption

~ A
[BHRRS20] Based on hardness of discrete log

IBHRRS21] Based on hardness assumptions on hidden order groups
_ J

Main Question: Can we get based on symmetric cryptography?
14

RAM Model

100|000 ®|® ®| nput Tape - Linear Access

/—J% Work Tape - RAM Access

Space = Size of work tape

(Uniform) RAM program M(x,w)

 Runsintime T(]|x])
e Uses space S(|x|)
* |tis of constant size

Modelled
as a RAM

has X, W on (two) input tapes with linear access.

has X on input tape with linear access. 15

Main Result — Upper Bound

Theorem: Assume CRH exists. V NP language verified by a uniform RAM machine
running in time T and space S 3 public-coin (ZK) arg. with soundness negl (k) such

that:
Time Space

P o(T) 0(S)

where the CRH is used in a black-box way and O() ignores poly(log(T), k) 16

Main Result — Upper Bound

Theorem: Assume CRH exists. V NP language verified by a uniform RAM machine
running in time T and space S 3 public-coin (ZK) arg. with soundness negl (k) such

that:
Time Space

Complexity
preserving

P 0(T) 0(S)

where the CRH is used in a black-box way and O() ignores poly(log(T), k) 17

Main Result — Upper Bound

Theorem: Assume CRH exists. V NP language verified by a uniform RAM machine
running in time T and space S 3 public-coin (ZK) arg. with soundness negl (k) such

that:
Time Space

\Y; 0(5+S) 0(1)

where the CRH is used in a black-box way and O() ignores poly(log(T), k) 18

Main Result — Upper Bound

Theorem: Assume CRH exists. V NP language verified by a uniform RAM machine
running in time T and space S 3 public-coin (ZK) arg. with soundness negl (k) such

that:
Time Space

\Y; 0(5+S) 0(1)

Proof Length is O G)

where the CRH is used in a black-box way and O() ignores poly(log(T), k) 19

Main Result — Upper Bound

Theorem: Assume CRH exists. V NP language verified by a uniform RAM machine
running in time T and space S 3 public-coin (ZK) arg. with soundness negl (k) such

that:
Time Space

\Y; 0(5+S) 0(1)

Sublinear

Proof Length is O G)

—

where the CRH is used in a black-box way and O() ignores poly(log(T), k) 20

Main Result — Lower Bound™

Theorem: Assume CRH exists. V NP language verified by a uniform RAM machine
running in time T and space S 3 public-coin (ZK) arg. with soundness negl (k) such
that:

Time Space
4 N
Our lower bound shows
5 (Z . 5) why it’s hard to further
v S Aimprove the proof length.

Proof Length is O G)

where the CRH is used in a black-box way and O() ignores poly(log(T), k) 51

Ligero [AHIV1/]
Proof Schematic

&)
ot
-
O
=
O
©
c
)
2
O

aANVN ’
anw 'l-

23

Prove that 3z, suchthat C(z) = 1

)

aNYN

aNYN

Extended witnhess w

24

Extended witnhess w

ith chunk

is ith chunk of w

it row w;

—

_

= X - #gates

A

) S

v

a-b

25

26

000000
(060 000 0 0]

(000000 0]
(060600 00 o]

~ 0 000 0 0 o)
(e 0 006 6 0 0
m_oooocoo_

(o6 0o 000 0 o)

(06 0o 00 0 0 o]
(o6 0o 0000 o]
(60 oo o 0 o)
000000

Ll

Compute Merkle
Root

27

Compute Merkle
Root

Compute Row
Aggregates

o 0o 00

®

®
e ¢ 0 0
o e o 0 0
e ¢ 0 0

f1 12 f3 -

* & @ - @
Row Aggregates

|

O(b)

@ ©o o @ @ @@ @0 00 0 0
@ e o @00 0 00 0 o
@ o d : | © o o
- | Row-wise F+9
® o
e o
e ©

() o U U U U U ® ©

®
06 o ® @@ ©® 0 0 00
@ o @@ ©® 0 0 00

28

Compute Merkle
Root

Compute Row
Aggregates

Decommit
Columns

o 0o 00

®

®
e ¢ 0 0
o e o 0 0
e ¢ 0 0

i

lcoq—uoo]
°

(0 o000 0 0

29

- _ — 0%)_ —
porn) = |[{LEILEE
—> o o _— Column-wise

R ER R e H R R E

Compute Merkle
Root ey
fli fZJ f3'
G
Compute Row | | /Proof Length: 2
Aggregates P l V O(b e a)
l1,12,13, ... Prover Computation:
Decommit G
Columns O(a) FFTs of O(b)
H H H 808
rermim (LT \Seta =T/Sandb =5 /

