Asymptotically Free Broadcast in Constant Expected Time via Packed VSS

Ittai Abraham

VMWare Research

IISC Bangalore

Gilad Asharov

Bar-Ilan University

Shravani Patil

Arpita Patra

IISC Bangalore

Broadcast for perfect MPC is essentially free*!

Broadcast for perfect MPC is essentially free*!

Settings

- Perfect:
 - Computationally unbounded adversary \bullet
 - Zero-probability of error
- Optimal resilience: t < n/3lacksquare

BenOr, Goldwasser, Wigderson 88: P_1 P_2 x_1 x_2 vssvss

Constant round

Constant round

Constant round

= $O(n^3)$ p2p + $O(n^3)$ broadcast

Constant round

= $O(n^3)$ p2p + $O(n^3)$ broadcast

Best we can hope for: $O(n^4)$ total CC

- = $O(n^2)$ p2p + $O(n^2)$ broadcast
 - **Constant round**
 - = $O(n^3)$ p2p + $O(n^3)$ broadcast
- Best we can hope for: $O(n^4)$ total CC

 $n \times BC(n^2)$

for simplicity, counting "words" and not "bits" -> i.e., ignoring $\log n$ factor

Communication Complexity p2p

> Round Complexity

State of the Art: $n \times BC(n^2)$

for simplicity, counting "words" and not "bits" -> i.e., ignoring $\log n$ factor

Communication Complexity p2p

> Round Complexity

Efficient but slow

[CW89,BGP91,Che21]

Fast but inefficient

for simplicity, counting "words" and not "bits" -> i.e., ignoring $\log n$ factor

Communication Complexity p2p

> Round Complexity

Efficient but slow

[CW89,BGP91,Che21]

Fast but inefficient

for simplicity, counting "words" and not "bits" -> i.e., ignoring $\log n$ factor

Communication Complexity p2p

> Round Complexity

Efficient but slow

[CW89,BGP91,Che21]

 $O(n^4)$

Fast but inefficient

for simplicity, counting "words" and not "bits" -> i.e., ignoring $\log n$ factor

Communication Complexity p2p

> Round Complexity

Efficient but slow

[CW89,BGP91,Che21]

 $O(n^4)$

Fast but inefficient

for simplicity, counting "words" and not "bits" -> i.e., ignoring $\log n$ factor

Communication Complexity p2p

> Round Complexity

for simplicity, counting "words" and not "bits" -> i.e., ignoring $\log n$ factor

Strict O(1) rounds is impossible to achieve

Communication Complexity p2p

> Round Complexity

State of the Art: $n \times BC(n^2)$

[FL82] For any protocol, there exists an execution that requires t + 1 rounds

Efficient but slow	Fast but inefficient
[CW89,BGP91,Che21]	[FM88,KK06]
$O(n^4)$	$O(n^6)$

for simplicity, counting "words" and not "bits" -> i.e., ignoring $\log n$ factor

Strict O(1) rounds is impossible to achieve

Communication Complexity p2p

 $n \times BC(n^2)$ $1 \times BC(L)$

Round Complexity

State of the Art: $n \times BC(n^2)$

[FL82] For any protocol, there exists an execution that requires t + 1 rounds

Efficient but slow	Fast but inefficient
[CW89,BGP91,Che21]	[FM88,KK06]
$O(n^4)$	$O(n^6)$
$O(nL + n^2)$	$O(n^2L + n^6)$
$\Theta(n)$	Expected $O(1)$

Instead of \approx 10 rounds we have \approx 3000 rounds

Communication Complexity p2p

 $n \times BC(n^2)$ $1 \times BC(L)$

Round Complexity A circuit with depth 10 and n = 300 participants

Efficient but slow

[CW89,BGP91,Che21]

 $O(n^4)$

$$O(nL + n^2)$$

 $\Theta(n)$

Fast but inefficient

[FM88,KK06]

 $O(n^6)$ $O(n^2L + n^6)$

Expected O(1)

Instead of \approx 10 rounds we have \approx 3000 rounds

Communication Complexity p2p

 $n \times BC(n^2)$ $1 \times BC(L)$

Round Complexity A circuit with depth 10 and n = 300 participants

For n = 300, $n^3 \approx 27 \mathrm{MB}$ $n^5 \approx 2.4$ terabytes!

