The Price of Verifiability: Lower Bounds for Verifiable Random Functions

<u>Nicholas Brandt</u> Julia Kastner Dennis Hofheinz Akin Ünal

Department of Computer Science ETH Zurich Zurich, Switzerland {nicholas.brandt,hofheinz,julia.kastner,akin.uenal}@inf.ethz.ch

November 10, 2022

Verifiable Random Functions

• Gen
$$(1^{\lambda}) \mapsto (vk, sk)$$

• Eval $(sk, x) \mapsto (\mathbf{y}_x, \pi_x)$

Verifiable Random Functions

▶
$$Gen(1^{\lambda}) \mapsto (vk, sk)$$

- ► Eval(sk, x) \mapsto (y_x, π_x)
- $\blacktriangleright \ \mathsf{Vfy}(\mathsf{vk}, x, \mathbf{y}, \pi) \mapsto b \in \{0, 1\}$

Verifiable Random Functions

Guarantees:

Pseudorandomness as for standard PRFs even given vk and Eval queries!

Verifiable Random Functions

Gen(1^λ) → (vk, sk)
 Eval(sk, x) → (y_x, π_x)
 Vfv(vk, x, y, π) → b ∈ {0, 1}

Guarantees:

- Pseudorandomness as for standard PRFs even given vk and Eval queries!
- Unique Provability:

For all possible vk (not necessarily generated by Gen), all preimages x, all images $y_1, y_2 \in \mathbb{G}$ and all possible proofs π_1, π_2 it holds that

 $\mathsf{Vfy}(\mathsf{vk}, x, \mathbf{y}_1, \pi_1) = 1 \land \mathsf{Vfy}(\mathsf{vk}, x, \mathbf{y}_2, \pi_2) = 1 \implies \mathbf{y}_1 = \mathbf{y}_2$

Motivation

Some applications of VRFs

- Resettable ZK proofs
- Lottery systems
- Updatable ZK databases
- Transaction escrow schemes

E-cash systems

Blockchain

Selected VRF constructions

Reference	vk	$ \pi $	assumption	remark
[Lys02]	2λ	λ	<i>q</i> -type	
[DY05]	2	1	<i>q</i> -type	small inputs
[HJ16]	$O(\lambda)$	$O(\lambda)$	DLIN	
[Koh19]	$\operatorname{poly}(\lambda)$	κ	DLIN	$\kappa\in\omega(1)$

Selected VRF constructions

Reference	vk	$ \pi $	assumption	remark
[Lys02]	2λ	λ	<i>q</i> -type	
[DY05]	2	1	<i>q</i> -type	small inputs
[HJ16]	$O(\lambda)$	$O(\lambda)$	DLIN	
[Koh19]	$\operatorname{poly}(\lambda)$	κ	DLIN	$\kappa\in\omega(1)$

Selected VRF constructions

Reference	vk	$ \pi $	assumption	remark
[Lys02]	2λ	λ	<i>q</i> -type	
[DY05]	2	1	<i>q</i> -type	small inputs
[HJ16]	$O(\lambda)$	$O(\lambda)$	DLIN	
[Koh19]	$\operatorname{poly}(\lambda)$	κ	DLIN	$\kappa\in\omega(1)$

Do standard assumptions yield VRFs with constant-size proofs?

Selected VRF constructions

Reference	vk	$ \pi $	assumption	remark
[Lys02]	2λ	λ	<i>q</i> -type	
[DY05]	2	1	<i>q</i> -type	small inputs
[HJ16]	$O(\lambda)$	$O(\lambda)$	DLIN	
[Koh19]	$\operatorname{poly}(\lambda)$	κ	DLIN	$\kappa\in\omega(1)$

Do standard assumptions yield VRFs with constant-size proofs?

▶ In general: ???

Selected VRF constructions

Reference	vk	$ \pi $	assumption	remark
[Lys02]	2λ	λ	<i>q</i> -type	
[DY05]	2	1	<i>q</i> -type	small inputs
[HJ16]	$O(\lambda)$	$O(\lambda)$	DLIN	
[Koh19]	$\operatorname{poly}(\lambda)$	κ	DLIN	$\kappa\in\omega(1)$

Do standard assumptions yield VRFs with constant-size proofs?