[Columns][paths

O(b)
[e e e 00| — o|[|[e)[=)[][=][=\[=|[=)[=)[][
o e ® —_— ol of| o||®|| o] ®||@||efe||le|e®
e o () —_— of of| oo e]|e] o of|e||e||e||®
e o o e o —_— of ol o|| ®| o @ o @ of|®|(®]||®
[] e ® o @ _— of ol o|| ®| o @ @ @ of|®|[®@]||®
o o ® 0o 0 _— ol ol ®off @] | @] @/ of| @||®|fe||®
e oo o o o _— ol o||o]|| ®| o] @ | of®||®|/e@]|l®

Compute Merkle ROOt(.)

Root —

Compute Row

Agaresates P MEEEEEE NN V /’Izro;)f Length: \
O(§+S)

Decommit — Prover Computation:
Columns 5(T)

(00000 0 0]
(00000 0 0]
(00000 0 0]

I \Seta =T/Sandb =5 /
31

What about space-efficiency?

0(S) space if the
(Compute Merkle Root} — matrix can be

computed row by row

Compute Row Aggregates

Decommit Columns

33

What about space-efficiency?

) B 0(S) space if the

(Compute Merkle RootJ ' matrix can be
computed row by row

Compute Row Aggregates IBCGT13] RAM program => succinct circuits

=> Transcript generated in time T and space S

Decommit Columns

33

Computing Merkle Root Space Efficiently

34

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

.................

32

Computing Merkle Root Space Efficiently

.................

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

.................
............

32

Computing Merkle Root Space Efficiently

""" 200000000009
® & o i

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

oooooooooooo

32

Computing Merkle Root Space Efficiently

32

Computing Merkle Root Space Efficiently

Computing Merkle Root Space Efficiently

«— S

S 84

Computing Merkle Root Space Efficiently

«— S

.....

® & o i
e @ o [
.....
® e & & @

.....

What about space-efficiency of Row Aggregates?

Code test - the prover encoded

Compute Merkle Root
each row correctly

Quadratic test - the prover
computed multiplication gates
correctly

Compute Row Aggregates -

Decommit Columns Linear test - the prover computed

“linear” gates correctly

e o 0 —_— (@

o000
o 00
[]
@]

r.

L]

e o @

e & 0 0
e e o 0 0
e o 0 0

@ & & & & & & & & & & &

Row Aggregate 34

What about space-efficiency of Row Aggregates?

Linear test - the prover computed
“linear” gates correctly

@ & & & & & & & & & & &

Row Aggregate 35

Linear gates were correct

Linear constraints can be expressed as Aw = b

r
OEE—— -
V codeword encoding 7' b

P q = Encoding of 7" A and agrees on revealed

. columns

Check if g is a valid

36

Linear gates were correct

Linear constraints can be expressed as Aw

-

—r

q

Encoding of 7! Aw

oy

=b

\'/

Check if g is a valid
codeword encoding 7' b
and agrees on revealed
columns

Main Challenge: How to compute 7' A efficiently?

37

Linear gates were correct

Linear constraints can be expressed as Aw = b

-

—r

q

oy

Encoding of 7! Aw V

Check if g is a valid
codeword encoding 7' b
and agrees on revealed
columns

Main Challenge: How to compute 7' A efficiently?

Size of r: O(T)

Size of A: O(T) x O(T)

38

Linear gates were correct

Linear constraints can be expressed as Aw = b

-

—r

q

oy

Encoding of 7! Aw V

Check if g is a valid
codeword encoding 7' b
and agrees on revealed
columns

Main Challenge: How to compute 7' A efficiently?

Size of r: O(T)

Size of A: O(T) x O(T)

39

How to compute 7! A efficiently?

40

How to compute 7! A efficiently?

Generate r from a seed

Required space: 0(1) Q

41

How to compute 7! A efﬂuently?

(OC
®
®

42

How to compute 7! A efﬂuently?

(OC
®
®

42

How to compute 7! A efﬂuently?

T . le

A is sparse and structured

e [BCGT13] Uniform RAM
machine => Succinct Circuit =>
— Succinct matrix

43

How to compute 7! A efﬂuently?

T e Aissparse and structured

e [BCGT13] Uniform RAM
machine => Succinct Circuit =>
— Succinct matrix

* Non-zero elements in each
column can be computed in
v — O (1) time without storing A.

<

44

How to compute 71 A efficiently?

Hence " A can be computed row-by-row in
time O(T) and space 0(S)

45

How to compute 71 A efficiently?

