
Forward-Secure Encryption 
with Fast Forwarding

Yevgeniy Dodis Daniel Jost Harish Karthikeyan

New York University

7 November 2022 TCC 2022 1



Motivation

7 November 2022 TCC 2022 2

Forward Security:
• Security of the past must not be affected by a compromise at the 

present time.

Coarse-grained FS:
• FS kicks in once protocol 

execution / session is over.
• Examples: Key-exchange, TLS

Fine-grained FS:
• Continuous / ongoing FS 

during protocol execution.
• Examples: Secure messaging



Motivation

7 November 2022 TCC 2022 3

Forward Security:
• Security of the past must not be affected by a compromise at the 

present time.

Coarse-grained FS:
• FS kicks in once protocol 

execution / session is over.
• Examples: Key-exchange, TLS

Fine-grained FS:
• Continuous / ongoing FS 

during protocol execution.
• Examples: Secure messaging

Typically involves 
notion of an epoch



Motivation

• What if a party is “stuck” in an old epoch?

• Many forward-secure primitives require sequential processing of 
missed messages!

• Why important:
• Most recent messages often inherently more important

• In group-chat protocols like MLS: sending requires the latest key!

7 November 2022 TCC 2022 4



Contributions

7 November 2022 TCC 2022 5

• We investigate a novel dimension of the price of forward-

secure encryption: fast-forwarding.

• We ask if one can build forward-secure encryption

with a sublinear fast-forward property.

• Symmetric setting: PRG (and hence stream-cipher)

• Asymmetric setting: Updatable PKE



Symmetric: Fast-Forwardable FS-PRG

Observation: Folklore construction

• GGM construction

• Adapt the template by Bellare and Miner (C’99) and Malkin, 
Micciancio, and Miner (EC’02) for building forward-secure 
signature schemes

7 November 2022 TCC 2022 6



𝑆00 𝑆01

𝑆1𝑆0

𝑆𝜖

Epoch keys
7 November 2022 TCC 2022 7

𝑆0, 𝑆1 = 𝑃𝑅𝐺(𝑆𝜖)



e=1

7 November 2022 TCC 2022 8



e=2

7 November 2022 TCC 2022 9



e=3

7 November 2022 TCC 2022 10



Symmetric: Fast-Forwardable FS-PRG

This uses logarithmic local storage and logarithmic computation 
per (sequential) epoch change.

Question: Can we do better?

7 November 2022 TCC 2022 11



Symmetric: Fast-Forwardable FS-PRG

This uses logarithmic local storage and logarithmic computation 
per (sequential) epoch change.

Question: Can we do better?

7 November 2022 TCC 2022 12

Change of model:

• Assume public bulletin board (honest but curious)

• Communication overhead!
→ can make sense if communication required anyway



Symmetric: FF Forward-Secure PRG

Our result: 

Fast-forwardable forward-secure PRG with

• Local storage: constant 

• Sequential Update: constant computation and communication

• Fast-forward: logarithmic computation and communication

7 November 2022 TCC 2022 13



e=1

7 November 2022 TCC 2022 14

Recoverable from BB

Stored locally

Deducable

Erased

Encryption



e=2
7 November 2022 TCC 2022 15

Recoverable from BB

Stored locally

Deducable

Erased

Encryption



Asymmetric Setting

• Observation:
• Only known non-trivial FS-PKE: generic construction via hierarchical identity-

based encryption (HIBE)

• Allows for fast-forwarding analogous to GGM-PRG

7 November 2022 TCC 2022 16



Asymmetric Setting

• Observation:
• Only known non-trivial FS-PKE: generic construction via hierarchical identity-

based encryption (HIBE)

• Allows for fast-forwarding analogous to GGM-PRG

HIBE identity tree
7 November 2022 TCC 2022 17



Asymmetric Setting

• Observation:
• Only known non-trivial FS-PKE: generic construction via hierarchical identity-

based encryption (HIBE)

• Allows for fast-forwarding analogous to GGM-PRG

HIBE identity tree

Drawbacks: 
• HIBE rather expensive
• With Bulletin-Board: after fast-forwarding, 

sequential updates become logarithmic

7 November 2022 TCC 2022 18



Updatable PKE (JMM’19)

• KeyGen → 𝑝𝑘1, s𝑘1
• Encrypt(𝑝𝑘𝑖, M) → C

• Decrypt(C, 𝑠𝑘𝑖) → M

7 November 2022 TCC 2022 19

• UpdGen(𝑝𝑘𝑖) → (𝛿𝑖→𝑖+1, Δ𝑖→𝑖+1)

• UpdatePK(𝑝𝑘𝑖, 𝛿𝑖→𝑖+1) → 𝑝𝑘𝑖+1
• UpdateSK(s𝑘𝑖,Δ𝑖→𝑖+1) → 𝑠𝑘𝑖+1

PKE scheme
Updating mechanism 
for forward security



Update-Homomorphic UPKE

• KeyGen → 𝑝𝑘1, s𝑘1
• Encrypt(𝑝𝑘𝑖, M) → C

• Decrypt(C, 𝑠𝑘𝑖) → M

Upd-Comb(Δ𝑖→𝑗, Δ𝑗→𝑘) → Δ𝑖→𝑘

UpdateSK(s𝑘𝑖,Δ𝑖→𝑘) → 𝑠𝑘𝑘

7 November 2022 TCC 2022 20

• UpdGen(𝑝𝑘𝑖) → (𝛿𝑖→𝑖+1, Δ𝑖→𝑖+1)

• UpdatePK(𝑝𝑘𝑖, 𝛿𝑖→𝑖+1) → 𝑝𝑘𝑖+1
• UpdateSK(s𝑘𝑖,Δ𝑖→𝑖+1) → 𝑠𝑘𝑖+1

UpdateSK(s𝑘𝑖,Δ𝑖→𝑗) → 𝑠𝑘𝑗
UpdateSK(s𝑘𝑗,Δ𝑗→𝑘) → 𝑠𝑘𝑘

Schemes by: 
Dodis, Karthikeyan, Wichs



FF-UPKE from Update-Homomorphic UPKE

• Basic idea:
• Senders produce “cumulative updates” stored in bulletin board that receiver 

can use for fast forwarding

• Which cumulative updates to generate?

7 November 2022 TCC 2022 21



FF-UPKE from Update-Homomorphic UPKE

• Basic idea:
• Senders produce “cumulative updates” stored in bulletin board that receiver 

can use for fast forwarding

• Which cumulative updates to generate?

7 November 2022 TCC 2022 22



FF-UPKE from Update-Homomorphic UPKE

• Relevant quantities:
• Diameter →efficiency of fast-forwarding

• Cut (number of edges crossing two consecutive nodes)
→ Sender efficiency

• In-degree → sender’s communication complexity in single-sender setting

7 November 2022 TCC 2022 23



Open Problems

• Asymmetric setting:
• Can we build more efficient update-homomorphic UPKE?

→Need homomorphic encryption with message-space ≈ secret-key space

• Can we build FF-UPKE more efficiently in general?

• What other applications are there where fast-forwarding might be 
relevant?

7 November 2022 TCC 2022 24


