MIRACLE: MIcRo-ArChitectural Leakage Evaluation A study of micro-architectural power leakage across many devices

Ben Marshall^{1,2}, Dan Page¹ and James Webb¹

¹ Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK. {ben.marshall,daniel.page,james.webb}@bristol.ac.uk ² POShield Ltd. Oxford. UK.

ben.marshall@pgshield.com

Outline

- Context
- What We Set Out To Ask
- What We Did
- Selected Results
- Selected Outcomes & Recommendations
- Room For Improvement
- What Next
- Questions?

Context - Some Background

- We all want secure computing & communication, cheaply & quickly.
- It's a multi-dimensional problem.
- Security models rely on abstractions like HW / ISA / SW.
- Good abstractions enable formal reasoning & proofs of security *over that abstraction*.
- Unless the abstraction captures everything necessary to model threats, you can't prove security.
- Does the abstraction actually hold for the implementation?

Context - What's the problem?

- The ISA is an excellent abstraction for functionality, but leaks implementation details.
- Without being able to build good abstractions, it's harder to reason about security / correctness.
- Start by understanding what the abstraction does (not) capture.
- In the past, we've looked at power side-channels mostly in the context of just one device...
- We can't model security without being able to understand the abstractions we rely on.

Goals: What did we set out to achieve?

- Understand the ISA abstraction from the perspective of micro-architectural power leakage.
- Try to replicate "folklore" and past results from previous works.
- See if we can use our knowledge of CPU design to find new effects.
- See if these effects are present across a range of devices.
- Create a suite of "micro-benchmarks" which can be reused across new devices to find effects and qualify models.
- Qualitatively assess how different devices will leak differently.
- Create a framework for understanding and presenting all of this.
 - (A paper was *not* a good way of doing it...)

Context: (Some) Related Work

ROSITA: Towards Automatic Elimination of Power-Analysis Leakage in Ciphers

Madura A. Shelton University of Adelaide madura.shelton@adelaide.edu.au Niels Samwel Radboud University

Francesco Regazzoni University of Amsterdam and ALaRI – USI f.regazzoni@uva.nl, regazzoni@alari.ch Markus Wagner University of Adelaide markus wagner@adelaide.edu.au

Yuval Yarom University of Adelaide and Data61 yval@cs.adelaide.edu.au

Lejla Batina Radboud University

leila@cs.ru.nl

Mind the Gap: Towards Secure 1st-order Masking in Software

Kostas Papagiannopoulos¹* and Nikita Veshchikov²**

¹ Radboud Universiteit, Nijmegen, Netherlands
² Quality and Security of Information Systems, Département d'informatique, Université Libre de Bruxelles, Belgium Micro-Architectural Power Simulator for Leakage Assessment of Cryptographic Software on ARM Cortex-M3 Processors

Yann Le Corre, Johann Großschädl, and Daniel Dinu

CSC and SnT, University of Luxembourg 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg {yann.lecorre,johann.groszschaedl,dumitru-daniel.dinu}@uni.lu

Towards Practical Tools for Side Channel Aware Software Engineering: 'Grey Box' Modelling for Instruction Leakages

David McCann, Elisabeth Oswald, and Carolyn Whitnall, University of Bristol

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mccann

On the Effect of the (Micro)Architecture on the Development of Side-Channel Resistant Software

Lauren De Meyer, Elke De Mulder, and Michael Tunstall

Rambus Cryptography Research, 425 Market Street, 11th Floor, San Francisco, CA 94105, United States {ldemeyer,edemulder,mtunstall}@rambus.com

Terminology: My implementation is broken because...

- {Architectural, *Micro-architectural*} leakage from a {Timing, *Power*, <u>*EM*</u>} Channel.
- The Leakage is {Inter, Intra}-instruction in nature.
- As Power/EM leakage, it stems from {**Sequential**, *Combinatorial*} circuit behaviour.
- Combinatorial leakage is always intra-cycle, and is {**Glitching**, *Non-glitching*} in nature.
- Sequential leakage may also be {Inter, Intra}-instruction.

