
SHAI HALEVI (ALGORAND FOUNDATION)

EYAL KUSHILEVITZ (TECHNION)

Random-Index ORAM

https://eprint.iacr.org/2022/982

https://eprint.iacr.org/2022/982


Recall Oblivious RAM
❖Introduced by Goldreich and Ostrovsky [G87,O90,GO96]

❖Server should not learn the indexes that are accessed

❖Compiler should use little space, little communication

❖Server’s space should not be much more than 𝑁

2

What’s 𝑖?
(stateful)

ORAM
Compiler

𝑖 ∈ [𝑁] query

answer𝑚𝑒𝑚[𝑖]

Client Server



This Work: ORAM with a Twist
❖ Client accesses random indexes, not specific ones

❖Server should not learn the indexes that are accessed

❖Compiler should use little space, little communication

❖Server’s space should not be much more than 𝑁

3

What’s 𝑟?
(stateful)

ORAM
Compiler

“sample” query

answer𝑟,𝑚𝑒𝑚[𝑟]

Client Server



Random-Index ORAM (RORAM)

❖Weaker than ORAM, perhaps it can be made faster?
➢Sufficient for some applications

❖Computing statistics

❖Sub-sampling
➢Can then run arbitrary computation on smaller sub-sample

➢Perhaps using full ORAM if even sub-sample is too big

4



Lottery-type applications

❖People sign up with the server

❖Client chooses one/few of them to get the jackpot
➢Server shouldn’t know who won

5



Lottery-type applications

❖People sign up with the server

❖Client chooses one/few of them to get the jackpot
➢Server shouldn’t know who won

❖In the paper: application to massive-scale MPC
➢Choosing random parties for committees

➢RORAM-client implemented via secure-MPC

➢Same motivating application as for RPIR [GHMNY21]

6



Defining RORAM Security –Two Notions

❖Future randomness: next index looks random to the server
➢(Can settle for high-entropy rather than truly random)

❖Randomness: All sequence looks random (or high entropy)
➢Including past indexes

❖The difference: future-randomness scheme can reveal the 
𝑗’th index in query 𝑗 + 1
➢Can help efficiency

➢Still enough for lottery-type applications

7



Defining RORAM Security –Two Notions

❖Future randomness: next index looks random to the server
➢(Can settle for high-entropy rather than truly random)

❖Randomness: All sequence looks random (or high entropy)
➢Including past indexes

❖The difference: future-randomness scheme can reveal the 
𝑗’th index in query 𝑗 + 1
➢Can help efficiency

➢Still enough for lottery-type applications

8



Constructions

9

❖ Based on Hierarchical ORAM
➢ Most efficient yields future randomness

➢ Slightly less efficient yields randomness

➢ Based on Tree ORAM
➢ Very simple, efficient, for batch RORAM

➢ Only yields guessing resilience



Recall Hierarchical ORAM
❖Server’s storage consists of O(log𝑁) levels
➢Level 𝑖 has 𝑂(2𝑖) slots

❖Query returns one slot from each level
➢One of them contains the “right element”
oFinding it (via hashing) is the “smarts” of hierarchical ORAM

➢Fetched element is placed at the top level

10

𝑁 slots

𝑁/2 slots

𝑁/4 slots

𝑁/8

…



Recall Hierarchical ORAM
❖Server’s storage consists of O(log𝑁) levels
➢Level 𝑖 has 𝑂(2𝑖) slots

❖Query returns one slot from each level
➢One of them contains the “right element”
oFinding it (via hashing) is the “smarts” of hierarchical ORAM

➢Fetched element is placed at the top level

❖Every 2𝑖 queries, all levels 1,2, … , 𝑖 − 1
are merged into level 𝑖
➢That’s where a lot of the complexity lies

11

𝑁 slots

𝑁/2 slots

𝑁/4 slots

𝑁/8

…



Hierarchical RORAM – Future Randomness

❖No need to find “the right element”, so no hashing

❖Each query contains the index from the previous one
➢Server knows exactly what elements reside in what level
➢But not how they are ordered in the levels

❖Server just returns last element in each level
➢Client chooses one level at random (weighted appropriately)
➢Top level is re-written entirely in each step

12



Hierarchical RORAM – Future Randomness

❖No need to find “the right element”, so no hashing

❖Each query contains the index from the previous one
➢Server knows exactly what elements reside in what level
➢But not how they are ordered in the levels

❖Server just returns last element in each level
➢Client chooses one level at random (weighted appropriately)
➢Top level is re-written entirely in each step

❖Merge down every 2𝑖 queries a little simpler than ORAM
➢Since elements only need to be in a random order, not a specific one

13



Hierarchical RORAM – Randomness

❖The server doesn’t know the size of level anymore
➢So cannot just read the last element of each level

❖But it still knows the size approximately (whp)
➢The next element to read is in some not-too-large window

➢The server just sends the entire window in each level
oCan use client-side caching to save a bit more

14



Also in the Paper

❖Tree-based RORAM
➢Saves on the recursive position map - 𝑂 log𝑁 factor

➢Very simple scheme, but complicated analysis

❖Open problems
➢Better schemes, better analysis

➢Hybrid ORAM/RORAM: support both, pay for what you use

➢Can you build ORAM from RORAM?

➢and more

15



16


