

Public-Key Encryption from Homogeneous CLWE

Andrej Bogdanov¹, Miguel Cueto Noval², **Charlotte Hoffmann**² and Alon Rosen³

¹Chinese University of Hong Kong ²Institute of Science and Technology Austria ³Bocconi University and Reichman University

• Public-key encryption schemes are based on relatively few computational assumptions

- Public-key encryption schemes are based on relatively few computational assumptions
- New assumption: homogeneous Continuous Learning with Errors (hCLWE) [BRST21]

- Public-key encryption schemes are based on relatively few computational assumptions
- New assumption: homogeneous Continuous Learning with Errors (hCLWE) [BRST21]
- LWE \rightarrow hCLWE [GVV22]

- Public-key encryption schemes are based on relatively few computational assumptions
- New assumption: homogeneous Continuous Learning with Errors (hCLWE) [BRST21]
- LWE \rightarrow hCLWE [GVV22]
- Used in [BRST21] to show hardness of learning mixtures of Gaussians

- Public-key encryption schemes are based on relatively few computational assumptions
- New assumption: homogeneous Continuous Learning with Errors (hCLWE) [BRST21]
- LWE \rightarrow hCLWE [GVV22]
- Used in [BRST21] to show hardness of learning mixtures of Gaussians

Our Contribution

• Four public-key encryption schemes based on hCLWE

- Public-key encryption schemes are based on relatively few computational assumptions
- New assumption: homogeneous Continuous Learning with Errors (hCLWE) [BRST21]
- LWE \rightarrow hCLWE [GVV22]
- Used in [BRST21] to show hardness of learning mixtures of Gaussians

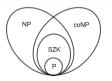
Our Contribution

- Four public-key encryption schemes based on hCLWE
- Proof that hCLWE is in SZK (Statistical Zero Knowledge)

- Public-key encryption schemes are based on relatively few computational assumptions
- New assumption: homogeneous Continuous Learning with Errors (hCLWE) [BRST21]
- LWE \rightarrow hCLWE [GVV22]
- Used in [BRST21] to show hardness of learning mixtures of Gaussians

Our Contribution

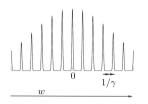
- Four public-key encryption schemes based on hCLWE
- Proof that hCLWE is in SZK (Statistical Zero Knowledge)



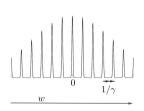
• Secret $w \in \mathbb{R}^n$: ||w|| = 1

- Secret $w \in \mathbb{R}^n$: ||w|| = 1
- Samples $y \in \mathbb{R}^n$:
 - normally distributed in w^{\perp}
 - noisy discrete Gaussian in direction w.

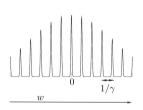
- Secret $w \in \mathbb{R}^n$: $\|w\| = 1$
- Samples $y \in \mathbb{R}^n$:
 - normally distributed in w^{\perp}
 - ▶ noisy discrete Gaussian in direction w.



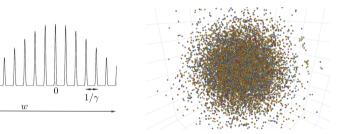
- Secret $w \in \mathbb{R}^n$: $\|w\| = 1$
- Samples $y \in \mathbb{R}^n$:
 - normally distributed in w^{\perp}
 - ▶ noisy discrete Gaussian in direction w.



- Secret $w \in \mathbb{R}^n$: $\|w\| = 1$
- Samples $y \in \mathbb{R}^n$:
 - normally distributed in w^{\perp}
 - ▶ noisy discrete Gaussian in direction w.

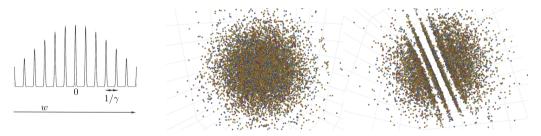


- Secret $w \in \mathbb{R}^n$: $\|w\| = 1$
- Samples $y \in \mathbb{R}^n$:
 - normally distributed in w^{\perp}
 - noisy discrete Gaussian in direction w.