Identifier Instances	Platform	Vendor	Device	Package	Core	Micro-architecture	ISA	Flash SRAM	References
ARM ^{N0} 1	SCALE	NXP	LPC812M101JDH16	TSSOP-16	ARM Cortex-M0+	32-bit 2-stage pipeline 1-cycle multiplier	ARM6-M	16 kB 4 kB	[ARMa, NXPa]
ARM ^{N1} 1	SCALE	NXP	LPC1114FN28/102	DIP-28	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	32 kB 4 kB	[ARMb, NXPb]
ARM ^{N2} 1	SCALE	NXP	LPC1313FBD48/151	LQFP-48	ARM Cortex-M3	1-cycle multiplier	ARMv7-M	32 kB 8 kB	[ARMc, NXPc]
ARM ^{N3} 3	CW308	NXP	LPC1115FBD48/303	LQFP-48	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	64 kB 8 kB	[ARMb, NXPb]
ARM ^{S0} 1	CW308	STM	STM32F071RBT6	TQFP-64	ARM Cortex-M0	32-bit 3-stage_pipeline	ARM6-M	128 kB 16 kB	[ARMb, Mea, New]
ARM ^{S1} 1	CW308	STM	STM32F100RBT6B	TQFP-64	ARM Cortex-M3	1-cycle multiplier	ARMv7-M	128 kB 8 kB	[ARMc, Meb, New]
ARM ^{S2} 1	CW308	STM	STM32F215RET6	TQFP-64	ARM Cortex-M3	1-cycle multiplier	ARMv7-M	512 kB 128 kB	[ARMc, Mec, New]
ARM ⁵³ 1	CW308	STM	STM32F303RCT7	TQFP-64	ARM Cortex-M4	1-cycle multiplier	ARMv7-M	256 kB 40 kB	[ARMd, Med, New]
ARM ^{S4} 1	CW308	STM	STM32F405RGT6	TQFP-64	ARM Cortex-M4	32-bit 3-stage pipeline 1-cycle multiplier	ARMv7E-M	1 MB 192 kB	[ARMd, Mee, New]
ARM ^{S5} 3	CW308	STM	$\rm STM32F051C8T6$	LQFP-48	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	$64 \mathrm{kB}$ $8 \mathrm{kB}$	[ARMb, Mef]
	SASEBO-GIII	XLNX			MicroBlaze v10.0	3-stage pipeline	MicroBlaze	0 kB 32 kB	[Xil]
\widetilde{MB}^{X1} 1	SASEBO-GIII	XLNX			MicroBlaze v10.0	5-stage pipeline	MicroBlaze	0 kB 32 kB	[Xil]
\widetilde{MB}^{X2} 1	SASEBO-GIII	XLNX			MicroBlaze v10.0	8-stage pipeline	MicroBlaze	0 kB 32 kB	[Xil]
\widetilde{RV}^{PRV} 1	SASEBO-GIII				PicoRV32	32-bit multi-cycle	RV32IMC		[Wol]