Efficient but slow

[CW89,BGP91,Che21]

 $O(n^4)$

$$O(nL + n^2)$$

 $\Theta(n)$

Fast but inefficient

[FM88,KK06]

 $O(n^6)$

 $O(n^2L + n^6)$

Expected O(1)

Goal: Better Broadcast

• Parallel broadcast protocol with perfect security and optimal resilience (t < n/3)

- - $n \times BC(L)$: n senders, each broadcasting a message of size L

• Parallel broadcast protocol with perfect security and optimal resilience (t < n/3)

- - $n \times BC(L)$: n senders, each broadcasting a message of size L

• Parallel broadcast protocol with perfect security and optimal resilience (t < n/3)

- - $n \times BC(L)$: n senders, each broadcasting a message of size L
 - $O(n^2L + n^4)$ communication complexity

• Parallel broadcast protocol with perfect security and optimal resilience (t < n/3)

- - $n \times BC(L)$: n senders, each broadcasting a message of size L
 - $O(n^2L + n^4)$ communication complexity
 - Expected O(1) rounds

• Parallel broadcast protocol with perfect security and optimal resilience (t < n/3)

- Parallel broadcast protocol with perfect security and optimal resilience (t < n/3)
 - $n \times BC(L)$: n senders, each broadcasting a message of size L
 - $O(n^2L + n^4)$ communication complexity
 - Expected O(1) rounds

The protocol is balanced!

Main Result

- Parallel broadcast protocol with perfect security and optimal resilience (t < n/3)
 - $n \times BC(L)$: n senders, each broadcasting a message of size L
 - $O(n^2L + n^4)$ communication complexity
 - Expected O(1) rounds

- The protocol is balanced!
- $n \times BC(n^2)$ is essentially free!

- Parallel broadcast protocol with perfect security and optimal resilience (t < n/3)
 - $n \times BC(L)$: n senders, each broadcasting a message of size L
 - $O(n^2L + n^4)$ communication complexity
 - Expected O(1) rounds

 $n \times BC(n^2)$ is essentially free!

 $1 \times BC(L)$:

Main Result

Best we can hope for: $O(n^2L)$ + expected O(1)round

The protocol is balanced!

 $O(nL + n^4)$ communication + expected O(1) rounds

Total CC of

Before

$O(n^6)$

Ours

 $O(n^4)$

n = 300

Each party sends/receives

Over 1gbps

Total CC of $O(n^6)$ $n^5 \approx 2.4$ terabytes Before

Ours

 $O(n^4)$

- n = 300
- Each party sends/receives

Over 1gbps

Each party sends/receives **Total CC of** $O(n^6)$ $n^5 \approx 2.4$ terabytes Before

Ours

 $O(n^4)$

- n = 300

Over 1gbps

5.3 hours

Total CC of Each party sends/receives $O(n^6)$ $n^5 \approx 2.4$ terabytes Before

- n = 300

Over 1gbps

5.3 hours

Total CC of Each party sends/receives $O(n^6)$ $n^5 \approx 2.4$ terabytes Before

- n = 300

- **Over 1gbps**
 - 5.3 hours

200 ms

Total CC of $O(n^6)$ **Before**

- n = 300
- Each party sends/receives

Over 1gbps

 $n^5 \approx 2.4$ terabytes

5.3 hours

200 ms

x90,000 improvement

Perfect MPC in the Broadcast-Hybrid Model

slow	Fast but inefficient
GLS19]	[BGW88, CCD88, GRR98, CDM00, A LR11, A A Y21]

Perfect MPC in the B

d Model	cast-Hybrid	Br
d Model	cast-Hybrid	Br

slow	Fast but inefficie.	Award
GLS19]	[BGW88, CCD88, GRR98, CDM00, A LR11, A A Y21]	

d Model	cast-Hybrid	Br
d Model	cast-Hybrid	Br

slow	Fast but inefficie.	Award
GLS19]	[BGW88, CCD88, GRR98, CDM00, A LR11, A A Y21]	

TCC Test of Time ANDE IN THE Broadcast-Hybrid Model Award! **STOC Test of Time** Efficient but For constant depth circuit [HMP00, BTH08, $O(|C|n + O(n \log n))$ p2p Communication Complexity **Broadcast** Round Complexity

slow	Fast but inefficie.	Award!
GLS19]	[BGW88, CCD88, GRR98, CDM00, A LR11, A A Y21]	
• n ³) n)		

	TCC Test of Time Award!		; in the Broad	lcast	-Hybrid Mod	el
For	constant depth cir	cuit	Efficient but slow [HMP00, BTH08, GLS19]		Fast but inefficient [BGW88, CCD88, GRR98, CDM00, ALR11, AAY21]	Award!
	Communication Complexity	p2p Broadcast	$O(C n+n^3)$ $O(n\log n)$			
	Round Complexity		<i>O</i> (<i>n</i>)			

Due to "player elimination"

	TCC Test of Time Award!		c in the Broad	lcast	-Hybrid Mod	el
For	constant depth cir	cuit	Efficient but slow [HMP00, BTH08, GLS19]		Fast but inefficient [BGW88, CCD88, GRR98, CDM00, ALR11, AAY21]	C Test of Award!
	Communication Complexity	p2p Broadcast	$O(C n+n^3)$ $O(n\log n)$			
	Round Complexity		<i>O</i> (<i>n</i>)		<i>O</i> (1)	