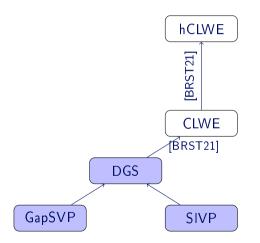
- Secret $w \in \mathbb{R}^n$: $\|w\| = 1$
- Samples $y \in \mathbb{R}^n$:
 - normally distributed in w^{\perp}
 - noisy discrete Gaussian in direction w.

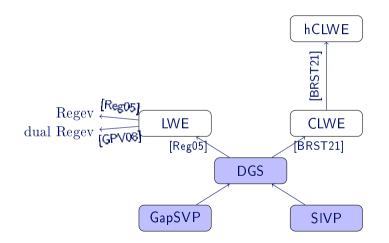
- Secret $w \in \mathbb{R}^n$: $\|w\| = 1$
- Samples $y \in \mathbb{R}^n$:
 - normally distributed in w^{\perp}
 - ▶ noisy discrete Gaussian in direction w.

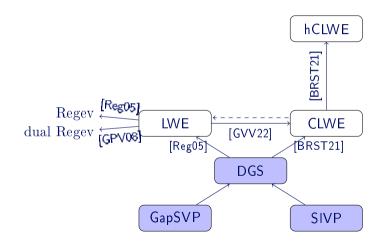


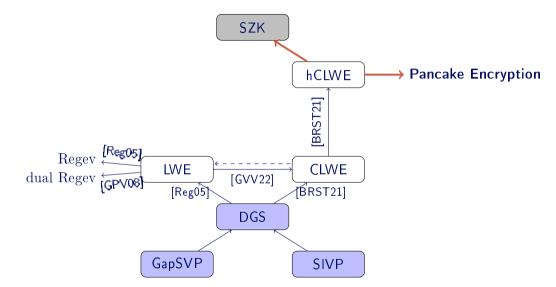
hCLWE assumption

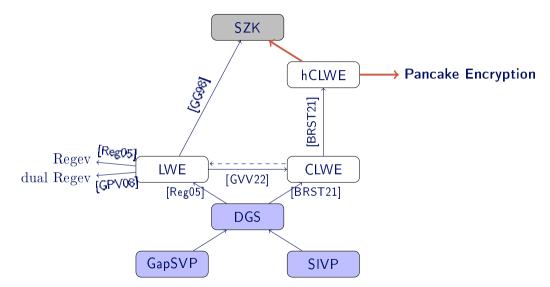
Given a polynomial number of hCLWE samples, it is hard to distinguish them from standard normal samples.







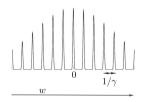




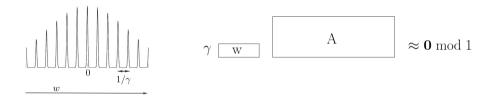
• Secret key: $w \leftarrow \mathbb{R}^n$, $\|w\| = 1$

- Secret key: $w \leftarrow \mathbb{R}^n$, ||w|| = 1
- Public key: $\mathsf{A} \in \mathbb{R}^{n imes m}$ consisting of m hCLWE samples with secret direction w

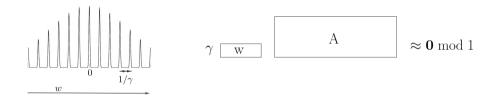
- Secret key: $w \leftarrow \mathbb{R}^n$, ||w|| = 1
- Public key: $\mathsf{A} \in \mathbb{R}^{n imes m}$ consisting of m hCLWE samples with secret direction w



- Secret key: $w \leftarrow \mathbb{R}^n$, ||w|| = 1
- Public key: $\mathsf{A} \in \mathbb{R}^{n imes m}$ consisting of m hCLWE samples with secret direction w