3 Different Evaluation Platforms

Identifier	Instances	Platform	Vendor	Device	Package	Core	Micro-architecture	ISA	Flash S	SRAM	References
ARM ^{N0}	1	SCALE	NXP	LPC812M101JDH16	TSSOP-16	ARM Cortex-M0+	1-cycle multiplier	ARM6-M	$16\mathrm{kB}$	$4 \mathrm{kB}$	[ARMa, NXPa]
ARM ^{N1}	1	SCALE	NXP	LPC1114FN28/102	DIP-28	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	32 kB	4 kB	[ARMb, NXPb]
ARM ^{N2}	1	SCALE	NXP	LPC1313FBD48/151	LQFP-48	ARM Cortex-M3	32-bit 3-stage pipeline 1-cycle multiplier	ARMv7-M	$32\mathrm{kB}$	8 kB	[ARMc, NXPc]
ARM ^{N3}	3	CW308	NXP	LPC1115FBD48/303	LQFP-48	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	64 kB	8 kB	[ARMb, NXPb]
ARM ^{S0}	1	CW308	STM	STM32F071RBT6	TQFP-04	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	128 kB	16 kB	[ARMb, Mea, New]
ARM ^{S1}	1	CW308	STM	STM32F100RBT6B	TQFP-64	ARM Cortex-M3	32-bit 3-stage pipeline 1-cycle multiplier	ARMv7-M	128 kB	8 kB	[ARMc, Meb, New]
ARM ^{S2}	1	CW308	STM	STM32F215RET6	TQFP-64	ARM Cortex-M3	32-bit 3-stage pipeline 1-cycle multiplier 32-bit	ARMv7-M	512 kB	128 kB	[ARMc, Mec, New]
ARM ^{S3}	1	CW308	STM	STM32F303RCT7	TQFP-64	ARM Cortex-M4		ARMv7-M	256 kB	40 kB	[ARMd, Med, New]
ARM ^{S4}	1	CW308	STM	STM32F405RGT6	TQFP-64	ARM Cortex-M4	32-bit 3-stage pipeline 1-cycle multiplier	ARMv7E-M	1 MB 🗄	$192\mathrm{kB}$	[ARMd, Mee, New]
ARM ^{S5}	3	CW308	STM	STM32F051C8T6	LQFP-48	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	64 kB	8 kB	[ARMb, Mef]
\widetilde{MB}^{X0}	1	SASEBO-GIII	XLNX			MicroBlaze v10.0	3-stage pipeline	MicroBlaze	0 kB	32 kB	[Xil]
MB ^{X1}	1	SASEBO-GIII	XLNX			MicroBlaze v10.0	5-stage pipeline	MicroBlaze	0 kB	32 kB	[Xil]
\widetilde{MB}^{X2}	1	SASEBO-GIII	XLNX			MicroBlaze v10.0	8-stage pipeline	MicroBlaze	$0 \mathrm{kB}$	$32\mathrm{kB}$	[Xil]
\widetilde{RV}^{PRV}	1	SASEBO-GIII				PicoRV32	32-bit multi-cycle	RV32IMC			[Wol]

4 Different device vendors.

Identifier	Instances	Platform	Vendor	Device	Package	Core	Micro-architecture	ISA	Flash SRAM	References
ARM ^{N0}	1	SCALE	NXP	LPC812M101JDH16	TSSOP-16	ARM Cortex-M0+	32-bit 2-stage pipeline 1-cycle multiplier	ARM6-M	16 kB 4 kB	[ARMa, NXPa]
ARM ^{N1}	1	SCALE	NXP	LPC1114FN28/102	DIP-28	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	32 kB 4 kB	[ARMb, NXPb]
ARM ^{N2}	1	SCALE	NXP	LPC1313FBD48/151	LQFP-48	ARM Cortex-M3	32-bit 3-stage pipeline 1-cycle multiplier	ARMv7-M	$32 \mathrm{kB}$ $8 \mathrm{kB}$	[ARMc, NXPc]
ARM ^{N3}	3	CW308	NXP	LPC1115FBD48/303	LQFP-48	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	64 kB 8 kB	[ARMb, NXPb]
ARM ^{S0}		CW308	STM	STM32F071RBT6	TQFP-64	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	128 kB 16 kB	[ARMb, Mea, New]
ARM ^{S1}	1	CW308	STM	STM32F100RBT6B	TQFP-64	ARM Cortex-M3	1-cycle multiplier	ARMv7-M	128 kB 8 kB	[ARMc, Meb, New]
ARM ^{S2}	1	CW308	STM	STM32F215RET6	TQFP-64	ARM Cortex-M3	1-cycle multiplier	ARMv7-M	512 kB 128 kB	[ARMc, Mec, New]
ARM ^{S3}	1	CW308	STM	STM32F303RCT7	TQFP-64	ARM Cortex-M4	1-cycle multiplier	ARMv7-M	256 kB 40 kB	[ARMd, Med, New]
ARM ^{S4}	1	CW308	STM	STM32F405RGT6	TQFP-64	ARM Cortex-M4	32-bit 3-stage pipeline 1-cycle multiplier	ARMv7E-M	1 MB 192 kB	[ARMd, Mee, New]
ARM ^{S5}	3	CW308	STM	STM32F051C8T6	LQFP-48	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	64 kB 8 kB	[ARMb, Mef]
₩ MB ^{X0}	1	SASEBO-GIII	XLNX	n	which a state of the second	MicroBlaze v10.0	32-bit 3-stage pipeline	MicroBlaze	0 kB 32 kB	[Xil]
MB ^{X1}	1	SASEBO-GIII	XLNX			MicroBlaze v10.0	32-bit 5-stage pipeline	MicroBlaze	0 kB 32 kB	[Xil]
\widetilde{MB}^{X2}	1	SASEBO-GIII	XLNX			MicroBlaze v10.0	32-bit 8-stage pipeline	MicroBlaze	0 kB 32 kB	[Xil]
\widetilde{RV}^{PRV}	1	SASEBO-GIII				PicoRV32	32-bit multi-cycle	RV32IMC		[Wol]

