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Verifiable Random Functions

Verifiable Random Functions
I Gen(1λ) 7→ (vk, sk)
I Eval(sk, x) 7→ (yx , πx)

I Vfy(vk, x , y, π) 7→ b ∈ {0, 1}
Guarantees:
I Pseudorandomness as for standard PRFs even given vk and Eval queries!
I Unique Provability:

For all possible vk (not necessarily generated by Gen), all preimages x , all images
y1, y2 ∈ G and all possible proofs π1, π2 it holds that

Vfy(vk, x , y1, π1) = 1 ∧ Vfy(vk, x , y2, π2) = 1 =⇒ y1 = y2
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Motivation

Some applications of VRFs
I Resettable ZK proofs
I Lottery systems
I Updatable ZK databases
I Transaction escrow schemes
I E-cash systems
I Blockchain
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Related Work

Selected VRF constructions
Reference |vk| |π| assumption remark
[Lys02] 2λ λ q-type
[DY05] 2 1 q-type small inputs
[HJ16] O(λ) O(λ) DLIN
[Koh19] poly(λ) κ DLIN κ ∈ ω(1)

Do standard assumptions yield VRFs with constant-size proofs?
I In general: ???
I Pairing-based VRF: most constructions use a “consecutive verification” strategy

and images have “rational” form
yx = gT

σx (v1,...,vn)/ρx (v1,...,vn)
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Contributions

Do standard assumptions yield VRFs with constant-size proofs?

Contributions
1. Verification by (consecutive) pairing equations

=⇒ degree of σx and ρx is at most exponential in proof size
2. O(log(λ)) proof size

=⇒ polynomial degree
=⇒ univariate polynomial-size assumption is insufficient

3. O(1) proof size
=⇒ constant degree
=⇒ small-size assumption is insufficient
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Preliminaries

Consecutive Verifiability
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Technical restriction: pi only occurs linearly in Ei (y only linear in Ey)
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Preliminaries

Notation
I 〈g〉 = G // source group
I 〈gT〉 = GT // target group
I e(ga, gb) = gT

ab // pairing operation
I vk = (gv1 , ..., gvn)
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Model

Example [DY05]
I vk = (g1, gv2)
I yx = gT

1/(v2+x) = gT
y

I πx = g1/(v2+x) = gp1

I Vfy(vk, x , y, π) = 1 ⇐⇒
(x+v2)·p1=1︷ ︸︸ ︷

e(vkx
1 · vk2, π) = gT ∧

1·p1=y︷ ︸︸ ︷
e(vk1, π) = y

I q-Diffie-Hellman inversion assumption:
given g, gα, gα2

, ..., gαq compute g1/α

I Verification by a set of “consecutive pairing equations”

I =⇒ Images have “rational” form with small degree:
yx = gT

σx (v1,...,vn)/ρx (v1,...,vn)
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Summary
Summary
I “Consecutive verifiability” =⇒ rational form of VRF image

I Short proofs =⇒ small degree (still exponential)
I Small degree =⇒ univariate assumptions are too weak (algebraic reductions)
I Constant degree =⇒ short assumptions are too weak (generic reductions)

Takeaway
I [Koh19] is essentially optimal w.r.t. the proof size based on DLIN
I To improve [Koh19] inherently different verification strategy is necessary
I Decisional assumptions are inherently stronger than (univariate) computational ones

(relative to algebraic reductions)
I No algebraic analog of the Goldreich-Levin predicate

Thank you!
ia.cr/2022/762
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Formal statements

Theorem
Let p be a superpolynomial group order. Let NICA be a non-interactive computational
assumption of size q ∈ poly(λ). Let n, d , df ∈ poly(λ) and let f1, . . . , fn ∈ Zp[S] be
some polynomials of degree at most df . Let vuf be a rational univariate VUF of
evaluation degree d and internal degree df over n variables relative to the polynomials
f1, . . . , fn.
If there exists an algebraic (tB, εB, r ,Q, 1/(Q + 1))-reduction B from NICA to the weak
Q-selective unpredictability of vuf s.t. Q ≥ q2 + 1 and r ∈ poly(λ), then there exists an
adversaryM that (tM, εM)-breaks NICA with εM ≥ εB − 2−λ and tM ≤ tB + poly(λ).
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Formal statements

Theorem
Let p = p(λ) be a superpolynomial group order. Let NICA be some univariate
DLog-hard assumption with l1, l2, dNICA ∈ poly(λ), and polynomials
r1, . . . , rl1 , t1, . . . , tl2 ∈ Zp[S] of degree at most dNICA. Let n, d , r ∈ poly(λ). Let vrf be
a rational VRF of evaluation degree d with n verification key elements s.t.
∀x ∈ X : σx(~V ) = V1.
If there exists an algebraic (tB, εB, r , 0, 1)-reduction B (that forwards its group
description as part of the verification key) from NICA to the 0-adaptive
pseudorandomness of vrf, then there exists an adversary M that (tM, εM)-breaks
NICA with εM ≥ εB − 2−λ and tM ≤ tB + poly(l2, dNICA, d , log p, r) = tB + poly(λ).
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Formal statements

Theorem
Let vuf be a parametrized rational VUF of evaluation degree dvuf ∈ O(1). Let NICA be
an Uber-assumption of degree dNICA ∈ poly(λ) and of size q ≤

√
log log(w) for some

w ∈ poly(λ).
If NICA is hard and Q > 2 · (1 + log log w) · w2 log(dvuf+1), then there is no generic
reduction that can transform an adversary for the weak Q-selective unpredictability of
vuf to a NICA solver.
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Result
Simplified meta-reduction
polynomial degree =⇒ polynomial-size assumption is insufficient

Meta-reduction: any q-size assumption C to weak Q-selective unpredictability

C M R A

∗

(c0, ..., cQ)← C x0, ..., xQ ← {0, 1}λ

c0, ..., cq c0, ..., cq

vk = (g, gv1)

vk, x0, ..., xQ , y1, π1

,M1

, ..., yQ , πQ

,MQ

y0

s s

s is solution ?

How to simulate an unbounded adversary A with
algebraic representations?
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Result
Simulating A with algebraic representations

1. Compute ζi(V ) := σxi (V )/ρxi (V ) ∈ Zp(V ) as rational polynomial

2. If ζi(V ) are linearly dependent, i.e., ∃α ∈ ZQ+1
p :

∑Q
i=0 ζi(V ) ≡ 0, then predict challenge

image as y0 :=
∏Q

i=1 yαi
i

3. If ζi(V ) are linearly independent, compute α ∈ ZQ
p \ {0} s.t.∑Q

i=1 αiMi = 0 ∈ Z(q+1)×(q+1)
p , then gT

0 =
∏Q

i=1 yαi
i =

∏Q
i=1 gT

αi ζi (v1)

4. Note 0 =
∑Q

i=1 αiζi(v1) ∈ Zp

5. Define “target polynomial” with root v1

ψ(V ) := ρx1(V ) · · · ρxQ (V ) ·
∑Q

i=1
αiζi(V ) (1)

=
∑Q

i=1
αiσxi (V )

∏
i′ 6=i

ρxi′ (V ) ∈ Zp [V ]

(2)

6. Factorize ψ(V ), find sk v1 and compute y0 := Eval(v1, x0)
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