- In general: ???
- Pairing-based VRF:

Selected VRF constructions

Reference	vk	$ \pi $	assumption	remark
[Lys02]	2λ	λ	<i>q</i> -type	
[DY05]	2	1	<i>q</i> -type	small inputs
[HJ16]	$O(\lambda)$	$O(\lambda)$	DLIN	
[Koh19]	$\operatorname{poly}(\lambda)$	κ	DLIN	$\kappa\in\omega(1)$

Do standard assumptions yield VRFs with constant-size proofs?

► In general: ???

▶ Pairing-based VRF: most constructions use a "consecutive verification" strategy

Selected VRF constructions

Reference	vk	$ \pi $	assumption	remark
[Lys02]	2λ	λ	<i>q</i> -type	
[DY05]	2	1	<i>q</i> -type	small inputs
[HJ16]	$O(\lambda)$	$O(\lambda)$	DLIN	
[Koh19]	$\operatorname{poly}(\lambda)$	κ	DLIN	$\kappa\in\omega(1)$

Do standard assumptions yield VRFs with constant-size proofs?

- ► In general: ???
- Pairing-based VRF: most constructions use a "consecutive verification" strategy and images have "rational" form

$$\mathbf{y}_{x} = \mathbf{g}_{\mathbf{T}}^{\sigma_{x}(v_{1},...,v_{n})/\rho_{x}(v_{1},...,v_{n})}$$

Do standard assumptions yield VRFs with constant-size proofs?

Do standard assumptions yield VRFs with constant-size proofs?

Contributions

- 1. Verification by (consecutive) pairing equations
 - \implies degree of $\sigma_{\rm X}$ and $\rho_{\rm X}$ is at most exponential in proof size

Do standard assumptions yield VRFs with constant-size proofs?

Contributions

- 1. Verification by (consecutive) pairing equations
 - \implies degree of $\sigma_{\rm X}$ and $\rho_{\rm X}$ is at most exponential in proof size
- 2. $\mathcal{O}(\log(\lambda))$ proof size
 - \implies polynomial degree
 - \implies univariate polynomial-size assumption is insufficient

Do standard assumptions yield VRFs with constant-size proofs?

Contributions

- 1. Verification by (consecutive) pairing equations
 - \implies degree of $\sigma_{\rm X}$ and $\rho_{\rm X}$ is at most exponential in proof size
- 2. $\mathcal{O}(\log(\lambda))$ proof size
 - \implies polynomial degree
 - \implies univariate polynomial-size assumption is insufficient
- 3. $\mathcal{O}(1)$ proof size
 - $\implies \text{ constant degree}$
 - \implies small-size assumption is insufficient

vk₁
 vk₂
 vk₃

$$\pi_1$$
 π_2
 y

 [v₁]
 [v₂]
 [v₃]
 [p₁]
 [p₂]
 [y]

$$\begin{array}{cccc} \mathsf{vk}_1 & \mathsf{vk}_2 & \mathsf{vk}_3 & \pi_1 \\ [v_1] & [v_2] & [v_3] & [p_1] \end{array} \xrightarrow{} & \begin{bmatrix} \pi_2 & \mathbf{y} \\ [p_2] & [y] \end{bmatrix} \\ E_2(v_1, v_2, v_3, p_1, p_2) = \mathbf{0} \end{array}$$

vk ₁	vk_2	vk ₃	π_1	π_2	У
$[v_1]$	[<i>v</i> ₂]	[<i>v</i> ₃]	$[p_1]$	$[p_2]$	[<i>y</i>]

Consecutive Verifiability

	vk ₁ [<i>v</i> 1]	vk ₂ [<i>v</i> 2]	vk ₃ [<i>v</i> 3]	π_1 [p_1]	π_2 [<i>p</i> 2]	$\rightarrow \begin{array}{c} \mathbf{y} \\ [\mathbf{y}] \end{array}$
--	----------------------------------	----------------------------------	----------------------------------	----------------------	-----------------------	---