6 Different CPU models

Identifier	Instances	Platform	Vendor	Device	Package	Core	Micro-architecture	ISA	Flash SRAM	References
ARM ^{N0}	1	SCALE	NXP	LPC812M101JDH16	TSSOP-16	ARM Cortex-M0+	32-bit 2-stage pipeline 1-cycle multiplier	ARM6-M	16 kB 4 kB	[ARMa, NXPa]
ARM ^{N1}	1	SCALE	NXP	LPC1114FN28/102	DIP-28	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	32 kB 4 kB	[ARMb, NXPb]
ARM ^{N2}	1	SCALE	NXP	LPC1313FBD48/151	LQFP-48	ARM Cortex-M3	32-bit 3-stage pipeline 1-cycle multiplier	ARMv7-M	32 kB 8 kB	[ARMc, NXPc]
ARM ^{N3}	3	CW308	NXP	LPC1115FBD48/303	LQFP-48	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	64 kB 8 kB	[ARMb, NXPb]
ARM ^{S0}	1	CW308	STM	STM32F071RBT6	TQFP-64	ARM Cortex-M0	32-bit 3-stage_pipeline	ARM6-M	128 kB 16 kB	[ARMb, Mea, New]
ARM ^{S1}	1	CW308	STM	STM32F100RBT6B	TQFP-64	ARM Cortex-M3	32-bit 3-stage pipeline 1-cycle multiplier	ARMv7-M	128 kB 8 kB	[ARMc, Meb, New]
ARM ^{S2}	1	CW308	STM	STM32F215RET6	TQFP-64	ARM Cortex-M3	32-bit 3-stage pipeline 1-cycle multiplier	ARMv7-M	512 kB 128 kB	[ARMc, Mec, New]
ARM ^{S3}	1	CW308	STM	STM32F303RCT7	TQFP-64	ARM Cortex-M4	32-bit 3-stage pipeline 1-cycle multiplier	ARMv7-M	256 kB 40 kB	[ARMd, Med, New]
ARM ^{S4}	1	CW308	STM	STM32F405RGT6	TQFP-64	ARM Cortex-M4	32-bit 3-stage pipeline 1-cycle multiplier	ARMv7E-M	1 MB 192 kB	[ARMd, Mee, New]
ARM ^{S5}	3	CW308	STM	$\rm STM32F051C8T6$	LQFP-48	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	64 kB 8 kB	[ARMb, Mef]
₩ MB ^{X0}	1	SASEBO-GIII	XLNX	o lanto-ratio normanita ketakekuna	which also and the set of the second	MicroBlaze v10.0	32-bit 3-stage pipeline	MicroBlaze	0 kB 32 kB	[Xil]
MB ^{X1}	1	SASEBO-GIII	XLNX			MicroBlaze v10.0	32-bit 5-stage pipeline	MicroBlaze	0 kB 32 kB	[Xil]
 MB ^{X2}	1	SASEBO-GIII	XLNX			MicroBlaze v10.0	32-bit 8-stage pipeline	MicroBlaze	0 kB 32 kB	[Xil]
\widetilde{RV}^{PRV}	1	SASEBO-GIII				PicoRV32	32-bit multi-cycle	RV32IMC		[Wol]

