Achievable CCA2 Relaxation
for Homomorphic Encryption

Adi Akavia
Craig Gentry
Shai Halevi
Margarita Vald

University of Haifa, Israel
TripleBlind, USA
Algorand Foundation, USA

Intuit Israel Inc., Israel

Secure outsourcing using Homomorphic Encryption (HE)

Server

¥ Protects data in-use Client Encbk(x)

¥ Low client complexity

Encpi(f ()

Deep computation 1s expensive
— e.g., refreshing

Client-aided secure outsourcing using HE

Client

— |

m < Decg(e)
e’ « Encpi(m)

M Protects data in-use

¥ Low client complexity

Deep computation 1s expensive
— refreshing by client, fast

Q: privacy against malicious servers?

Our Results 1

on privacy against malicious server in client-aided protocols

Insufficiency: CPA-security does not guarantee privacy

against malicious servers.

Define new notion — funcCPA, and prove it 1s:

strictly between M Sufficient for privacy against malicious servers,
CPA & CCA2
M Achievable from circuit privacy™

Moreover, known schemes can be transformed to circuit-private™

Our Results I1

Can we prove existing HE scheme are funcCPA-secure?

Achievable: leveled BV, BGV, ... are leveled funcCPA-secure.

Client

m < Decgy, (€) EEELE

!/

e’ < Encp (M) LXtes

L IO U

Challenging: funcCPA implies circular-security
for (non-leveled) BV and BGV

Insutficiency of CPA: Our Attack (simplified)

Theorem (Informal). Exist” CPA-secure PKE (‘assuming ICPA-secure PKE)
so that client-aided outsourcing protocols instantiated with it

are vulnerable to input-recovery attack by malicious servers

Proof Idea: Starting from CPA-secure schemes, modify Enc, Dec as:

& Enc’pk(m): If m=sk, outputO|m
--test by checking whether Dec,,Enc,,(t) = ¢
Otherwise, output 1 |Enc, (m)

® Dec’ (c)): Parsec =b|c
If b=0, output sk
Otherwise, output Dec (c)

Insutficiency of CPA: Our Attack (simplified)

Theorem (Informal). Exist” CPA-secure PKE (‘assuming ICPA-secure PKE)
so that client-aided outsourcing protocols instantiated with it

are vulnerable to input-recovery attack by malicious servers

Proof Idea: Starting from CPA-secure schemes, modify Enc, Dec as:

& Enc’pk(m): If m=sk, outputO|m
--test by checking whether Dec,,Enc,,(t) = ¢
Otherwise, output 1 |Enc, (m) Attacker sends

& Dec’y(c’): Parse =b|c ct=(0]something)

If b=0, output sk
Otherwise, output Dec (c)

to be re-encrypted

funcCPA-security: Definition & Sutticiency

Informal. funcCPA extends CPA by supporting Refresh” queries
*more generally Enc(g(Dec(c))

Theorem (informal). Client-aided protocols instantiated with a
funcCPA-secure encryption guarantee
privacy against malicious servers.

Pictorially: CPA-security Detinition

Challenger Adversary
(pk,sk) «-Gen pk
R DS
w
v

b« {0,1} _ m, m, B
¢ <= Enc,,(my) C

b)

CPA-security: Vppt adversary, Pr[b’=b] < V2 + negl

Pictorially: funcCPA-security Definition

funcCPA-security:

Challenger Adversary
(pk,sk) «~Gen

m < Decg(e) CtXt g

' ’\-l

e’ « Encpk(m) ctxt e’ > W)
v

b« {0,1} . m,m, B

¢ <= Enc,,(my) C
Ctxt e
m < Decg(e) < =
e' < Encpi(m) ctxt e’)
b)

Vppt adversary, Pr[b’=b] < V2 + negl

Pictorially: Leveled funcCPA Definition

Queries are answered by Challenger Adversary
next-level ciphertexts (pk,,sk)}, «<Gen {pk},
CtXt e
it & DeCSkcurrent (6)
e’ « Encpg. - (m) ctxt e

b <¢1{0,1}

c < Encpy, (my)

CtXt e

CtXte >

leveled funcCPA-security: Vpptadversary, Pr[b’=b] < V2 + negl

e &= DeCSkcurrent (e)
e’ « Encpknext (m)

<
<

P

<

leveled funcCPA: Achievability by Existing Schemes

Theorem. Every CPA-secure leveled HE with independent level keys

is leveled funcCPA-secure. (pky, sky) at each level are independent

evk, computed from sk, & next-level pk, ,

Observation: BV, BGV, B/FV (with a small modification)
have independent level keys.

Proof Idea. Simulate answers to funcCPA queries by encryption of arbitrary message.

Indistinguishable views by (CPA-security and) level keys independence.

funcCPA: Achievability from Circuit-Privacy™

Def (informal): A HE scheme E=(Gen, Enc, Dec, Eval) is circuit-private™ if

{Evalpk(C; Cp, oo ¢ & Enc, (C(Decy(cy), . .., Decgley)))}

where: keys — properly generated
ciphertexts — maliciously generated

Prior defs for circuit-privacy:
semi-honest: both keys & ciphertexts — properly generated

malicious: both keys & ciphertexts — maliciously generation

funcCPA: Achievability from Circuit-Privacy™

Def (informal): A HE scheme E=(Gen, Enc, Dec, Eval) is circuit-private™ if

[Evalpk(C; Cp, oo ¢ & Enc, (C(Decy(cy), . .., Decgley)))1

where: keys — properly generated
ciphertexts — maliciously generated
Theorem: Suppose E is CPA-secure and circuit-private™ w.r.t C,
Then E is funcCPA w.r.t C.

Proof idea. Answer funcCPA queries using Eval. Indistinguishable by circuit-privacy™

Construction: Circuit-Privacy”

Theorem: Known HE schemes (e.g., BV and FHEW)
can be transformed into circuit-private™.

Proof: Ideal. Sanitize” Enc and Eval outputs to make them stat. close.
Sanitization [DS16]: If Dec,(c,) = Dec,(c,) (D)
Then Sanitize; (¢;) =, Sanitize (c;) (2)

Problem: Eval has no cotrectness guarantee on malicious inputs ciphertexts
(i.e., no (1) and hence no (2))

Idea 2. Sanitize also inputs to Eval
so, they are stat. close to fresh re-encryption (of some msg)

Conclusions

We propose new security notion — funcCPA — and show it 1s:

® Related to circular-security, though not known to be equivalent

® Achievable: 1) via generic transformation
2) for existing (leveled) schemes

® Sufficient for privacy in client-aided protocols against malicious servers

Encryption Type of client-aided protocol Server 4
Open: Prove that fully
hom. BGV, B/FV... are
leveled funcCPA | next-level client’s response malicious || funcCPA, assuming
circular-security.

funcCPA all malicious _

CPA w. natural property semi-honest

