Four-Round Black-Box Non-Malleable Commitments from One-Way Permutations

Michele Ciampi Emm The University of Edinburgh imec-C

Emmanuela Orsini

Luisa Siniscalchi

imec-COSIC, KU Leuven

Danish Technical University

• Binding

- Binding
- Hiding

Non-malleable commitment

Man In the Middle

No relation between M and M'

Non-malleable commitment

Crucial for constructing MPC protocol with minimal round complexity

Man In the Middle

w.r.t. commitment

No relation between M and M'

(Plain model, polynomial-time assumptions)

*one-to-one OWFs

(Plain model, polynomial-time assumptions)

Result	Number of rounds	Assumptions	BB use of adversary	BB use of primitives
[DDN, STOC91]	Logarithmic	OWFs	Yes	Νο
[Bar, FOCS02]	Constant	CHRFs + TPs	No	Νο
[PR, FOCS05]	Constant	Claw-Free Perm	No	Νο
[PW, EUROCRYPT10]	Constant	Sub-esponenial OWFs	Yes	Νο
[Goy11/LP11, STOC11]	Constant	OWFs	Yes	Νο
[GLOV, FOCS12]	Constant	BB OWFs	Yes	Yes

*one-to-one OWFs

(Plain model, polynomial-time assumptions)

Result	Number of rounds	Assumptions	BB use of adversary	BB use of primitives
[DDN, STOC91]	Logarithmic	OWFs	Yes	Νο
[Bar, FOCS02]	Constant	CHRFs + TPs	No	Νο
[PR, FOCS05]	Constant	Claw-Free Perm	No	Νο
[PW, EUROCRYPT10]	Constant	Sub-esponenial OWFs	Yes	Νο
[Goy11/LP11, STOC11]	Constant	OWFs	Yes	Νο
[GLOV, FOCS12]	Constant	BB OWFs	Yes	Yes
[GRRV, FOCS14]	4	OWFs	Yes	Νο
[COSV, CRYPTO17]	4	OWFs*	Yes	Νο
[Khu, TCC17]	3	DDH	Yes	Νο
[GR19, FOCS19]	3	OWFs*	Yes	No

*one-to-one OWFs

Three-round lower bound [Pas,TCC13]

(Plain model, polynomial-time assumptions)

Result	Number of rounds	Assumptions	BB use of adversary	BB use of primitives
[DDN, STOC91]	Logarithmic	OWFs	Yes	Νο
[Bar, FOCS02]	Constant	CHRFs + TPs	No	No
[PR, FOCS05]	Constant	Claw-Free Perm	No	Νο
[PW, EUROCRYPT10]	Constant	Sub-esponenial OWFs	Yes	No
[Goy11/LP11, STOC11]	Constant	OWFs	Yes	Νο
[GLOV, FOCS12]	Constant	BB OWFs	Yes	Yes
[GRRV, FOCS14]	4	OWFs	Yes	Νο
[COSV, CRYPTO17]	4	OWFs*	Yes	Νο
[Khu, TCC17]	3	DDH	Yes	Νο
[GR19, FOCS19]	3	OWFs*	Yes	No

*one-to-one OWFs

Three-round lower bound [Pas,TCC13]

(Plain model, polynomial-time assumptions)

Result	Number of rounds	Assumptions	BB use of adversary	BB use of primitives
[DDN, STOC91]	Logarithmic	OWFs	Yes	Νο
[Bar, FOCS02]	Constant	CHRFs + TPs	No	Νο
[PR, FOCS05]	Constant	Claw-Free Perm	No	Νο
[PW, EUROCRYPT10]	Constant	Sub-esponenial OWFs	Yes	Νο
[Goy11/LP11, STOC11]	Constant	OWFs	Yes	Νο
[GLOV, FOCS12]	Constant	BB OWFs	Yes	Yes
[GRRV, FOCS14]	4	OWFs	Yes	Νο
[COSV, CRYPTO17]	4	OWFs*	Yes	No
[Khu, TCC17]	3	DDH	Yes	Νο
[GR19, FOCS19]	3	OWFs*	Yes	No
This work	4	OWFs*	Yes	Yes

Three-round lower bound [Pas,TCC13]

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. FOCS 2014

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. FOCS 2014

[GRRV14, Lemma] Weaknon-malleable commitment

Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. FOCS 2014

Weak MiM

[GRRV14, Lemma] Weaknon-malleable commitment

Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. FOCS 2014

[GRRV14, Lemma] Weaknon-malleable commitment

Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. FOCS 2014

[GRRV14, Lemma] Weaknon-malleable commitment

Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. FOCS 2014

[GRRV14, Lemma] Weaknon-malleable commitment

A candidate approach

Zero-Knowledge

Rewind secure

Zero-Knowledge

Rewind secure

Zero-Knowledge

4-round non-malleable commitment

4-round non-malleable commitment

ZK is non-black box and it makes non-black-box use of the Weak-NMC

Our Approach

Our Approach

Our Approach

 \approx

 \approx

 \mathcal{D}_{HVZK} (view)

 \approx

Commitment ms \mathcal{D}_{HVZK} (view)

Our work: HVZK with respect to *extractable commitments*

- Our work: HVZK with respect to *extractable commitments*

- Our work: HVZK with respect to *extractable commitments*
- CHHVZK: generates a transcript either using the prover procedure or using the simulator

- Our work: HVZK with respect to *extractable commitments*
- CHHVZK: generates a transcript either using the prover procedure or using the simulator

- Our work: HVZK with respect to *extractable commitments*
- CHHVZK: generates a transcript either using the prover procedure or using the simulator

- Our work: HVZK with respect to *extractable commitments*
- If we have an adversary that breaks HVZKC then we can construct an adversary that breaks HVZK
- CHHVZK: generates a transcript either using the prover procedure or using the simulator

- Our work: HVZK with respect to *extractable commitments*
- If we have an adversary that breaks HVZKC then we can construct an adversary that breaks HVZK
- CHHVZK: generates a transcript either using the prover procedure or using the simulator

- Our work: HVZK with respect to *extractable commitments*
- If we have an adversary that breaks HVZKC then we can construct an adversary that breaks HVZK
- CHHVZK: generates a transcript either using the prover procedure or using the simulator

- Our work: HVZK with respect to *extractable commitments*
- If we have an adversary that breaks HVZKC then we can construct an adversary that breaks HVZK
- CHHVZK: generates a transcript either using the prover procedure or using the simulator

- Our work: HVZK with respect to *extractable commitments*
- If we have an adversary that breaks HVZKC then we can construct an adversary that breaks HVZK
- CHHVZK: generates a transcript either using the prover procedure or using the simulator

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. STOC 1990

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. STOC 1990 [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. STOC 2007

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. STOC 1990 [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. STOC 2007

Delayed-Input HVZK

Our HVZKC Scheme

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. STOC 1990 [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. STOC 2007 [KOS18] Dakshita Khurana, Rafail Ostrovsky, and Akshayaram Srinivasan. TCC 2018

Conclusions and Open Questions

Conclusions and Open Questions

- Delayed-input BB HVZKC from the BMR protocol
- The weak-non-malleable commitment needs to be modified
- Rewind security may be unnecessarily strong for some applications

Conclusions and Open Questions

- Delayed-input BB HVZKC from the BMR protocol
- The weak-non-malleable commitment needs to be modified
- Rewind security may be unnecessarily strong for some applications
- Open problems
 - Concrete efficiency using OWFs
 - 3-round non-malleable commitments with BB use of OWFs
 - Extension to the many-many setting
https://ia.cr/2022/1543