5 Different Pipeline Architectures

Identifier	Instances	Platform	Vendor	Device	Package	Core	Micro-architecture	ISA	Flash	SRAM	References
ARM ^{N0}	1	SCALE	NXP	LPC812M101JDH16	TSSOP-16	ARM Cortex-M0+	32-bit 2-stage pipeline 1-cycle multiplier	ARM6-M	$16\mathrm{kB}$	4 kB	[ARMa, NXPa]
ARM ^{N1}	1	SCALE	NXP	LPC1114FN28/102	DIP-28	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	32 kB	4 kB	[ARMb, NXPb]
$\overline{\text{ARM}}^{N2}$	1	SCALE	NXP	LPC1313FBD48/151	LQFP-48	ARM Cortex-M3	32-bit 3-stage pipeline 1-cycle multiplier	ARMv7-M	$32\mathrm{kB}$	$8 \mathrm{kB}$	[ARMc, NXPc]
ARM ^{N3}	3	CW308	NXP	LPC1115FBD48/303	LQFP-48	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	64 kB	8 kB	[ARMb, NXPb]
ARM ^{S0}	1	CW308	STM	STM32F071RBT6	TQFP-64	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	128 kB	16 kB	[ARMb, Mea, New]
ARM ^{S1}	1	CW308	STM	STM32F100RBT6B	TQFP-64	ARM Cortex-M3	1-cycle multiplier	ARMv7-M	128 kB	8 kB	[ARMc, Meb, New]
ARM ^{S2}	1	CW308	STM	STM32F215RET6	TQFP-64	ARM Cortex-M3	1-cycle multiplier	ARMv7-M	512 kB	128 kB	[ARMc, Mec, New]
ARM ^{S3}	1	CW308	STM	STM32F303RCT7	TQFP-64	ARM Cortex-M4	1-cycle multiplier	ARMv7-M	$256\mathrm{kB}$	$40\mathrm{kB}$	[ARMd, Med, New]
ARM ^{S4}	1	CW308	STM	STM32F405RGT6	TQFP-64	ARM Cortex-M4	32-bit 3-stage pipeline 1-cycle multiplier	ARMv7E-M	1 MB	192 kB	[ARMd, Mee, New]
ARM ^{S5}	3	CW308	STM	STM32F051C8T6	LQFP-48	ARM Cortex-M0	32-bit 3-stage pipeline	ARM6-M	64 kB	8 kB	[ARMb, Mef]
\widetilde{MB}^{X0}	1	SASEBO-GIII	XLNX	0 1-4000	1013.0	MicroBlaze v10.0	32-bit 3-stage pipeline	MicroBlaze	$0 \mathrm{kB}$	$32\mathrm{kB}$	[Xil]
\widetilde{MB}^{X1}	1	SASEBO-GIII	XLNX			MicroBlaze v10.0	5-stage pipeline	MicroBlaze	0 kB	32 kB	[Xil]
MB ^{X2}	1	SASEBO-GIII	XLNX			MicroBlaze v10.0	8-stage pipeline 🥄	MicroBlaze	0 kB	32 kB	[Xil]
\widetilde{RV}^{PRV}	1	SASEBO-GIII				PicoRV32	32-bit multi-cycle	RV32IMC			[Wol]

6 Different Instruction Set Architectures

Selected Content: Micro-benchmarks

- We built 32 different micro-benchmarks.
- Each designed to test some hypothesis about the micro-architecture.
- Using common instructions present in all CPU architectures.
- Split into a high level goal and a low level implementation.