 $E_{y}(v_{1}, v_{2}, v_{3}, p_{1}, p_{2}, y) = 0$

vk ₁	vk ₂ [v ₂]	vk ₃ [va]	π_1	π_2	y [v]
[[]]	[12]	[13]	$[P_1]$	$[P_2]$	[y]

Consecutive Verifiability

vk ₁	vk_2	vk ₃	π_1	π_2	У
$[v_1]$	$[v_2]$	[<i>v</i> ₃]	$[p_1]$	$[p_2]$	[<i>y</i>]

Technical restriction: p_i only occurs linearly in E_i (y only linear in E_y)

Notation

 $\langle \mathbf{g} \rangle = \mathbb{G}$ $\langle \mathbf{g}_{\mathsf{T}} \rangle = \mathbb{G}_{\mathsf{T}}$ $e(\mathbf{g}^{a}, \mathbf{g}^{b}) = \mathbf{g}_{\mathsf{T}}^{ab}$ $vk = (\mathbf{g}^{v_{1}}, ..., \mathbf{g}^{v_{n}})$

// source group
 // target group
// pairing operation

•
$$vk = (g^1, g^{v_2})$$

• $y_x = g_T^{1/(v_2+x)} = g_T^y$
• $\pi_x = g^{1/(v_2+x)} = g^{p_1}$

$$\mathbf{v}\mathbf{k} = (\mathbf{g}^1, \mathbf{g}^{v_2})$$

$$\mathbf{y}_x = \mathbf{g}\mathbf{T}^{1/(v_2+x)} = \mathbf{g}\mathbf{T}^y$$

$$\pi_x = \mathbf{g}^{1/(v_2+x)} = \mathbf{g}^{p_1} \qquad \underbrace{(x+v_2) \cdot p_1 = 1}_{\mathbf{e}(\mathbf{v}\mathbf{k}_1^x \cdot \mathbf{v}\mathbf{k}_2, \pi) = \mathbf{g}\mathbf{T}} \wedge \underbrace{\mathbf{e}(\mathbf{v}\mathbf{k}_1, \pi) = \mathbf{y}}_{\mathbf{e}(\mathbf{v}\mathbf{k}_1, \pi) = \mathbf{y}}$$

Example [DY05]

vk = (g¹, g^{v₂})
y_x = g_T<sup>1/(v₂+x) = g_T^y
π_x = g<sup>1/(v₂+x) = g^{p₁} (x+v₂)·p₁=1 Vfy(vk, x, y, π) = 1 ⇔ e(vk₁^x · vk₂, π) = g_T ∧ e(vk₁, π) = y
q-Diffie-Hellman inversion assumption: given g, g^α, g^{α²}, ..., g^{α^q} compute g^{1/α}
</sup></sup>

Verification by a set of "consecutive pairing equations"

Example [DY05]

•
$$vk = (\mathbf{g}^1, \mathbf{g}^{v_2})$$

• $\mathbf{y}_x = \mathbf{g}\mathbf{T}^{1/(v_2+x)} = \mathbf{g}\mathbf{T}^y$
• $\pi_x = \mathbf{g}^{1/(v_2+x)} = \mathbf{g}^{p_1}$ $(x+v_2)\cdot p_1=1$ $(x+v_2)\cdot p_1=1$
• $Vfy(vk, x, \mathbf{y}, \pi) = 1 \iff e(vk_1^x \cdot vk_2, \pi) = \mathbf{g}\mathbf{T} \land e(vk_1, \pi) = \mathbf{y}$
• q -Diffie-Hellman inversion assumption:
given $\mathbf{g}, \mathbf{g}^{\alpha}, \mathbf{g}^{\alpha^2}, ..., \mathbf{g}^{\alpha^q}$ compute $\mathbf{g}^{1/\alpha}$

Verification by a set of "consecutive pairing equations"

