
SCALES
MPC with Small Clients and Larger Ephemeral Servers

Anasuya Acharya Bar Ilan University
Carmit Hazay Bar Ilan University
Vladimir Kolesnikov Georgia Institute of Technology
Manoj Prabhakaran Indian Institute of Technology Bombay

1

MPC with Specialized Communication Patterns

[BGG+20,GHK+21,CGG+21,GMPS21,GHM+21,KRY22]

● Large pool of parties
● Short term workers
● Motivated by blockchain platforms

The YOSO Model [GHK+21]

● You Only Speak Once
○ Parties compute a message, erase state, send message to a receiver with unknown ID

● Avoid adaptive corruption
○ by not revealing identity until server sends a message

Existing YOSO protocols require

● Target anonymous channels [BGG+20, GHM+21]
● n-party committees, each with honest majority
● Number of committees proportional to size of computation

2

Our Contributions

● Define SCALES: an Ephemeral Servers model (clients speak twice)

● Construct a SCALES protocol in the semi-honest model using
○ Constant number of servers
○ All-but-one corruption (dishonest majority)
○ Without target anonymous channels (no PKI)

● Define and construct its building-blocks
○ Strong Key-and-Message Homomorphic Encryption
○ Rerandomizable Garbling Schemes
○ Incremental Decomposable Randomized Encodings

3

Also used to fix a gap in the proof
of multi-hop FHE [GHV10]

Outline ● SCALES
● Rerandomizable Garbling Schemes
● Construction - RGCs
● A SCALES protocol

4

SCALES - the model

Server Pool

5

SCALES - the model

Server Pool

5

SCALES - the model

Server Pool Clients

5

SCALES - the model

Server Pool Clients

x1

x2

…

xm

5

SCALES - the model

Server Pool Clients

x1

x2

…

xm

Append-only Bulletin Board

5

SCALES - the model

Server Pool Clients

x1

x2

…

xm

5

SCALES - the model

Server Pool Clients

x1

x2

…

xm

5

SCALES - the model

Server Pool Clients

x1

x2

…

xm

5

SCALES - the model

Server Pool Clients

x1

x2

…

xm

5

SCALES - the model

Server Pool Clients

x1

x2

…

xm

5

SCALES - the model

Server Pool Clients

x1

x2

…

xm

5

SCALES - the model

Server Pool Clients

public decoding: f(x)
x1

x2

…

xm

5

Semi-Honest Security

6

Servers Clients

YOSO-style Adaptive Corruption

All-but-one Corruption
(dishonest majority)

Adaptive Corruption

No restrictions
(can collude with the servers)

Features of a SCALES Protocol

7

Ephemeral Servers Small Clients

One honest server overall

Constant number of servers

One message per server

Compatible with just-in-time
random self-selection

Computation proportional to its
own input size and number of
servers – independent of the full
circuit or number of clients

Can dynamically control when the
protocol ends (by choosing when
to post the second message)

Public Output Decoding

Outline ● SCALES
● Rerandomizable Garbling Schemes
● Construction - RGCs
● A SCALES protocol

8

Rerandomizable Garbling Schemes [BHR12]

Garbler Evaluator

X

9

f

x

f(x)F

e Encoder
(projection)

Encoder
(projection)

Rerandomizable Garbling Schemes
What we want:

Garbler Evaluator
F

X

9

f f(x)

e

Rerandomizer
F’

𝛑

𝛑(e)

x

Rerandomizable Garbling Schemes
What we want:

Garbler Evaluator
F

X

9

f f(x)

e

Rerandomizer
F’

𝛑

𝛑(e) Encoder
(projection)

x

Is (F’,X) a
fresh garbling

of f, x?

Outline
● SCALES
● Rerandomizable Garbling Schemes
● Construction - RGCs
● A SCALES protocol

12

Rerandomizing a GC [GHV10]

14

Rerandomizing a GC [GHV10]

15

Recall: Each ciphertext in a garbled gate encrypts an output wire label under two input wire labels

To randomize: use Homomorphic Encryption

Rerandomizing a GC [GHV10]

15

To randomize: use Homomorphic Encryption

Rerandomizing a GC [GHV10]

15

To randomize: use Homomorphic Encryption

Transform key and message:
Key & Message Homom. Enc.

Rerandomizing a GC [GHV10]

15

To randomize: use Homomorphic Encryption

Transform key and message:
Key & Message Homom. Enc.

Rerandomizable Garbling Schemes
Also need to specify how input labels are transformed (𝛑)

Garbler Evaluator
F

X

16

f f(x)

e

Rerandomizer
F’

𝛑

𝛑(e) Encoder
(projection)

x

Is (F’,X) a
fresh garbling

of f, x?

Input Label Transformation

17

Used as the actual input labels

Input Label Transformation

17

Input Label Transformation

17

Outline ● MPC with Ephemeral Servers
● Rerandomizable Garbling Schemes
● Construction - RGCs
● A SCALES protocol

21

From RGS to SCALES
Building block 1: 2-round OT

Receiver Sender

input: b s1, s2

OT1(b) → m1, aux

m1

OT2(m1, s1, s2) → m2

m2

OTfin(m2, aux) → sb

22

From RGS to SCALES
Building block 1: 2-round OT

Receiver Sender

input: b s1, s2

OT1(b) → m1, aux

m1

OT2(m1, s1, s2) → m2

m2

OTfin(m2, aux) → sb

Building block 2: KMHE

22

Server Pool Clients

OT1(xi) → m1i, aux

m1i

From RGS to SCALES

x1

x2

…

xm

23

Server Pool Clients

m1i

Gb(f,r) → F, e
for all labels L in e, sample k ← K

Enc(k, L)
OT2(m1i , ki0 , ki1) → m2i1

From RGS to SCALES

x1

x2

…

xm

23

Server Pool Clients

m1i

Gb(f,r) → F, e
for all labels L in e, sample k ← K

Enc(k, L)
OT2(m1i , ki0 , ki1) → m2i1

post: F, all Enc(k,L),
all m2i1

From RGS to SCALES

x1

x2

…

xm

23

Server Pool Clients

m1i

Rerand(F,r’) → F’, π
for all functions g in π, sample f ← Fkey

Eval(c, f, g)
OT2(m1i , fi0 , fi1) → m2ij

post: F’, all Eval(c, f, g),
all m2ij

From RGS to SCALES

x1

x2

…

xm

23

Server Pool Clients

for all m2ij, OTfin(m2ij, aux) → kxi / fij

compute k = fid(... (fi1(kxi)))
decrypt L’ = Dec(k , c’)

post L’

From RGS to SCALES

x1

x2

…

xm

23

Server Pool Clients

public decoding:

using X’ = { L’ } and final F’,
Ev(X’,F’) = f(x)

From RGS to SCALES

x1

x2

…

xm

23

Performance Comparison
SCALES YOSO

Setup Bulletin-Board Target-Anonymous Channels, PKI

Communication:
clients
servers
number of rounds

2
1
constant

1
1
computation size

Computation:
Clients
servers

number of servers
computation size

committee size
committee size

Corruption (adaptive):
servers
clients

all-but-one
arbitrary

honest majority in each committee
arbitrary

Number of servers constant proportional to computation size
25

Open Problems

26

Better KMHE schemes

Stronger security (malicious, GOD)

Sublinear RCS

Information theoretic iDRE

