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Succinct (ZK) Arguments [Kil99,MicO0]

Given a language L

)
= poly(log|x| , k) Accepts or
P A CTPR R V \[ Rejects }
ey
Completeness: Vx €L, (P,V)(x) =1w.p.1
Soundness: Vx & L,V PPT P*, (P*,V)(x) = 1 w.p. < negl(k)

Zero-knowledge: Vx € L,VPPTV™, 3 PPTS, s.t.
{viewy+(P,V*)(x)} = {S(x)} 2



Main Question

Do there exist complexity-preserving public-coin
succinct* arguments for NP from minimal assumptions?
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Taxonomy of Arguments

Main Question

Do there exist complexity-preserving public-coin
succinct* arguments for NP from minimal assumptions?

This Talk

Succinct® vs Non-succinct

Interactive vs Non-interactive

Trusted setup vs No setup (transparent)
/K vs (only) Integrity

Public-Key Crypto vs (only) Symmetric-Key
Crypto

YES*

* sublinear

Complexity-
preserving

Time-preserving
Space-preserving



A SNARKy background

1992: Sublinear ZK for NP [Kil92]

2000: CSProofs [Mic00]

2007: IKO [IKOO07], IVC [V07]

2008: |\VC [Val08]

2010: Short-PB-NIZKA [Groth10], Preprocessing-Verifiable-Computation [GGP10]

2012: QSP [GGPR12], EfficientPCP [IMS12], Succinct-NIArgs-LIP [BCIOP12]

2013: Pinocchio [PGHR13], SNARKs-for-C [BCGTV13], ZK-vonNeumann [BCTV13]

2014: Geppetto [CFHKKNPZ14], CyclesOfCurves [BCTV14]

2015: IP4AMuggles [GKR15], SNARKs-for-MapReduce [CTV15]

2016: ZKBoo [GMO16], BulletproofsPrequel [BCCGP16], Groth16 [Groth16], HybIntZK [CGM16]

2017: Ligero (AHIV17), ZKB++ and Picnic [CDGORRSZ17] (discuss alongside ZKBoo), Hyrax [WTsTW], zk-vSQL [ZGKPP17] (can add to existing
vSQL section), Bulletproofs [BBBPWM17], SnarkySigs [GM17]

2018: Aurora [BCRSVW18], FRI [BBHR18], ZKStarks [BBHR18], Picnic2 [KKW18], vRAM [ZGKPP18], DIZK [WZCPS18], UpdatableNIZK [GKMM18]
, HYbNIZK [AGM 18]

2019: Fractal [COS19], Halo [BGH19], Plonk [GWC19], RedShift [KPV19], Spartan [Setty19], DeepFRI [BGKS19], LatticeZKPs [ESLL19], Subversio
nResistant [Bag19], Darks [BFS19], LatticeSnarkArithmetic [Nit19], ZKPSetMembership [BCFGD19]

2020: Halolnfinite [BDFG20], Quarks (Xiphos and Kopis) [SL20], Dory [Lee20],

Wolverine [WYKW20], Bulletproofs+ [CHIKS20], SPARKS [EFKP20], Plookup [GW20], SuperSonic [BFS20], CompressedSigma [AC20], LatticeZKv
iaOTC [LKS20], GeneralizedCompressedSigma [ACR20], PVZKfromBlockchain [SSV20], LinePointZK [DI020], PublicCoinZKTime&Space [BHRRS2
0], Dory [Lee20], DoublyEfficientIP [ZLWZSXZ20], PgSnarks4Rsis-Rlwe [BCOS20], ZAPsAlgebraicLangs [CH20]

2021: Manta [CXZ21], Nova [KST21], Rinocchio [GNS21], Limbo [DGOT21], QuickSilver [YSWW?21], Limbo [GOT21], IntRange [CKLR21], Subexp
DDH [JJ21], Cerberus [LSTW21], ConstOverZKRamProgs [FKLOW21]

2022: NIZK Multiple Verifiers [YW22], Feta [BJOSS22], gOTzilla [BCGHM22], ZK UNSAT [LAHPTW22]

Credits: ZKProof.org 7
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A SNARKy background

(Uniform) RAM program that takes time T and uses space S
* Succinct

* Public-coin or publicly verifiable
* Time-preserving
X * Space-preserving
* “Black-box” in the underlying assumption

-
[WTSTW18,XZZP519,520,5L20,KMP20,BCG20a,BCG20,...]

\AII require Prover to use space proportional to T!