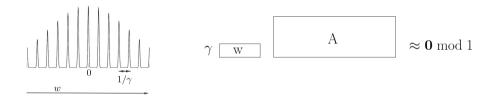


- Secret key: $w \leftarrow \mathbb{R}^n, \|w\| = 1$
- Public key: $\mathsf{A} \in \mathbb{R}^{n imes m}$ consisting of m hCLWE samples with secret direction w



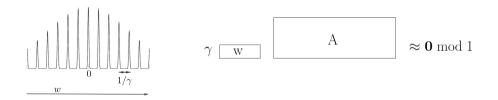
• Enc(0): sample $t \leftarrow {\pm 1}^m$ and output c := round(At)

- Secret key: $w \leftarrow \mathbb{R}^n, \|w\| = 1$
- Public key: $\mathsf{A} \in \mathbb{R}^{n imes m}$ consisting of m hCLWE samples with secret direction w



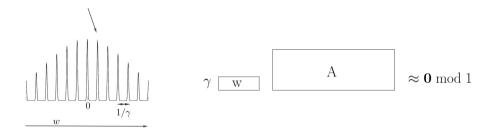
- Enc(0): sample t $\leftarrow \{\pm 1\}^m$ and output $c := \operatorname{round}(At)$
- Enc(1): sample $\mathsf{g} \leftarrow \mathcal{N}(\mathsf{0},m)^n$ and output $c := \operatorname{round}(\mathsf{g})$

- Secret key: $w \leftarrow \mathbb{R}^n, \|w\| = 1$
- Public key: $\mathsf{A} \in \mathbb{R}^{n imes m}$ consisting of m hCLWE samples with secret direction w



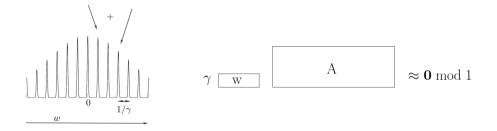
- Enc(0): sample $t \leftarrow {\pm 1}^m$ and output c := round(At)
- Enc(1): sample $\mathsf{g} \leftarrow \mathcal{N}(\mathsf{0},m)^n$ and output $c := \operatorname{round}(\mathsf{g})$
- $\mathsf{Dec}(c)$: $\gamma\langle\mathsf{w},\mathsf{c}
 angle \bmod 1 pprox 0$? If yes: 0 If not: 1

- Secret key: $w \leftarrow \mathbb{R}^n, \|w\| = 1$
- Public key: $\mathsf{A} \in \mathbb{R}^{n imes m}$ consisting of m hCLWE samples with secret direction w



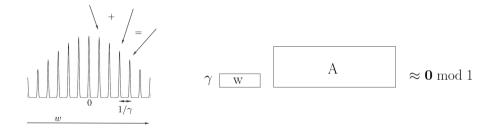
- Enc(0): sample $t \leftarrow {\pm 1}^m$ and output c := round(At)
- Enc(1): sample $g \leftarrow \mathcal{N}(0,m)^n$ and output $c := \operatorname{round}(g)$
- $\mathsf{Dec}(c)$: $\gamma\langle \mathsf{w},\mathsf{c}
 angle \bmod 1 pprox \mathsf{0}$? If yes: $\mathsf{0}$ If not: $\mathsf{1}$

- Secret key: $w \leftarrow \mathbb{R}^n, \|w\| = 1$
- Public key: $\mathsf{A} \in \mathbb{R}^{n imes m}$ consisting of m hCLWE samples with secret direction w



- Enc(0): sample $t \leftarrow {\pm 1}^m$ and output c := round(At)
- Enc(1): sample $g \leftarrow \mathcal{N}(0,m)^n$ and output $c := \operatorname{round}(g)$
- $\mathsf{Dec}(c)$: $\gamma\langle\mathsf{w},\mathsf{c}
 angle \bmod 1 pprox 0$? If yes: 0 If not: 1

