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But can we generate uniform randomness?
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How can we use such a source for crypto applications?
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Unfortunately, no deterministic extractor extracts from all such sources

Can we still build crypto primitives from min-entropy sources?



BUILDING CRYPTO PRIMITIVES FROM 
WEAK SOURCES

[DOPS04] showed that the following crypto tasks are impossible from block sources (e.g. 
Santha Vazirani) source.


• Encryption

• Secret Sharing 

• Zero knowledge

• Secure two party computation

• Bit commitment
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Block 
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Question: What crypto primitives can be built from some weak source that is not 
extractable?

?
Are there 
sources in the 
middle good for 
crypto?
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• They extract uniform randomness from 𝐸𝑛𝑐(𝐾,  𝟎) 
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• Correct decryption implies that is a flat distribution over ciphertexts.𝐸𝑛𝑐(𝑘,  𝑈 )  2𝑚 

• Extraction possible from a “not too large” number of flat distributions
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One of L, R does not reveal any information about m.  Together, they can reconstruct m. 
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Cannot learn anything about m from any one of K, or Enc(K,m). Together, they determine m. 
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Question: Does 2-out-of-2 secret sharing imply extraction?  (Asked by [BD07])

How hard can this question be?  [Me2012] Quite Hard!! [Me2022]
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• Suppose we use the same idea as encryption!

• Suppose (similar to encryption) we try to extract from LeftShare(𝐾,  𝟎) 

• We have that LeftShare  LeftShare ), where  is a uniform message (𝐾,  𝟎]  ≈ (𝐾,  𝑈 𝑈

• LeftShare is a convex combination of LeftShare where key  is 
any fixed key in the key space. 

(𝐾,  𝑈 )  (𝑘,  𝑈 ),   𝑘

• Unfortunately, LeftShare might not have any entropy.(𝑘, 𝑈 ) 



WE CONSIDER THIS QUESTION FOR 
LEAKAGE RESILIENT SECRET SHARING
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IMPLICATIONS FOR NON-MALLEABLE 
CODES

• Non-malleable codes in the split-state model imply extraction

• Contrast to the fact that AMD codes can be constructed from an entropy source.

• A Non-malleable code in the split-state model have been studied extensively in the 
last decade. 

• An NMC is also a leakage-resilient secret sharing scheme. 
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• We show many different reductions for different choices of 𝑛,  𝑡,  𝑛’,  𝑡’ .  

• A simple example is . The reduction will give  different 
shares to one party, and any one other share to the second 


𝑛’ = 𝑡’ = 2 𝑡 − 1

Motivates distribution designs:  Distribute  shares into  sets such that any  sets contain  
shares, and less than sets contain less than shares.    

𝑛 𝑛’ 𝑡 𝑡’
 𝑡  𝑡’ 



DISTRIBUTION DESIGNS

• We find distribution designs for several different choices of 


• In some cases, these designs are tight and cannot be improved. 
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• -out-of-  threshold secret sharing implies extraction for any 

• So, extracting from 2-out-of-2 SS might be harder. 

𝑡 𝑛 𝑡,  𝑛 

Hopefully, our work motivates our main open question: Can we extract randomness 
from a  out of  secret sharing scheme for any , 𝑡 𝑛 𝑡 𝑛 ?



THANK YOU!

 Questions?