10




A SNARKy background

(Uniform) RAM program that takes time T and uses space S

* Succinct

* Public-coin or publicly verifiable

* Time-preserving

* Space-preserving
>+ “Black-box” in the underlying assumption
4 N
Val08,BCCT13] Complexity preserving via recursive composition
EFKP20] SNARKSs for parallel RAM comp. using CRH and SNARKSs
k:BGH21,BCI\/ISZO,COSZO] “Heuristic” assumptions

/
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A SNARKy background

(Uniform) RAM program that takes time T and uses space S
* Succinct
* Public-coin or publicly verifiable
) & Time-preserving
* Space-preserving
* “Black-box” in the underlying assumption

{[BBHRIS,BFHVXZZO] *Folklore

12



A SNARKy background

(Uniform) RAM program that takes time T and uses space S
\/ * Succinct
/' * Public-coin or publicly verifiable
\/ * Time-preserving
\/ * Space-preserving
/ * “Black-box” in the underlying assumption

s ™
IBHRRS20] Based on hardness of discrete log

IBHRRS21] Based on hardness assumptions on hidden order groups
\ Y
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A SNARKy background

(Uniform) RAM program that takes time T and uses space S
\/ * Succinct
/' * Public-coin or publicly verifiable
\/ * Time-preserving
\/ * Space-preserving
/ * “Black-box” in the underlying assumption

~ A
[BHRRS20] Based on hardness of discrete log

IBHRRS21] Based on hardness assumptions on hidden order groups
\_ J

Main Question: Can we get based on symmetric cryptography?
14




RAM Model

100|000 ®|® ®| nput Tape - Linear Access

/—J% Work Tape - RAM Access

Space = Size of work tape

(Uniform) RAM program M(x,w)

 Runsintime T(]|x])
e Uses space S(|x|)
* |tis of constant size

Modelled
as a RAM

has X, W on (two) input tapes with linear access.

has X on input tape with linear access. 15




Main Result — Upper Bound

Theorem: Assume CRH exists. V NP language verified by a uniform RAM machine
running in time T and space S 3 public-coin (ZK) arg. with soundness negl (k) such

that:
Time Space

P o(T) 0(S)

where the CRH is used in a black-box way and O( ) ignores poly(log(T), k) 16
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Main Result — Upper Bound

Theorem: Assume CRH exists. V NP language verified by a uniform RAM machine
running in time T and space S 3 public-coin (ZK) arg. with soundness negl (k) such

that:
Time Space

\Y; 0(5+S) 0(1)

Sublinear

Proof Length is O G)

—

where the CRH is used in a black-box way and O( ) ignores poly(log(T), k) 20



Main Result — Lower Bound™

Theorem: Assume CRH exists. V NP language verified by a uniform RAM machine
running in time T and space S 3 public-coin (ZK) arg. with soundness negl (k) such
that:

Time Space
4 N
Our lower bound shows
5 (Z . 5) why it’s hard to further
v S Aimprove the proof length.

Proof Length is O G)

where the CRH is used in a black-box way and O( ) ignores poly(log(T), k) 51



Ligero [AHIV1/]
Proof Schematic
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Extended witnhess w
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Extended witnhess w
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Compute Merkle
Root

Compute Row
Aggregates
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Compute Merkle
Root

Compute Row
Aggregates

Decommit
Columns
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What about space-efficiency?

0(S) space if the
(Compute Merkle Root} — matrix can be

computed row by row

Compute Row Aggregates

Decommit Columns
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What about space-efficiency?

) B 0(S) space if the

(Compute Merkle RootJ ' matrix can be
computed row by row

Compute Row Aggregates IBCGT13] RAM program => succinct circuits

=> Transcript generated in time T and space S

Decommit Columns

33



Computing Merkle Root Space Efficiently
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Computing Merkle Root Space Efficiently
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Computing Merkle Root Space Efficiently
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Computing Merkle Root Space Efficiently
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What about space-efficiency of Row Aggregates?

Code test - the prover encoded

Compute Merkle Root
each row correctly

Quadratic test - the prover
computed multiplication gates
correctly

Compute Row Aggregates -

Decommit Columns Linear test - the prover computed

“linear” gates correctly

e o 0 —_— (@

o000
o 00
[ ]
@]

r.

L ]

e o @

e & 0 0
e e o 0 0
e o 0 0

@ & & & & & & & & & & &

Row Aggregate 34



What about space-efficiency of Row Aggregates?

