A Constant-time AVX2 Implementation of a Variant of ROLLO

Tung Chou, Jin-Han Liou

Academia Sinica

September 15, 2022

ROLLO as a NISTPQC candidate

- A code-based KEM but in "rank-metric"
- Did not enter the 3rd round because of new algebraic attacks.
 - See "Improvements of algebraic attacks for solving the rank decoding and minrank problem", Asiacrypt 2020
- The ROLLO team proposed larger parameter sets.
- "NTRU-like" as BIKE.
- Small public keys due to the ring structure.
- No fast constant-time software.

Construction

- The ring is $\mathbb{F}_{2^{mn}}$.
- **Support**: the \mathbb{F}_2 -linear subspace spanned by the coefficients in \mathbb{F}_{2^m} .
- Rank weight: dimension of support.
- A secret key is of the form (h₀, h₁) ∈ 𝔽²_{2mn}. Each h_i is of low rank weight.
- The public key is $h = h_1/h_0 \in \mathbb{F}_{2^{mn}}$.
- Encapsulation: $c = e_0 + h \cdot e_1 \in \mathbb{F}_{2^{mn}}$ with low-weight e_i 's.
- Decapsulation: Compute h₀c = h₀e₀ + h₁e₁. Use RSR to compute Support(e₀, e₁).

Main optimizations techniques

- 1 Using RSR+ instead if RSR
- Past constant-time generation of and multiplications by low-weight elements in F_{2mn}
- 3 Fast constant-time Zassenhaus algorithm:
 - Gaussian elimination
 - Retrieval of intersection
- The techniques can be used for ROLLO also.
- Similar techniques can be used for embedded systems.

RSR versus RSR+

Algorithm 2 Rank Support Recover (RSR) algorithm

Parameters: m, n, d, r ∈ Z.
Input: An F₂-subspace F of dimension d in F_{2^m}, represented as (f₁,..., f_d) ∈ F^d_{2^m} such that F = ⟨f₁,..., f_d⟩, and s = ∑ⁿ⁻¹_{i=0} s_iyⁱ ∈ F_{2^{mn}}.
Output: An F₂-subspace E of F_{2^m}.
1: Compute S = ⟨s₀,..., s_{n-1}⟩.

- 2: $E \leftarrow \bigcap_{i=1}^{d} f_i^{-1}S$
- 3: return E

Algorithm 3 RSR⁺ algorithm

Parameters: $m, n, d, r \in \mathbb{Z}$. **Input:** An \mathbb{F}_2 -subspace F of dimension d in \mathbb{F}_{2^m} , represented as $(f_1, \ldots, f_d) \in \mathbb{F}_{2^m}^d$ such that $F = \langle f_1, \ldots, f_d \rangle$, and $s = \sum_{i=0}^{n-1} s_i y^i \in \mathbb{F}_{2^{mn}}$. **Output:** An \mathbb{F}_2 -subspace E of \mathbb{F}_{2^m} or \bot .

1: Compute $S = \langle s_0, \dots, s_{n-1} \rangle$. 2: $E \leftarrow \bigcap_{i=1}^{d} f_i^{-1} S$ 3: if dim $(S) \leq dr$ then 4: return E5: else 6: return \perp 7: end if

Field multiplications and generation of low-weight elements

• We often need to perform multiplications with "low-weight" elements

$$\alpha_1\beta_1 + \alpha_2\beta_2 + \dots + \alpha_d\beta_d \in \mathbb{F}_{2^{mn}},$$

where $\alpha_i \in \mathbb{F}_{2^n}$ and $\beta_i \in \mathbb{F}_{2^m}$.

- Generating low-weight elements \rightarrow generating α_i 's and β_i 's and check the ranks by Gaussian elimination.
- We deal with β_i 's first and then α_i 's using matrix transposition.

$$\frac{\mathbb{F}_{2^m}}{\mathbb{F}_{2^m}}\cdot\beta_1$$
$$\frac{\mathbb{F}_{2^m}}{\mathbb{F}_{2^m}}$$

Field multiplications and generation of low-weight elements

• We often need to perform multiplications with "low-weight" elements

$$\alpha_1\beta_1 + \alpha_2\beta_2 + \dots + \alpha_d\beta_d \in \mathbb{F}_{2^{mn}},$$

where $\alpha_i \in \mathbb{F}_{2^n}$ and $\beta_i \in \mathbb{F}_{2^m}$.

- Generating low-weight elements \rightarrow generating α_i 's and β_i 's and check the ranks by Gaussian elimination.
- We deal with β_i 's first and then α_i 's using matrix transposition.

Computing intersection of linear subspaces

• The Zassenhaus algorithm: given matrices U and V, compute

 $\mathsf{RowSpace}(U) \cap \mathsf{RowSpace}(V)$

Compute

$$Z = \begin{pmatrix} U & U \\ V & 0 \end{pmatrix}$$

• Row reduce Z to

$$Z' = \begin{pmatrix} A & C \\ 0 & B \\ 0 & 0 \end{pmatrix}$$

- Then the intersection is RowSpace(*B*).
- How to carry out Gaussian elimination? How to extract B?

Gaussian elimination

Input: $A \in \mathbb{F}_2^{\mu \times \nu}$.

1 Set p = 1.

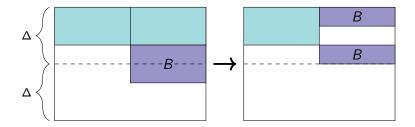
- **2** Set v to the logical OR of A_p, \ldots, A_{μ} .
- Sind the index j of the first nonzero entry in v. If v = 0, set j to any value in {1,..., v}.

5 For
$$i \in \{1, \ldots, \mu\} \setminus \{p\}, A_i \leftarrow A_i + A_p \cdot A_{i,j}$$
.

6 If $p + 1 \le \min(\mu, \nu)$, increase p by 1 and go back to Step 2.

Made constant-time with intrinsics such as _mm256_movemask_epi8, _tzcnt_u64 and _mm256_permutevar8x32_epi32.

Retrieval of the intersection



Let $Z^{(L)}, Z^{(R)}$ be the left, right parts of the matrix.

1 if
$$Z_i^{(L)} \neq 0$$
 and $Z_{i+\Delta}^{(L)} = 0$, set $Z_i^{(R)}$ to $Z_{i+\Delta}^{(R)}$.
2 if $Z_i^{(L)} \neq 0$ and $Z_{i+\Delta}^{(L)} \neq 0$, set $Z_i^{(R)}$ to 0.

Performance and notes

instance	key gen.	encap.	decap	level	reference
ROLLO-I-128	11034623	984432	9775241	1	Aguilar-Melchor et al.
	11204649	320835	9744693		
ROLLO ⁺ -I-128	851823	30361	673666	1	this paper
ROLLO ⁺ -I-192	980860	38748	878398	3	
ROLLO ⁺ -I-256	1477519	55353	1635966	5	
ROLLO ⁺ -II-128	4663096	70621	876533	1	
ROLLO ⁺ -II-192	4058419	94138	1060271	3	this paper
ROLLO ⁺ -II-256	4947630	90021	1497315	5	
bikel1	589625	114256	1643551	1	Chen-Chou-Krausz
bikel3	1668511	267644	5128078	3	

Table: Cycle counts on Intel Skylake and Coffe Lake