1	.text		1	.te:	xt		
2 kernel	ldr rA,	[rC, #0]	2 kernel	l: ldr	rA,	[rC,	#0]
3	eor rE,	rE, rE	3	eor	rE,	rE,	rE
4	ldr rB,	[rD, #0]	4	str	rB,	[rD,	#0]
(a) MEN	ORY-BUS/LD	-LD: load-after-load.	(b) ME	MORY-BU	s/LD-	ST: store	e-after-load.
1	.text		1	.te:	xt		
2 kernel	str rA,	[rC, #0]	2 kernel	l: str	rZ,	[rA,	#0]
3	eor rE	rE, rE	3	eor	rΕ,	rE ,	rE
4	ldr rB	[rD, #0]	4	str	rZ,	[rB,	#0]
(c) MEM	ORY-BUS/ST	LD: load-after-store.		IORY-BUS e with zer			re-after-store
(c) MEM	ORY-BUS/ST	-LD: load-after-store.			ro valu		re-after-store
1	.text	LD: load-after-store.	overwrite	e with zer	ro valu xt	ıe.	
1	.text str rA		overwrite	e with zen .te: L: str	ro valu xt rA,	ıe.	#0]

Figure 3: Pseudo-code for micro-benchmarks described in Section 5.1.1, i.e., those related to the case study on hidden state in the memory access path.

Selected Case Study 1: Load/Store & Hidden State

Table 2: A summary of results stemming from the micro-benchmarks in Figure 3, i.e., cases which explore Hamming distance leakage from combinations of ldr and str instructions. Note that AC, for example, indicates that the Hamming distance between A and C was leaked.

Device	LD-LD	LD-ST	ST-LD	ST-ST-1	ST-ST-2	ST-ST-3
ARM ^{N0}	AB				AB	
ARM ^{N1}	AB				AB	
ARM ^{N2}	AB	AB	AB		AB	
ARM ^{N3}	AB	AB			AB	
ARM ^{S0}	AB	AB	AB		AB	
ARM ^{S1}	AB	AB	AB		AB	
ARM ^{S2}	AB					
ARM ^{S3}	AB	AB	AB		AB	
ARM ^{S4}	AB				AB	
ARM ^{S5}	AB	AB	AB		AB	
MB ^{X0}	AB	AB	AB		AB	
MB ^{X1}						
MB ^{X2}					AB	
RVPRV						

Selected Case Study 2: "Speculative" leakage.

- Can instructions which aren't executed from an architectural perspective still cause leakage?
- Yes. Yes they can.
- Very important in looping constructs, e.g. the instruction "after" the branch back.
- Implies leakage models need to be execution pipeline aware.

1		.ter	xt	
2	kernel:	mov	rY,	#0
3	loop:	eor	rY,	rF
4		mov	rY,	#0
5		add	rG,	#-1
6		cmp	rG,	#0
7		bne	1001	p
8	done:	eor	rA,	rB
9		eor	rC,	rD
10		eor	rΕ,	rF
11		bx	lr	

(e) SPECULATION/LOOP-0:

Selected Case Study 2: "Speculative" leakage.

- Can instructions which aren't executed from an architectural perspective still cause leakage?
- Yes. Yes they can.
- Very important in looping constructs, e.g. the instruction "after" the branch back.
- Implies leakage models need to be execution pipeline aware.

Table 9: A summary of results stemming from the micro-benchmarks in Figure 8, i.e., cases which explore the impact speculative execution has on leakage.