- vk = (g¹, g^{v₂})
 y_x = g_T<sup>1/(v₂+x) = g_T^y
 π_x = g^{1/(v₂+x) = g^{p₁} (x+v₂)·p₁=1 (x+v₂)·p₁}</sup>
- Verification by a set of "consecutive pairing equations"
- ► ⇒ Images have "rational" form with small degree: $\mathbf{y}_{x} = \mathbf{g}_{\mathbf{T}}^{\sigma_{x}(v_{1},...,v_{n})/\rho_{x}(v_{1},...,v_{n})}$

Example [DY05] \triangleright vk = ($\mathbf{g}^1, \mathbf{g}^{\nu_2}$) $\mathbf{y}_{x} = \mathbf{g}_{\mathbf{T}}^{1/(v_{2}+x)} = \mathbf{g}_{\mathbf{T}}^{y}$ $\pi_{x} = \mathbf{g}^{1/(v_{2}+x)} = \mathbf{g}^{p_{1}} \underbrace{(x+v_{2})\cdot p_{1}=1}_{\mathbf{e}(\mathsf{vk}_{1}^{x}\cdot\mathsf{vk}_{2},\pi) = \mathbf{g}_{\mathbf{T}}} \wedge \underbrace{\mathbf{e}(\mathsf{vk}_{1},\pi) = y}_{\mathbf{e}(\mathsf{vk}_{1},\pi) = \mathbf{y}}$ ► *q*-Diffie-Hellman inversion assumption: given $\mathbf{g}, \mathbf{g}^{\alpha}, \mathbf{g}^{\alpha^2}, \dots, \mathbf{g}^{\alpha^q}$ compute $\mathbf{g}^{1/\alpha}$ Verification by a set of "consecutive pairing equations" ► ⇒ Images have\"rational" form with small degree: $\mathbf{v}_{\times} = \mathbf{g}_{\mathbf{T}} \dot{\sigma}_{x}(v_{1},...,v_{n})/\dot{\rho}_{x}(v_{1},...,v_{n})$

Summary

 \blacktriangleright "Consecutive verifiability" \implies rational form of VRF image

- \blacktriangleright "Consecutive verifiability" \implies rational form of VRF image
- ► Short proofs ⇒ small degree (still exponential)

- \blacktriangleright "Consecutive verifiability" \implies rational form of VRF image
- ► Short proofs ⇒ small degree (still exponential)
- \blacktriangleright Small degree \implies univariate assumptions are too weak (algebraic reductions)

- \blacktriangleright "Consecutive verifiability" \implies rational form of VRF image
- ► Short proofs ⇒ small degree (still exponential)
- \blacktriangleright Small degree \implies univariate assumptions are too weak (algebraic reductions)
- ▶ Constant degree ⇒ short assumptions are too weak (generic reductions)

Summary

- \blacktriangleright "Consecutive verifiability" \implies rational form of VRF image
- ► Short proofs ⇒ small degree (still exponential)
- Small degree \implies univariate assumptions are too weak (algebraic reductions)
- Constant degree \implies short assumptions are too weak (generic reductions)

Takeaway

▶ [Koh19] is essentially optimal w.r.t. the proof size based on DLIN

Summary

- \blacktriangleright "Consecutive verifiability" \implies rational form of VRF image
- ► Short proofs ⇒ small degree (still exponential)
- Small degree \implies univariate assumptions are too weak (algebraic reductions)
- Constant degree ⇒ short assumptions are too weak (generic reductions)

Takeaway

- ▶ [Koh19] is essentially optimal w.r.t. the proof size based on DLIN
- ▶ To improve [Koh19] inherently different verification strategy is necessary

Summary

- \blacktriangleright "Consecutive verifiability" \implies rational form of VRF image
- ► Short proofs ⇒ small degree (still exponential)
- Small degree \implies univariate assumptions are too weak (algebraic reductions)
- Constant degree ⇒ short assumptions are too weak (generic reductions)