Linear test - the prover computed
“linear” gates correctly

@ & & & & & & & & & & &

Row Aggregate 35



Linear gates were correct

Linear constraints can be expressed as Aw = b

r
OEE—— -
V codeword encoding 7' b

P q = Encoding of 7" A and agrees on revealed

. columns

Check if g is a valid

36



Linear gates were correct

Linear constraints can be expressed as Aw

-

—r

q

Encoding of 7! Aw

oy

=b

\'/

Check if g is a valid
codeword encoding 7' b
and agrees on revealed
columns

Main Challenge: How to compute 7' A efficiently?
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Linear gates were correct

Linear constraints can be expressed as Aw = b

-

—r

q

oy

Encoding of 7! Aw V

Check if g is a valid
codeword encoding 7' b
and agrees on revealed
columns

Main Challenge: How to compute 7' A efficiently?

Size of r: O(T)

Size of A: O(T) x O(T)
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Linear gates were correct

Linear constraints can be expressed as Aw = b

-

—r

q

oy

Encoding of 7! Aw V

Check if g is a valid
codeword encoding 7' b
and agrees on revealed
columns

Main Challenge: How to compute 7' A efficiently?

Size of r: O(T)

Size of A: O(T) x O(T)
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How to compute 7! A efficiently?
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How to compute 7! A efficiently?

Generate r from a seed

Required space: 0(1) Q

41



How to compute 7! A efﬂuently?

(OC
®
®
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How to compute 7! A efﬂuently?

___________________________________________________________

(OC
®
®
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How to compute 7! A efﬂuently?

T . le

A is sparse and structured

e [BCGT13] Uniform RAM
machine => Succinct Circuit =>
— Succinct matrix
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How to compute 7! A efﬂuently?

T e Aissparse and structured

e [BCGT13] Uniform RAM
machine => Succinct Circuit =>
— Succinct matrix

* Non-zero elements in each
column can be computed in
v — O (1) time without storing A.

<

44



How to compute 71 A efficiently?

Hence " A can be computed row-by-row in
time O(T) and space 0(S)

45



How to compute 71 A efficiently?

Hence " A can be computed row-by-row in : : ,
time O(T") and space 0(S) mm) | P is complexity-preserving.
46



Main Result — Lower Bound™

Theorem: Assume CRH exists. V NP language verified by a uniform RAM machine
running in time T and space S 3 public-coin (ZK) arg. with soundness negl(k) such
that:

Time Space

4 N

Our lower bound shows
why it’s hard to further

Aimprove the proof length.

Proof Length is O (g)

where the CRH is used in a black-box way and O( ) ignores poly(log(T), k) -



Current Techniques™: Most ZK-SNARKSs rely on
Codes...

( ) ( ) 4 )
RAM Transcript Encodgd
_Transcript

\_ y, \_ y,
Time T Size T
Space S

Using Codes with
Constant Relative

Distance
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Time T Size T
Using Codes with
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Space S

Distance

o - - i
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Current Techniques™: Most ZK-SNARKSs rely on
Codes...

( ) ( ) 4 )
RAM Transcript Encoded
_Transcript

\_ J \_ J
Time T Size T
Using Codes with
Constant Relative

Space S

Distance

o - - i

' “L ower bound” on “Hard” to reduce

' the encoding the proof length |

i . provides evidence ~ /T |

: algorithm : i below O (E) |
e ———————— l I 1 49



Lower Bound™

Theorem: Let C be [n, m, dm] code over F then any r-pass Encode
RAM algorithm requires space

on
S > Tlogl[Fl
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Theorem: Let C be [n, m, dm] code over F then any r-pass Encode
RAM algorithm requires space

on
S > TloglIFl

[YRSTO2] Proved the lower bound for 1-pass algorithm
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Lower Bound™

Theorem: Let C be [n, m, dm] code over F then any r-pass Encode
RAM algorithm requires space

on
S > Tlogl[Fl

[YRSTO2] Proved the lower bound for 1-pass algorithm

Sr
T-logT

Settingn = T and |F| = log T we get that § <

1

=> Minimum number of oracle queries is 0 (5) =0 (g)

50



Summary

* First construction of complexity-preserving sublinear
(ZK) arguments from CRH in a black-box way

* Improving the communication will require new
techniques —i.e., getting around constant-distance

codes.

51



Additional Slides



Warmup Lower Bound

Simplifying assumptions:
1. Only one pass over the message
2. No work tape
3. Codeword head is independent of the contents of the message
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Warmup Lower Bound

Simplifying assumptions:
1. Only one pass over the message
2. No work tape
3. Codeword head is independent of the contents of the message

— n/k — — n/k — — n/k —
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