Candidate Trapdoor Claw-Free Functions from Group Actions with Applications to Quantum Protocols

Navid Alamati¹, Giulio Malavolta² and <u>Ahmadreza Rahimi²</u>

1: Visa Research, USA

2: Max Planck Institute for Security and Privacy, Germany

Trapdoor Function:

Trapdoor Function:

Trapdoor Claw Free Function:

 $f_0(x_0) = f_1(x_1) = y$ (x₀, x₁, y) is a claw

Finding a claw is hard!

Trapdoor Claw Free Function with Adaptive Hardcore Bit:

 (x_0, x_1, y) is a **claw** if $f_0(x_0) = f_1(x_1) = y$

Adaptive hardcore bit:

For any $x_0, f_0(x_0)$, we know that: $\exists x_1$ s.t. $f_1(x_1) = f_0(x_0)$ but:

Getting any infromation on x_1 must be hard

More formally:

Hard to find x_0 and binary vector $\mathbf{d} \neq \mathbf{0}$ and bit c s.t.

 $\mathbf{d} \cdot (x_0 \oplus x_1) = c$ and $f_0(x_0) = f_1(x_1)$

Trapdoor Claw Free Function with Adaptive Hardcore Bit:

 (x_0, x_1, y) is a **claw** if $f_0(x_0) = f_1(x_1) = y$

Adaptive hardcore bit:

Hard to find x_0 and binary vector $\mathbf{d} \neq \mathbf{0}$ and bit c s.t.

 $\langle \mathbf{d}, (x_0 \oplus x_1) \rangle = c \text{ and } f_0(x_0) = f_1(x_1)$

Why do we care about this? Finding both pre-image x_b and pair $(\mathbf{d}, \langle \mathbf{d}, (x_0 \oplus x_1) \rangle)$,

is **hard** for any **QPT** adversary.

Applications of TCFs

TCFs have been around for a while.

Some Recent Quantum Applications of TCFs:

- Test of Quantumness/Randomness [BCMVV'18]
- Classical Verification of Quantum Computation [Mah18b]
- Qunamtum Fully Homomorphic Encryption [Mah18a]
- Remote State Preparation [GV19]
- Verifiable Test of Quantumness [BKVV20]
- Proof of Quantumness [KCVY'21]
- Deniable Encryption [CGV22]
- ...

Current Post-Quantum TCFs

What about other **quantum hard** assumptions?

TCFs from isogeny-based **group actions**! *©*

Group Actions: Effective Group Actions

For all $g \in \mathbb{G}$, $x \in \mathbb{X}$, $g \star x$ can be **efficiently** computed.

 $g, h \in \mathbb{G}, x \in \mathbb{X}$: $(g + h) \star x = g \star (h \star x)$

For all $x \in X$, $e \star x = x$ where *e* is identity element of G.

Linear Hidden Shift (LHS) [ADMP'20]

 $n > \log|\mathbb{G}|, \ \ell = poly(\lambda)$

$$\mathbf{u} \qquad \qquad \mathbf{M} \leftarrow_{\$} \mathbb{G}^{\ell \times n} \quad \mathbf{x} \leftarrow_{\$} \mathbb{X}^{\ell} \\ \mathbf{v} \leftarrow_{\$} \{0,1\}^{n} \quad \mathbf{u} \leftarrow_{\$} \mathbb{X}^{\ell} \end{cases}$$

Think of LWE, No noise but action

Components of $Mv \star x$ <u>cannot</u> be combined.

Simple Claw Free Function

★: G×X → X, $n > \log|G|$, Large integer B Goal: two-to-one CF $f: \{0,1\} \times [B]^n \to X^n$

Parameter Generation

 $\mathbf{v} \leftarrow \{0,1\}^n$

 $pp \coloneqq (\mathbf{x} \leftarrow \mathbb{X}^n, \mathbf{M} \leftarrow \mathbb{G}^{n \times n}, \mathbf{M}\mathbf{v} \star \mathbf{x})$ LHS Challengel

Evaluation

For $b \in \{0,1\}$ and $\mathbf{s} \in [B]^n$

 $f_{pp}(b, \mathbf{s}) = \mathbf{M}(\mathbf{s} + b \cdot \mathbf{v}) \star \mathbf{x}$

Claw Free: $f_{pp}(0, \mathbf{s}_0) = f_{pp}(1, \mathbf{s}_1)$ Finding a claw $((0, \mathbf{s}_0), (1, \mathbf{s}_1))$ Breaks LHS!