Takeaway

- ▶ [Koh19] is essentially optimal w.r.t. the proof size based on DLIN
- ▶ To improve [Koh19] inherently different verification strategy is necessary
- Decisional assumptions are inherently stronger than (univariate) computational ones (relative to algebraic reductions)

Summary

- \blacktriangleright "Consecutive verifiability" \implies rational form of VRF image
- ► Short proofs ⇒ small degree (still exponential)
- Small degree \implies univariate assumptions are too weak (algebraic reductions)
- Constant degree ⇒ short assumptions are too weak (generic reductions)

Takeaway

- ▶ [Koh19] is essentially optimal w.r.t. the proof size based on DLIN
- ▶ To improve [Koh19] inherently different verification strategy is necessary
- Decisional assumptions are inherently stronger than (univariate) computational ones (relative to algebraic reductions)
- No algebraic analog of the Goldreich-Levin predicate

- \blacktriangleright "Consecutive verifiability" \implies rational form of VRF image
- ► Short proofs ⇒ small degree (still exponential)
- Small degree \implies univariate assumptions are too weak (algebraic reductions)
- ► Constant degree \implies short assu Thank you! ia.cr/2022/762
 - ▶ [Koh19] is essentially optimal w.r.t. the proof size based on DLIN
 - ▶ To improve [Koh19] inherently different verification strategy is necessary
 - Decisional assumptions are inherently stronger than (univariate) computational ones (relative to algebraic reductions)
 - No algebraic analog of the Goldreich-Levin predicate

References I

- Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In S. Vaudenay, editor, precase, volume 3386 of uses, pages 416–431. Springer, Heidelberg, January 2005.
- D. Hofheinz and T. Jager. Verifiable random functions from standard assumptions. In E. Kushilevitz and T. Malkin, editors, recourse pure, volume 9562 of uses, pages 336–362. Springer, Heidelberg, January 2016.
- L. Kohl. Hunting and gathering verifiable random functions from standard assumptions with short proofs. In D. Lin and K. Sako, editors, *Peccent*, volume 11443 of *uses*, pages 408–437. Springer, Heidelberg, April 2019.
- A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH separation. In M. Yung, editor, correct sec, volume 2442 of test, pages 597–612. Springer, Heidelberg, August 2002.

Theorem

Let p be a superpolynomial group order. Let NICA be a non-interactive computational assumption of size $q \in \text{poly}(\lambda)$. Let $n, d, d_f \in \text{poly}(\lambda)$ and let $f_1, \ldots, f_n \in \mathbb{Z}_p[S]$ be some polynomials of degree at most d_f . Let vuf be a rational univariate VUF of evaluation degree d and internal degree d_f over n variables relative to the polynomials f_1, \ldots, f_n .

If there exists an algebraic $(t_{\mathcal{B}}, \epsilon_{\mathcal{B}}, r, Q, 1/(Q+1))$ -reduction \mathcal{B} from NICA to the weak Q-selective unpredictability of vuf s.t. $Q \ge q^2 + 1$ and $r \in \text{poly}(\lambda)$, then there exists an adversary \mathcal{M} that $(t_{\mathcal{M}}, \epsilon_{\mathcal{M}})$ -breaks NICA with $\epsilon_{\mathcal{M}} \ge \epsilon_{\mathcal{B}} - 2^{-\lambda}$ and $t_{\mathcal{M}} \le t_{\mathcal{B}} + \text{poly}(\lambda)$.

Formal statements

Theorem

Let $p = p(\lambda)$ be a superpolynomial group order. Let NICA be some univariate DLog-hard assumption with $l_1, l_2, d_{\text{NICA}} \in \text{poly}(\lambda)$, and polynomials $r_1, \ldots, r_{l_1}, t_1, \ldots, t_{l_2} \in \mathbb{Z}_p[S]$ of degree at most d_{NICA} . Let $n, d, r \in \text{poly}(\lambda)$. Let vrf be a rational VRF of evaluation degree d with n verification key elements s.t. $\forall x \in \mathcal{X} : \sigma_x(\vec{V}) = V_1$. If there exists an algebraic $(t_{\mathcal{B}}, \epsilon_{\mathcal{B}}, r, 0, 1)$ -reduction \mathcal{B} (that forwards its group description as part of the verification key) from NICA to the 0-adaptive

