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MPC with Specialized Communication Patterns

[BGG+20,GHK+21,CGG+21,GMPS21,GHM+21,KRY22]

● Large pool of parties
● Short term workers
● Motivated by blockchain platforms



The YOSO Model [GHK+21]

● You Only Speak Once
○ Parties compute a message, erase state, send message to a receiver with unknown ID

● Avoid adaptive corruption
○ by not revealing identity until server sends a message

Existing YOSO protocols require

● Target anonymous channels [BGG+20, GHM+21]
● n-party committees, each with honest majority
● Number of committees proportional to size of computation
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Our Contributions

● Define SCALES: an Ephemeral Servers model (clients speak twice)

● Construct a SCALES protocol in the semi-honest model using
○ Constant number of servers
○ All-but-one corruption (dishonest majority)
○ Without target anonymous channels (no PKI)

● Define and construct its building-blocks
○ Strong Key-and-Message Homomorphic Encryption
○ Rerandomizable Garbling Schemes
○ Incremental Decomposable Randomized Encodings
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Also used to fix a gap in the proof 
of multi-hop FHE [GHV10]



Outline ● SCALES
● Rerandomizable Garbling Schemes
● Construction - RGCs
● A SCALES protocol
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SCALES - the model

Server Pool
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SCALES - the model
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Semi-Honest Security
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Servers Clients

YOSO-style Adaptive Corruption

All-but-one Corruption 
(dishonest majority)

Adaptive Corruption 

No restrictions 
(can collude with the servers)



Features of a SCALES Protocol
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Ephemeral Servers Small Clients

One honest server overall

Constant number of servers

One message per server

Compatible with just-in-time 
random self-selection

Computation proportional to its 
own input size and number of 
servers – independent of the full 
circuit or number of clients

Can dynamically control when the 
protocol ends (by choosing when 
to post the second message)

Public Output Decoding



Outline ● SCALES
● Rerandomizable Garbling Schemes
● Construction - RGCs
● A SCALES protocol
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Rerandomizable Garbling Schemes [BHR12]

Garbler Evaluator

X
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Encoder
(projection)

Rerandomizable Garbling Schemes
What we want:

Garbler Evaluator
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X
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Rerandomizable Garbling Schemes
What we want:

Garbler Evaluator
F
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𝛑(e) Encoder
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Is (F’,X) a 
fresh garbling 

of f, x?



Outline
● SCALES
● Rerandomizable Garbling Schemes
● Construction - RGCs
● A SCALES protocol
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Rerandomizing a GC [GHV10]
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Rerandomizing a GC [GHV10]
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Recall: Each ciphertext in a garbled gate encrypts an output wire label under two input wire labels

To randomize: use Homomorphic Encryption
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Rerandomizing a GC [GHV10]
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To randomize: use Homomorphic Encryption

Transform key and message: 
Key & Message Homom. Enc.



Rerandomizable Garbling Schemes
Also need to specify how input labels are transformed (𝛑)

Garbler Evaluator
F

X
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Input Label Transformation
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Used as the actual input labels



Input Label Transformation
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Input Label Transformation
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Outline ● MPC with Ephemeral Servers
● Rerandomizable Garbling Schemes
● Construction - RGCs
● A SCALES protocol
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From RGS to SCALES
Building block 1: 2-round OT

Receiver Sender

input: b s1, s2

OT1(b) → m1, aux

m1

OT2( m1, s1, s2 ) → m2

m2

OTfin( m2, aux ) → sb
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From RGS to SCALES
Building block 1: 2-round OT

Receiver Sender

input: b s1, s2

OT1(b) → m1, aux

m1

OT2( m1, s1, s2 ) → m2

m2

OTfin( m2, aux ) → sb

Building block 2: KMHE
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Server Pool Clients

OT1(xi) → m1i, aux

m1i

From RGS to SCALES

x1

x2

…

xm

23



Server Pool Clients

m1i

Gb(f,r) → F, e
for all labels L in e, sample k ← K

Enc(k, L)
OT2(m1i , ki0 , ki1 ) → m2i1
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Server Pool Clients

m1i

Gb(f,r) → F, e
for all labels L in e, sample k ← K

Enc(k, L)
OT2(m1i , ki0 , ki1 ) → m2i1

post: F, all Enc(k,L),
all m2i1

From RGS to SCALES

x1

x2

…

xm

23



Server Pool Clients

m1i

Rerand(F,r’) → F’, π
for all functions g in π, sample f ← Fkey

Eval(c, f, g)
OT2(m1i , fi0 , fi1 ) → m2ij

post: F’, all Eval(c, f, g),
all m2ij

From RGS to SCALES

x1

x2

…

xm
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Server Pool Clients

for all m2ij, OTfin( m2ij, aux) → kxi / fij

compute k = fid(... ( fi1( kxi )) )
decrypt L’ = Dec( k , c’)

post L’

From RGS to SCALES

x1

x2

…

xm
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Server Pool Clients

public decoding: 

using X’ = { L’ } and final F’,
Ev(X’,F’) = f(x)

From RGS to SCALES

x1

x2

…

xm
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Performance Comparison
SCALES YOSO

Setup Bulletin-Board Target-Anonymous Channels, PKI

Communication:
clients
servers
number of rounds

2
1
constant

1
1
computation size

Computation:
Clients
servers

number of servers
computation size

committee size
committee size

Corruption (adaptive):
servers
clients

all-but-one
arbitrary

honest majority in each committee
arbitrary

Number of servers constant proportional to computation size
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Open Problems
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Better KMHE schemes

Stronger security (malicious, GOD)

Sublinear RCS

Information theoretic iDRE