- Secret key: $w \leftarrow \mathbb{R}^n$, $\|w\| = 1$
- Public key: $\mathsf{A} \in \mathbb{R}^{n imes m}$ consisting of m hCLWE samples with secret direction w



- Enc(0): sample t $\leftarrow \{\pm 1\}^m$ and output $c := \operatorname{round}(\mathsf{At})$
- Enc(1): sample $\mathsf{g} \leftarrow \mathcal{N}(\mathsf{0},m)^n$ and output $c := \operatorname{round}(\mathsf{g})$
- $\mathsf{Dec}(c)$: $\gamma\langle\mathsf{w},\mathsf{c}
 angle \bmod 1 pprox 0$? If yes: 0 If not: 1

Let A be the public key, t \leftarrow $\{\pm 1\}^m$, N $\leftarrow \mathcal{N}(0,1)^{n \times m}$ and g $\leftarrow \mathcal{N}(0,m)^n$. Then

(A, Enc(0))

(A, Enc(1)).

Let A be the public key, t \leftarrow $\{\pm 1\}^m$, N $\leftarrow \mathcal{N}(0,1)^{n \times m}$ and g $\leftarrow \mathcal{N}(0,m)^n$. Then

 $(\mathsf{A}, \operatorname{Enc}(0)) = (\mathsf{A}, \operatorname{round}(\mathsf{At}))$

(A, Enc(1)).

Let A be the public key, t $\leftarrow \{\pm 1\}^m$, N $\leftarrow \mathcal{N}(0,1)^{n \times m}$ and g $\leftarrow \mathcal{N}(0,m)^n$. Then

$$\begin{split} (\mathsf{A}, \operatorname{Enc}(0)) &= (\mathsf{A}, \operatorname{round}(\mathsf{At})) \\ &\approx_{\operatorname{hCLWE}} (\mathsf{N}, \operatorname{round}(\mathsf{Nt})) \end{split}$$

(A, Enc(1)).

Let A be the public key, $t \leftarrow \{\pm 1\}^m$, $N \leftarrow \mathcal{N}(0,1)^{n \times m}$ and $g \leftarrow \mathcal{N}(0,m)^n$. Then

 $\begin{aligned} (A, \operatorname{Enc}(0)) &= (A, \operatorname{round}(At)) \\ &\approx_{h \in LWE} (N, \operatorname{round}(Nt)) \\ &\approx_{\Delta=0.01} (N, \operatorname{round}(g)) \end{aligned}$ (A, Enc(1)).

Let A be the public key, $t \leftarrow \{\pm 1\}^m$, $N \leftarrow \mathcal{N}(0,1)^{n \times m}$ and $g \leftarrow \mathcal{N}(0,m)^n$. Then

 $\begin{aligned} (\mathsf{A}, \operatorname{Enc}(\mathbf{0})) &= (\mathsf{A}, \operatorname{round}(\mathsf{At})) \\ &\approx_{\operatorname{hCLWE}} (\mathsf{N}, \operatorname{round}(\mathsf{Nt})) \\ &\approx_{\Delta=0.01} (\mathsf{N}, \operatorname{round}(\mathsf{g})) \\ &\approx_{\operatorname{hCLWE}} (\mathsf{A}, \operatorname{round}(\mathsf{g})) = (\mathsf{A}, \operatorname{Enc}(\mathbf{1})). \end{aligned}$

Let A be the public key, t \leftarrow $\{\pm 1\}^m$, N $\leftarrow \mathcal{N}(0,1)^{n \times m}$ and g $\leftarrow \mathcal{N}(0,m)^n$. Then