pseudorandomness of vrf, then there exists an adversary \mathcal{M} that $(t_{\mathcal{M}}, \epsilon_{\mathcal{M}})$ -breaks NICA with $\epsilon_{\mathcal{M}} \geq \epsilon_{\mathcal{B}} - 2^{-\lambda}$ and $t_{\mathcal{M}} \leq t_{\mathcal{B}} + \text{poly}(l_2, d_{\text{NICA}}, d, \log p, r) = t_{\mathcal{B}} + \text{poly}(\lambda)$.

Theorem

Let vuf be a parametrized rational VUF of evaluation degree $d_{vuf} \in O(1)$. Let NICA be an Uber-assumption of degree $d_{NICA} \in poly(\lambda)$ and of size $q \leq \sqrt{\log \log(w)}$ for some $w \in poly(\lambda)$. If NICA is hard and $Q > 2 \cdot (1 + \log \log w) \cdot w^{2\log(d_{vuf}+1)}$, then there is no generic reduction that can transform an adversary for the weak Q-selective unpredictability of vuf to a NICA solver.

Simplified meta-reduction

polynomial degree \implies polynomial-size assumption is insufficient

Simplified meta-reduction

polynomial degree \implies polynomial-size assumption is insufficient

С	\mathcal{M}	\mathcal{R} .	A

Simplified meta-reduction

polynomial degree \implies polynomial-size assumption is insufficient

С	\mathcal{M}	\mathcal{R}	\mathcal{A}
$(c_0,,c_Q) \leftarrow C$		$x_0,,x_Q \leftarrow \{0,1\}^\lambda$	

Simplified meta-reduction

polynomial degree \implies polynomial-size assumption is insufficient

Simplified meta-reduction

polynomial degree \implies polynomial-size assumption is insufficient

$$\begin{array}{cccc} \mathcal{C} & \mathcal{M} & \mathcal{R} & \mathcal{A} \\ (c_0,...,c_Q) \leftarrow \mathcal{C} & & & x_0,...,x_Q \leftarrow \{0,1\}^{\lambda} \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\$$

Simplified meta-reduction

polynomial degree \implies polynomial-size assumption is insufficient

Simplified meta-reduction

polynomial degree \implies polynomial-size assumption is insufficient

Simplified meta-reduction

polynomial degree \implies polynomial-size assumption is insufficient

Simplified meta-reduction

polynomial degree \implies polynomial-size assumption is insufficient

s is solution ?

Simplified meta-reduction

polynomial degree \implies polynomial-size assumption is insufficient

Meta-reduction: any q-size assumption C to weak Q-selective unpredictability

How to simulate an unbounded adversary ${\cal A}$ with algebraic representations?

Simplified meta-reduction

polynomial degree \implies polynomial-size assumption is insufficient

Meta-reduction: any q-size assumption C to weak Q-selective unpredictability

How to simulate an unbounded adversary \mathcal{A} with algebraic representations?

Simulating ${\mathcal A}$ with algebraic representations

Simulating ${\mathcal A}$ with algebraic representations

1. Compute $\zeta_i(V) \coloneqq \sigma_{x_i}(V) / \rho_{x_i}(V) \in \mathbb{Z}_p(V)$ as rational polynomial

Simulating ${\mathcal A}$ with algebraic representations

- 1. Compute $\zeta_i(V) \coloneqq \sigma_{x_i}(V) / \rho_{x_i}(V) \in \mathbb{Z}_p(V)$ as rational polynomial
- 2. If $\zeta_i(V)$ are linearly dependent, i.e., $\exists \alpha \in \mathbb{Z}_p^{Q+1} : \sum_{i=0}^Q \zeta_i(V) \equiv 0$, then predict challenge image as $\mathbf{y}_0 := \prod_{i=1}^Q \mathbf{y}_i^{\alpha_i}$

