
Fiat-Shamir Transformation of Multi-Round
Interactive Proofs

Thomas Attema, Serge Fehr, Michael Klooß

TCC
November 7, 2022



Preliminaries - Interactive Proofs

Interactive Proof:
Prove knowledge of a witness w for a
public statement x.

Public-coin protocols: the verifier’s messages ci
are challenges sampled uniformly at random.

(x;w) ∈ R

P(x;w) V(x)
a0−−−−−−→
c1←−−−−−−
a1−−−−−−→
...
cµ←−−−−−−
aµ−−−−−−→ Accept/

Reject
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Preliminaries - Security Properties

Desirable Security Properties:

Completeness: Honest provers always succeed in convincing a verifier.
Knowledge Soundness: Dishonest provers (almost) never succeed.
Zero-Knowledge: No information about the witness is revealed.
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Preliminaries - Fiat-Shamir Transformation [FS87]

Replacing the challenges ci by random-oracle
outputs renders the interactive proof
non-interactive, i.e.,

ci = RO(x, a0, . . . , ai−1)

Cheating probability (knowledge error)
increases:

dishonest provers can try different inputs
to guess the RO-output;

depends on the number of RO-queries Q
the dishonest prover is allowed to make.

What is the security loss of the Fiat-Shamir transformation?
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Fiat-Shamir Security Loss

Example:
3-round interactive proof;
cheating probability κ;
Fiat-Shamir cheating probability ≈ Q · κ;

t-fold sequential repetition:
2t + 1 rounds;
cheating probability κt;
Fiat-Shamir cheating probability
≈ (Q · κ)t = Qtκt;
exponential security loss.

Contrived Example:
You can also do parallel repetition.

P(x;w) V(x)
a1−−−−−−→
c1←−−−−−−
z1−−−−−−→

a2−−−−−−→
c2←−−−−−−
z2−−−−−−→
...

at−−−−−−→
ct←−−−−−−
zt−−−−−−→
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Prior Work

Forking-Lemma: Security loss for 3-round protocols is linear in Q [PS96, BN06].

Recent works on Multi-Round Protocols: some have security loss is independent of the
number of rounds:

Straight-line extraction for interactive oracle proofs [BCS16];
Straight-line extraction in the the Algebraic Group Model [GT21].
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This work

Positive Result:
Theorem
The Fiat-Shamir transformation of a (k1, . . . , kµ)-out-of-(N1, . . . ,Nµ) special-sound interactive
proof with knowledge error κ is knowledge sound with knowledge error (Q + 1) · κ.

=⇒ the security loss equals Q + 1, i.e., it is independent of the number of rounds 2µ+ 1.

Negative Result: a natural interactive proof with exponential security loss.
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Knowledge Soundness

Intuition: Knowledge Soundness ⇐⇒ Dishonest provers (almost) never succeed.

Formal Definition: Knowledge soundness ⇐⇒ existence of a knowledge extractor.

Knowledge extractor
Input: Statement x and oracle access to a prover P∗ attacking the protocol.
Goal: Compute a witness w for statement x.
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Knowledge Extractor

What can the extractor do?

Interactive Proofs:
The extractor plays the role of the verifier and chooses which challenge to send.

Non-interactive Random Oracle Proofs:
The extractor answers the RO-oracle queries made by P∗.

It may reprogram RO and run P∗ again.
Challenge: the extractor does not know which query P∗ is going to use.

9 / 13



Knowledge Extractor

What can the extractor do?

Interactive Proofs:
The extractor plays the role of the verifier and chooses which challenge to send.

Non-interactive Random Oracle Proofs:
The extractor answers the RO-oracle queries made by P∗.

It may reprogram RO and run P∗ again.
Challenge: the extractor does not know which query P∗ is going to use.

9 / 13



Our Approach - Very High Level

Defined an abstract sampling game that mimics the extractor for 3-round protocols.

Key observation: Reprogramming the random oracle for an input not queried by P∗ does not
change P∗s output.

Recursive approach for multi-round protocols:
Extractor uses sub-extractor instead of P∗;
Early-abort option required to make the overall extractor efficient.
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Thanks!
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