Due to "player elimination"

	TCC Test of Time Award!		c in the Broad	dcast	-Hybrid Mode	2
For	constant depth cir	cuit	Efficient but slow [HMP00, BTH08, GLS19]		Fast but inefficient [BGW88, CCD88, GRR98, CDM00, ALR11, AAY21]	C lest of Award!
	Communication Complexity	p2p Broadcast	$O(C n+n^3)$ $O(n\log n)$		$O(C n^3)$ $O(C n^3)$	
	Round Complexity		<i>O</i> (<i>n</i>)		<i>O</i> (1)	

Due to "player elimination"

Very Slow MPC

Slov inefficie

t but slow	Fast but inefficient
+	+
inefficient	Fast but inefficient
w and ent MPC	Very inefficient MPC

Communication Complexity

> Round Complexity

 $O(|C|n+n^3)$ $O(|C|n+n^7)$ $O(n^2)$

O(n)

Expected

 $O(|C|n^6)$ O(1)

Expected

but slow	Fast but inefficient	Coming up!
+	+	+
oadcast	Our Broadcast	Our Broadcas
and nt MPC	Very inefficient MPC	
$n + n^{5}$)	$O(C n^4)$	
$n + n^{7}$)	$O(C n^6)$	O(C n+r)
(n)	<i>O</i> (1)	<i>O</i> (1)
ected	Expected	Expected
		In submissio

Gradecast

 $O(n^2L)$

Gradecast

 $O(n^2L)$

Gradecast

Gradecast

Moderated VSS: $O(n^2)$ p2p + $O(n^2)$ gradecast

Gradecast

Moderated VSS: $O(n^2)$ p2p + $O(n^2)$ gradecast $O(n^4)$ **p2p**

Gradecast

Moderated VSS: $O(n^2)$ p2p + $O(n^2)$ gradecast $O(n^4)$ **p2p**

Our Improvements: 1. Better Gradecast

Gradecast

 $O(nL+n^3)$

Moderated VSS: $O(n^2)$ p2p + $O(n^2)$ gradecast $O(n^4)$ **p2p**

Our Improvements: 1. Better Gradecast

Gradecast

 $O(nL+n^3)$

Moderated VSS: $O(n^2)$ p2p + $O(n^2)$ gradecast $O(n^4)$ p2p $O(n^3)$

• We show a novel Verifiable Secret Sharing protocol such that:

- We show a novel Verifiable Secret Sharing protocol such that:
- Before: **1 secret** $-O(n^2)$ p2p + $O(n^2)$ broadcast

- We show a novel Verifiable Secret Sharing protocol such that:
- Before: **1 secret** $-O(n^2)$ p2p + $O(n^2)$ broadcast
- Ours: O(n) secrets $-O(n^2)$ p2p + $O(n^2)$ broadcast

- We show a novel Verifiable Secret Sharing protocol such that:
- Before: **1 secret** $-O(n^2)$ p2p + $O(n^2)$ broadcast
- Ours: O(n) secrets $-O(n^2)$ p2p + $O(n^2)$ broadcast

Instead of choosing a bivariate polynomial of degree at most t in x and y, Distribute a polynomial of degree at most 2t in x and degree t in y

- We show a novel Verifiable Secret Sharing protocol such that:
- **1 secret** $O(n^2)$ p2p + $O(n^2)$ broadcast • Before:
- Ours: O(n) secrets $-O(n^2)$ p2p + $O(n^2)$ broadcast

Instead of choosing a bivariate polynomial of degree at most t in x and y, Distribute a polynomial of degree at most 2t in x and degree t in y

O(n) improvement over BGW!

Our Improvements: Better Gradecast Packed VSS 2.

Gradecast

 $O(nL+n^3)$

Moderated VSS: $O(n^2)$ p2p + $O(n^2)$ gradecast $O(n^4)$ p2p $O(n^3)$

Our Improvements: Better Gradecast Packed VSS 2.

Gradecast

 $O(nL+n^3)$

Moderated VSS: $O(n^2)$ p2p + $O(n^2)$ gradecast $O(n^4)$ p2p $O(n^3)$

Conclusions

Conclusions

- $n \times BC(n^2)$ is essentially free!
 - Common communication pattern in MPC protocols
- $1 \times BC(L)$: $O(nL + n^4)$ p2p + expected O(1) rounds
- Packed VSS: O(n) secrets at the cost of 1

Conclusions

- $n \times BC(n^2)$ is essentially free!
 - Common communication pattern in MPC protocols
- $1 \times BC(L)$: $O(nL + n^4)$ p2p + expected O(1) rounds
- Packed VSS: O(n) secrets at the cost of 1

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 891234