Simulating $\mathcal A$ with algebraic representations

- 1. Compute $\zeta_i(V) \coloneqq \sigma_{x_i}(V) / \rho_{x_i}(V) \in \mathbb{Z}_p(V)$ as rational polynomial
- 2. If $\zeta_i(V)$ are linearly dependent, i.e., $\exists \alpha \in \mathbb{Z}_p^{Q+1} : \sum_{i=0}^Q \zeta_i(V) \equiv 0$, then predict challenge image as $\mathbf{y}_0 \coloneqq \prod_{i=1}^Q \mathbf{y}_i^{\alpha_i}$
- 3. If $\zeta_i(V)$ are linearly independent, compute $\alpha \in \mathbb{Z}_p^Q \setminus \{0\}$ s.t. $\sum_{i=1}^Q \alpha_i M_i = 0 \in \mathbb{Z}_p^{(q+1) \times (q+1)}$, then $\mathbf{g_T}^0 = \prod_{i=1}^Q \mathbf{y}_i^{\alpha_i} = \prod_{i=1}^Q \mathbf{g_T}^{\alpha_i \zeta_i(v_1)}$

Simulating $\mathcal A$ with algebraic representations

- 1. Compute $\zeta_i(V) \coloneqq \sigma_{x_i}(V) / \rho_{x_i}(V) \in \mathbb{Z}_p(V)$ as rational polynomial
- 2. If $\zeta_i(V)$ are linearly dependent, i.e., $\exists \alpha \in \mathbb{Z}_p^{Q+1} : \sum_{i=0}^{Q} \zeta_i(V) \equiv 0$, then predict challenge image as $\mathbf{y}_0 := \prod_{i=1}^{Q} \mathbf{y}_i^{\alpha_i}$
- 3. If $\zeta_i(V)$ are linearly independent, compute $\alpha \in \mathbb{Z}_p^Q \setminus \{0\}$ s.t. $\sum_{i=1}^Q \alpha_i M_i = 0 \in \mathbb{Z}_p^{(q+1) \times (q+1)}$, then $\mathbf{g}_{\mathbf{T}}^0 = \prod_{i=1}^Q \mathbf{y}_i^{\alpha_i} = \prod_{i=1}^Q \mathbf{g}_{\mathbf{T}}^{\alpha_i \zeta_i(\mathbf{v}_1)}$
- 4. Note $0 = \sum_{i=1}^{Q} \alpha_i \zeta_i(\mathbf{v}_1) \in \mathbb{Z}_p$

Simulating $\mathcal A$ with algebraic representations

- 1. Compute $\zeta_i(V) \coloneqq \sigma_{x_i}(V) / \rho_{x_i}(V) \in \mathbb{Z}_p(V)$ as rational polynomial
- 2. If $\zeta_i(V)$ are linearly dependent, i.e., $\exists \alpha \in \mathbb{Z}_p^{Q+1} : \sum_{i=0}^Q \zeta_i(V) \equiv 0$, then predict challenge image as $\mathbf{y}_0 \coloneqq \prod_{i=1}^Q \mathbf{y}_i^{\alpha_i}$
- 3. If $\zeta_i(V)$ are linearly independent, compute $\alpha \in \mathbb{Z}_{\rho}^Q \setminus \{0\}$ s.t. $\sum_{i=1}^Q \alpha_i M_i = 0 \in \mathbb{Z}_{\rho}^{(q+1) \times (q+1)}$, then $\mathbf{g}_{\mathsf{T}}^0 = \prod_{i=1}^Q \mathbf{y}_i^{\alpha_i} = \prod_{i=1}^Q \mathbf{g}_{\mathsf{T}}^{\alpha_i \zeta_i(\mathbf{v}_1)}$
- 4. Note $0 = \sum_{i=1}^{Q} \alpha_i \zeta_i(\mathbf{v}_1) \in \mathbb{Z}_p$
- 5. Define "target polynomial" with root v_1

$$\psi(V) \coloneqq \rho_{x_1}(V) \cdots \rho_{x_Q}(V) \cdot \sum_{i=1}^Q \alpha_i \zeta_i(V)$$
(1)