 $\begin{aligned} (\mathsf{A}, \operatorname{Enc}(\mathbf{0})) &= (\mathsf{A}, \operatorname{round}(\mathsf{At})) \\ &\approx_{\operatorname{hCLWE}} (\mathsf{N}, \operatorname{round}(\mathsf{Nt})) \\ &\approx_{\Delta=0.01} (\mathsf{N}, \operatorname{round}(\mathsf{g})) \\ &\approx_{\operatorname{hCLWE}} (\mathsf{A}, \operatorname{round}(\mathsf{g})) = (\mathsf{A}, \operatorname{Enc}(1)). \end{aligned}$

Proof Strategy

Define a suitable rounding function

Let A be the public key, t $\leftarrow \{\pm 1\}^m$, N $\leftarrow \mathcal{N}(0,1)^{n \times m}$ and g $\leftarrow \mathcal{N}(0,m)^n$. Then

 $\begin{aligned} (\mathsf{A}, \operatorname{Enc}(\mathbf{0})) &= (\mathsf{A}, \operatorname{round}(\mathsf{At})) \\ &\approx_{\operatorname{hCLWE}} (\mathsf{N}, \operatorname{round}(\mathsf{Nt})) \\ &\approx_{\Delta=0.01} (\mathsf{N}, \operatorname{round}(\mathsf{g})) \\ &\approx_{\operatorname{hCLWE}} (\mathsf{A}, \operatorname{round}(\mathsf{g})) = (\mathsf{A}, \operatorname{Enc}(1)). \end{aligned}$

Proof Strategy

- Define a suitable rounding function
- Show that the probability of Nt landing in a set $S = \text{round}^{-1}(c)$ is approximately equal to its Gaussian measure $\mu(S)$ (Gaussian hypercontractivity)

Scheme	Assumption	Dec. error	Sec. error	PK size	SK size
Pancake	hCLWE	O(1/n)	0.01	$\tilde{O}(n^3)$	n

Scheme	Assumption	Dec. error	Sec. error	PK size	SK size
Pancake	hCLWE	O(1/n)	0.01	$\tilde{O}(n^3)$	n
Bimodal	(0, 1/2)-hCLWE	0	0.01	$\tilde{O}(n^3)$	п
Baguette	$hCLWE(\ell)$	$O(1/n^\ell)$	0.01	$\tilde{O}(n^3)$	nl
Discretized [AD97]	hCLWE	O(1/n)	2 ⁻ⁿ	$O(n^3)$	п

	Scheme	Assumption	Dec. error	Sec. error	PK size	SK size
_	Pancake	hCLWE	O(1/n)	0.01	$\tilde{O}(n^3)$	n
	Bimodal	(0, 1/2)-hCLWE	0	0.01	$\tilde{O}(n^3)$	n
	Baguette	$hCLWE(\ell)$	$O(1/n^\ell)$	0.01	$\tilde{O}(n^3)$	nl
	Discretized [AD97]	hCLWE	O(1/n)	2 ⁻ⁿ	$O(n^3)$	п

ightarrow Bimodal + Discretized gives a scheme with perfect decryption and negligible security error.

Scheme	Assumption	Dec. error	Sec. error	PK size	SK size
Pancake	hCLWE	O(1/n)	0.01	$\tilde{O}(n^3)$	п
Bimodal	(0, 1/2)-hCLWE	0	0.01	$\tilde{O}(n^3)$	n
Baguette	$hCLWE(\ell)$	$O(1/n^\ell)$	0.01	$\tilde{O}(n^3)$	nl
Discretized [AD97]	hCLWE	O(1/n)	2 ⁻ⁿ	$O(n^3)$	п

 \rightarrow Bimodal + Discretized gives a scheme with perfect decryption and negligible security error. \rightarrow hCLWE is in the class SZK (statistical zero-knowledge) \rightarrow coNP.

