
A Constant-time AVX2 Implementation of a
Variant of ROLLO

Tung Chou, Jin-Han Liou

Academia Sinica

September 15, 2022



ROLLO as a NISTPQC candidate

• A code-based KEM but in “rank-metric”

• Did not enter the 3rd round because of new algebraic attacks.

• See “Improvements of algebraic attacks for solving the rank
decoding and minrank problem”, Asiacrypt 2020

• The ROLLO team proposed larger parameter sets.

• “NTRU-like” as BIKE.

• Small public keys due to the ring structure.

• No fast constant-time software.

1



Construction

• The ring is F2mn .

• Support: the F2-linear subspace spanned by the coefficients
in F2m .

• Rank weight: dimension of support.

• A secret key is of the form (h0, h1) ∈ F2
2mn . Each hi is of low

rank weight.

• The public key is h = h1/h0 ∈ F2mn .

• Encapsulation: c = e0 + h · e1 ∈ F2mn with low-weight ei ’s.

• Decapsulation: Compute h0c = h0e0 + h1e1. Use RSR to

compute Support(e0, e1).

2



Main optimizations techniques

1 Using RSR+ instead if RSR

2 Fast constant-time generation of and multiplications by

low-weight elements in F2mn

3 Fast constant-time Zassenhaus algorithm:

• Gaussian elimination

• Retrieval of intersection

• The techniques can be used for ROLLO also.

• Similar techniques can be used for embedded systems.

3



RSR versus RSR+

4



Field multiplications and generation of low-weight elements

• We often need to perform multiplications with “low-weight”
elements

α1β1 + α2β2 + · · ·+ αdβd ∈ F2mn ,

where αi ∈ F2n and βi ∈ F2m .

• Generating low-weight elements → generating αi ’s and βi ’s
and check the ranks by Gaussian elimination.

• We deal with βi ’s first and then αi ’s using matrix
transposition.

F2m

F2m

F2m

F2m

·βi

F2nF2nF2nF2n ·αi

5



Field multiplications and generation of low-weight elements

• We often need to perform multiplications with “low-weight”
elements

α1β1 + α2β2 + · · ·+ αdβd ∈ F2mn ,

where αi ∈ F2n and βi ∈ F2m .

• Generating low-weight elements → generating αi ’s and βi ’s
and check the ranks by Gaussian elimination.

• We deal with βi ’s first and then αi ’s using matrix
transposition.

F2m

F2m

F2m

F2m

·βi

F2nF2nF2nF2n ·αi

5



Computing intersection of linear subspaces

• The Zassenhaus algorithm: given matrices U and V , compute

RowSpace(U) ∩ RowSpace(V )

• Compute

Z =

(
U U
V 0

)
• Row reduce Z to

Z ′ =

A C
0 B
0 0


• Then the intersection is RowSpace(B).

• How to carry out Gaussian elimination? How to extract B?

6



Gaussian elimination

Input: A ∈ Fµ×ν
2 .

1 Set p = 1.

2 Set v to the logical OR of Ap, . . . ,Aµ.

3 Find the index j of the first nonzero entry in v . If v = 0, set j to
any value in {1, . . . , ν}.

4 For i ∈ {p + 1, . . . µ}, Ap ← Ap + Ai · (1− Ap,j).

5 For i ∈ {1, . . . , µ} \ {p}, Ai ← Ai + Ap · Ai,j .

6 If p + 1 ≤ min(µ, ν), increase p by 1 and go back to Step 2.

Made constant-time with intrinsics such as
mm256 movemask epi8, tzcnt u64 and
mm256 permutevar8x32 epi32.

7



Retrieval of the intersection

B

B

B

∆

∆

Let Z (L),Z (R) be the left, right parts of the matrix.

1 if Z
(L)
i 6= 0 and Z

(L)
i+∆ = 0, set Z

(R)
i to Z

(R)
i+∆.

2 if Z
(L)
i 6= 0 and Z

(L)
i+∆ 6= 0, set Z

(R)
i to 0.

8



Performance and notes

instance key gen. encap. decap level reference

ROLLO-I-128
11034623 984432 9775241

1 Aguilar-Melchor et al.
11204649 320835 9744693

ROLLO+-I-128 851823 30361 673666 1
this paperROLLO+-I-192 980860 38748 878398 3

ROLLO+-I-256 1477519 55353 1635966 5

ROLLO+-II-128 4663096 70621 876533 1
this paperROLLO+-II-192 4058419 94138 1060271 3

ROLLO+-II-256 4947630 90021 1497315 5

bikel1 589625 114256 1643551 1
Chen-Chou-Krausz

bikel3 1668511 267644 5128078 3

Table: Cycle counts on Intel Skylake and Coffe Lake

9