(2)

Simulating $\mathcal A$ with algebraic representations

- 1. Compute $\zeta_i(V) \coloneqq \sigma_{x_i}(V) / \rho_{x_i}(V) \in \mathbb{Z}_p(V)$ as rational polynomial
- 2. If $\zeta_i(V)$ are linearly dependent, i.e., $\exists \alpha \in \mathbb{Z}_p^{Q+1} : \sum_{i=0}^{Q} \zeta_i(V) \equiv 0$, then predict challenge image as $\mathbf{y}_0 \coloneqq \prod_{i=1}^{Q} \mathbf{y}_i^{\alpha_i}$
- 3. If $\zeta_i(V)$ are linearly independent, compute $\alpha \in \mathbb{Z}_p^Q \setminus \{0\}$ s.t. $\sum_{i=1}^Q \alpha_i M_i = 0 \in \mathbb{Z}_p^{(q+1) \times (q+1)}$, then $\mathbf{g_T}^0 = \prod_{i=1}^Q \mathbf{y}_i^{\alpha_i} = \prod_{i=1}^Q \mathbf{g_T}^{\alpha_i \zeta_i(\mathbf{v}_1)}$
- 4. Note $0 = \sum_{i=1}^{Q} \alpha_i \zeta_i(\mathbf{v}_1) \in \mathbb{Z}_p$
- 5. Define "target polynomial" with root v_1

$$\psi(\mathbf{V}) \coloneqq \rho_{\mathbf{x}_1}(\mathbf{V}) \cdots \rho_{\mathbf{x}_Q}(\mathbf{V}) \cdot \sum_{i=1}^Q \alpha_i \zeta_i(\mathbf{V})$$
(1)

$$= \sum_{i=1}^{Q} \alpha_i \sigma_{x_i}(V) \prod_{i' \neq i} \rho_{x_{i'}}(V) \in \mathbb{Z}_p[V]$$
⁽²⁾

Simulating $\mathcal A$ with algebraic representations

- 1. Compute $\zeta_i(V) \coloneqq \sigma_{x_i}(V) / \rho_{x_i}(V) \in \mathbb{Z}_p(V)$ as rational polynomial
- 2. If $\zeta_i(V)$ are linearly dependent, i.e., $\exists \alpha \in \mathbb{Z}_p^{Q+1} : \sum_{i=0}^{Q} \zeta_i(V) \equiv 0$, then predict challenge image as $\mathbf{y}_0 \coloneqq \prod_{i=1}^{Q} \mathbf{y}_i^{\alpha_i}$
- 3. If $\zeta_i(V)$ are linearly independent, compute $\alpha \in \mathbb{Z}_p^Q \setminus \{0\}$ s.t. $\sum_{i=1}^Q \alpha_i M_i = 0 \in \mathbb{Z}_p^{(q+1) \times (q+1)}$, then $\mathbf{g}_{\mathsf{T}}^0 = \prod_{i=1}^Q \mathbf{y}_i^{\alpha_i} = \prod_{i=1}^Q \mathbf{g}_{\mathsf{T}}^{\alpha_i \zeta_i(\mathbf{v}_1)}$
- 4. Note $0 = \sum_{i=1}^{Q} \alpha_i \zeta_i(\mathbf{v}_1) \in \mathbb{Z}_p$
- 5. Define "target polynomial" with root v_1

$$\psi(V) \coloneqq \rho_{x_1}(V) \cdots \rho_{x_Q}(V) \cdot \sum_{i=1}^Q \alpha_i \zeta_i(V)$$
(1)

$$=\sum_{i=1}^{Q}\alpha_{i}\sigma_{x_{i}}(V)\prod_{i'\neq i}\rho_{x_{i'}}(V)\in\mathbb{Z}_{p}[V]$$
(2)

6. Factorize $\psi(V)$, find sk v_1 and compute $\mathbf{y}_0 \coloneqq \text{Eval}(v_1, x_0)$