Scheme	Assumption	Dec. error	Sec. error	PK size	SK size
Pancake	hCLWE	O(1/n)	0.01	$\tilde{O}(n^3)$	п
Bimodal	(0, 1/2)-hCLWE	0	0.01	$\tilde{O}(n^3)$	n
Baguette	$hCLWE(\ell)$	$O(1/n^\ell)$	0.01	$\tilde{O}(n^3)$	nl
Discretized [AD97]	hCLWE	O(1/n)	2 ⁻ⁿ	$O(n^3)$	п

 \rightarrow Bimodal + Discretized gives a scheme with perfect decryption and negligible security error. \rightarrow hCLWE is in the class SZK (statistical zero-knowledge) \rightarrow coNP.

Scheme	Assumption	Dec. error	Sec. error	PK size	SK size
Pancake	hCLWE	O(1/n)	0.01	$\tilde{O}(n^3)$	п
Bimodal	(0, 1/2)-hCLWE	0	0.01	$\tilde{O}(n^3)$	n
Baguette	$hCLWE(\ell)$	$O(1/n^\ell)$	0.01	$\tilde{O}(n^3)$	nl
Discretized [AD97]	hCLWE	O(1/n)	2 ⁻ⁿ	$O(n^3)$	п

 \rightarrow Bimodal + Discretized gives a scheme with perfect decryption and negligible security error. \rightarrow hCLWE is in the class SZK (statistical zero-knowledge) \rightarrow coNP.

Open Problems

• Make the PKE schemes more practical

Scheme	Assumption	Dec. error	Sec. error	PK size	SK size
Pancake	hCLWE	O(1/n)	0.01	$\tilde{O}(n^3)$	п
Bimodal	(0, 1/2)-hCLWE	0	0.01	$\tilde{O}(n^3)$	n
Baguette	$hCLWE(\ell)$	$O(1/n^\ell)$	0.01	$\tilde{O}(n^3)$	nl
Discretized [AD97]	hCLWE	O(1/n)	2 ⁻ⁿ	$O(n^3)$	п

 \rightarrow Bimodal + Discretized gives a scheme with perfect decryption and negligible security error. \rightarrow hCLWE is in the class SZK (statistical zero-knowledge) \rightarrow coNP.

- Make the PKE schemes more practical
- Does SZK membership also hold for aperiodic mixtures of Gaussians?

Scheme	Assumption	Dec. error	Sec. error	PK size	SK size
Pancake	hCLWE	O(1/n)	0.01	$\tilde{O}(n^3)$	п
Bimodal	(0, 1/2)-hCLWE	0	0.01	$\tilde{O}(n^3)$	n
Baguette	$hCLWE(\ell)$	$O(1/n^\ell)$	0.01	$\tilde{O}(n^3)$	nl
Discretized [AD97]	hCLWE	O(1/n)	2 ⁻ⁿ	$O(n^3)$	п

 \rightarrow Bimodal + Discretized gives a scheme with perfect decryption and negligible security error. \rightarrow hCLWE is in the class SZK (statistical zero-knowledge) \rightarrow coNP.

- Make the PKE schemes more practical
- Does SZK membership also hold for aperiodic mixtures of Gaussians?
- Reduction from hCLWE to LWE?

Scheme	Assumption	Dec. error	Sec. error	PK size	SK size
Pancake	hCLWE	O(1/n)	0.01	$\tilde{O}(n^3)$	п
Bimodal	(0, 1/2)-hCLWE	0	0.01	$\tilde{O}(n^3)$	n
Baguette	$hCLWE(\ell)$	$O(1/n^\ell)$	0.01	$\tilde{O}(n^3)$	nl
Discretized [AD97]	hCLWE	O(1/n)	2 ⁻ⁿ	$O(n^3)$	п

 \rightarrow Bimodal + Discretized gives a scheme with perfect decryption and negligible security error. \rightarrow hCLWE is in the class SZK (statistical zero-knowledge) \rightarrow coNP.

- Make the PKE schemes more practical
- Does SZK membership also hold for aperiodic mixtures of Gaussians?
- Reduction from hCLWE to LWE?