Hence " A can be computed row-by-row in : : ,
time O(T") and space 0(S) mm) | P is complexity-preserving.
46

Main Result — Lower Bound™

Theorem: Assume CRH exists. V NP language verified by a uniform RAM machine
running in time T and space S 3 public-coin (ZK) arg. with soundness negl(k) such
that:

Time Space

4 N

Our lower bound shows
why it’s hard to further

Aimprove the proof length.

Proof Length is O (g)

where the CRH is used in a black-box way and O() ignores poly(log(T), k) -

Current Techniques™: Most ZK-SNARKSs rely on
Codes...

() () 4)
RAM Transcript Encodgd
_Transcript

_ y, _ y,
Time T Size T
Space S

Using Codes with
Constant Relative

Distance

49

Current Techniques™: Most ZK-SNARKSs rely on
Codes...

() () 4)
RAM Transcript Encodgd
_Transcript

_ J _ J
Time T Size T
Using Codes with
Constant Relative

Space S

Distance

o - - i

. “Lower bound” on !

' the encoding . .

i . d provides evidence

! algorithm |

e ———————— 1 49

Current Techniques™: Most ZK-SNARKSs rely on
Codes...

() () 4)
RAM Transcript Encoded
_Transcript

_ J _ J
Time T Size T
Using Codes with
Constant Relative

Space S

Distance

o - - i

' “L ower bound” on “Hard” to reduce

' the encoding the proof length |

i . provides evidence ~ /T |

: algorithm : i below O (E) |
e ———————— l I 1 49

Lower Bound™

Theorem: Let C be [n, m, dm] code over F then any r-pass Encode
RAM algorithm requires space

on
S > Tlogl[Fl

50

Lower Bound™

Theorem: Let C be [n, m, dm] code over F then any r-pass Encode
RAM algorithm requires space

on
S > TloglIFl

[YRSTO2] Proved the lower bound for 1-pass algorithm

50

Lower Bound™

Theorem: Let C be [n, m, dm] code over F then any r-pass Encode
RAM algorithm requires space

on
S > Tlogl[Fl

[YRSTO2] Proved the lower bound for 1-pass algorithm

Sr
T-logT

Settingn = T and |F| = log T we get that § <

1

=> Minimum number of oracle queries is 0 (5) =0 (g)

50

Summary

* First construction of complexity-preserving sublinear
(ZK) arguments from CRH in a black-box way

* Improving the communication will require new
techniques —i.e., getting around constant-distance

codes.

51

Additional Slides

Warmup Lower Bound

Simplifying assumptions:
1. Only one pass over the message
2. No work tape
3. Codeword head is independent of the contents of the message

52

Warmup Lower Bound

Simplifying assumptions:
1. Only one pass over the message
2. No work tape
3. Codeword head is independent of the contents of the message

— n/k — — n/k — — n/k —

	Complexity-Preserving Sublinear-Arguments�from Symmetric Key Primitives
	Succinct (ZK) Arguments [Kil99,Mic00]
	Main Question
	Main Question
	Main Question
	Main Question
	A SNARKy background
	A SNARKy background
	A SNARKy background
	A SNARKy background
	A SNARKy background
	A SNARKy background
	A SNARKy background
	A SNARKy background
	RAM Model
	Main Result – Upper Bound
	Main Result – Upper Bound
	Main Result – Upper Bound
	Main Result – Upper Bound
	Main Result – Upper Bound
	Main Result – Lower Bound*
	Ligero [AHIV17]�Proof Schematic
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	What about space-efficiency?
	What about space-efficiency?
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	What about space-efficiency of Row Aggregates?
	Slide Number 49
	Linear gates were correct
	Linear gates were correct
	Linear gates were correct
	Linear gates were correct
	How to compute 𝑟 𝑇 𝐴 efficiently?
	How to compute 𝑟 𝑇 𝐴 efficiently?
	How to compute 𝑟 𝑇 𝐴 efficiently?
	How to compute 𝑟 𝑇 𝐴 efficiently?
	How to compute 𝑟 𝑇 𝐴 efficiently?
	How to compute 𝑟 𝑇 𝐴 efficiently?
	How to compute 𝑟 𝑇 𝐴 efficiently?
	How to compute 𝑟 𝑇 𝐴 efficiently?
	Main Result – Lower Bound*
	Current Techniques*: Most ZK-SNARKs rely on Codes…
	Current Techniques*: Most ZK-SNARKs rely on Codes…
	Current Techniques*: Most ZK-SNARKs rely on Codes…
	Lower Bound*
	Lower Bound*
	Lower Bound*
	Summary
	Additional Slides
	Warmup Lower Bound
	Warmup Lower Bound