 $\mathbf{v} = \mathbf{s}_0 - \mathbf{s}_1$

No Trapdoor and hard to argue adaptive HC bit

Adaptive Hardcore Bit				
For <u>any</u> QPT adversary <i>A</i> : arbitrary non zero binary vector				
Finding	(b, \mathbf{s}_b)	d	$\langle {f s}_{1-b}, {f d} angle$	ls <mark>hard</mark> !
	<mark>pre-image</mark>		any information	
where	$f_{pp}(b, \mathbf{s}_b)$) = 1	$f_{pp}(1-b,\mathbf{s}_{1-b})$	

[BCM+'18]: There exists efficient transformation \mathcal{T} :

$$((b, \mathbf{s}_b), \mathbf{d}, \langle \mathbf{s}_{1-b}, \mathbf{d} \rangle) \rightarrow \mathcal{T} \rightarrow (\mathbf{d}', \langle \mathbf{d}', \mathbf{v} \rangle)$$

adaptive hardcore bit \rightarrow any <u>non-trivial</u> parity of **shift vector**

Direct Prodcut Adaptive HC Bit

0

 $\mathbf{v} \leftarrow \{0,1\}^n$ $pp \coloneqq (\mathbf{x} \leftarrow_{\$} \mathbb{X}^n, \mathbf{M} \leftarrow_{\$} \mathbb{G}^{n \times n}, \mathbf{M} \mathbf{v} \star \mathbf{x})$ For $b \in \{0,1\}$ and $\mathbf{s} \in [B]^n$ $f_{pp}(b, \mathbf{s}) = \mathbf{M}(\mathbf{s} + b \cdot \mathbf{v}) \star \mathbf{x}$

Direct Product Adaptive HC bit

For <u>any</u> **QPT** adversary *A*

Given: $(pp_1, \dots, pp_n, f_{pp_1}(\mathbf{v}_1), \dots, f_{pp_n}(\mathbf{v}_n))$ Hard to simultaniously find: $(\mathbf{d}'_1, \langle \mathbf{d}'_1, \mathbf{v}_1 \rangle), \dots, (\mathbf{d}'_n, \langle \mathbf{d}'_n, \mathbf{v}_n \rangle)$

$$((b, \mathbf{s}_b), \mathbf{d}, \langle \mathbf{s}_{1-b}, \mathbf{d} \rangle) \rightarrow \mathcal{T} \rightarrow (\mathbf{d}', \langle \mathbf{d}', \mathbf{v} \rangle)$$

$$f_{pp}(b, \mathbf{s}) \qquad f_{pp'}(\mathbf{v})$$

$$pp' \coloneqq (\mathbf{x} \leftarrow_{\$} \mathbb{X}^{n}, \mathbf{M} \leftarrow_{\$} \mathbb{G}^{n \times n})$$
Adaptive HC bit
For any QPT adversary \mathcal{A}
Given:
$$(pp_1, \cdots, pp_n, f_{pp_1}(\mathbf{v}_1), \cdots, f_{pp_n}(\mathbf{v}_n))$$
Hard to find:
$$(\mathbf{d}'_1, \cdots, \mathbf{d}'_n, \langle \mathbf{d}'_1, \mathbf{v}_1 \rangle \oplus \cdots \oplus \langle \mathbf{d}'_n, \mathbf{v}_n \rangle)$$

Function with Direct Prodcut Adaptive HC Bit

Goal: A function family $f_{pp}: \{0,1\}^n \to Y$ that satisfies **direct product adaptive hardcore bit**.

Theorem: If f is a function family with *correlated pseudorandomness* and there is a corresponding procedure \mathcal{P} for f, then, it satisfies **direct product adaptive hardcore bit** property.

This Work: A Trapdoor Claw Free function family F with procedure \mathcal{P} , from *extended-LHS* assumption.

This Work: A quantum protocol for *qubit test* from our TCF function.

Thank you 😳