coco winter	r explore the	impact specu	allye execution i	nas on rearrage.	
Device	JUMP-FWD	JUMP-BWD	BRANCH-FWD	BRANCH-BWD	LOOP-0
ARM ^{N0}					
ARM ^{N1}		AF			
ARM ^{N2}	BD	BD	BD		AC, AD, AF, DF
ARM ^{N3}					UNX 07 22/4 322
ARM ^{S0}					
ARM ^{S1}					
ARM ^{S2}	AC, AD	AD			AE, AF
ARM ^{S3}	CD	CD		CD	AF, BF
ARM ^{S4}					AD, AF, BF
ARM ^{S5}					Constant Constant of Constant of Constant
MB ^{X0}	BC, CD	BC, CD, DF	BC, CD, DF	BC, CD	AB, BF
MB ^{X1}	CD, DE, DF	CD, DE, DF	CD, DE, DF	CD, DE, DF	AB, AC, BF, DF
MB ^{X2}	BC, DE, DF	BC, DE, DF	AC, BC, DE, DF	BC, DE, DF	AC, BF, DF
RVPRV					

☆ Edit Pins - ③ Unwatch 4 - ♀ Fork 1 -

☆ Star 4 🗸

<> Code 💿 Issues 3 👔 Pull requests 💿 Actions 🖽 Projects 🕮 Wiki 😳 Security 🗠 Insights 🕸 Settings

danpage align all READMEs v	vith each other wrt. header and footer 23137d5 on 11 Dec	2020 🕤 586 commits	Evaluation
bin	Fix bin/conf.sh default tool paths	2 years ago	∂ miracle.scarv.org
docs	Miracle: A-Bomb commit - remove browser and db code.	2 years ago	C Readme
experiments	speulation: Update all speculation experiments.	2 years ago	 ☆ 4 stars ⊙ 4 watching
external	Bump submodules	2 years ago	양 1 fork
target	Fix program step for scale_lpc812m101	2 years ago	
tools	speulation: Update all speculation experiments.	2 years ago	Releases
🗅 .gitignore	Add missing build makefiles & linker scripts.	3 years ago	♥ 2 tags
.gitmodules	Miracle: A-Bomb commit - remove browser and db code.	2 years ago	Create a new release
Makefile	Flow updates.	2 years ago	
Makefile.build	Make flow improvments for clarity.	2 years ago	Packages
Makefile.common	Makefile: fix map	2 years ago	No packages published Publish your first package
Makefile.program	Updating program / build flow.	3 years ago	нилын уош шы раскаде
README.md	align all READMEs with each other wrt. header and footer	2 years ago	Contributors 3
requirements.txt	Housekeeping flow and dependencies	2 years ago	

MIRACLE: MIcRo-ArChitectural Leakage Evaluation

Acting as a component part of the wider SCARV project, MIRACLE captures a range of components that relate to the study of micro-architectural side-channel leakage, i.e., leakage that stems from micro-architectural behaviour.

Languages

🤹, jwsi James Webb

Miracle: Micro-architectural Leakage Evaluation

About Targets Experiments Compare

About Miracle:

The SCARV Miracle study aims to provide a rigorous and systematic evaluation of micro-architectural power side-channel leakage effects found in common embedded CPUs and micro-controllers.

- The Targets page lists the set of target devices we have analysed so far as part of the study.
- · The Experiments page lists each experiment, and the targets for which we have results.
- All of the infrastructure and experiment code used in the study is available on GitHub.

If you use our work in papers or reports, please consider letting your readers know:

@MISC{scarv:miracle,

```
author = {Ben Marshall, Daniel Page, James Webb},
title = {Miracle: Micro-architectural Leakage Evaluation},
howpublished="\url{miracle.scarv.org}, \url{github.com/scarv/miracle-experiments}"
```

What we hope to contribute:

Cryptographic engineering is hard. Side-channel resistant software is extremely hard. We want to make it easier.

- There is a lot of literature on algorithms which, if implemented correctly, we are reasonably confident will behave robustly under leakage analysis.
- · We have a weak notion of "correctness" with respect to leakage resilience.
- Attacks and detection techniques are improving all the time. Their results or the exactness/strength of their claims can be easily misunderstood.
- · Theoretically provably secure algorithms, once implemented, does not always stay secure.
- It is rarely obvious exactly where leakage is coming from or why. There are many device specific pitfalls which one can encounter when writing leakage resistant code.
- There is lots of literature on abstract masking algorithms, and on implementation effects which give rise to leakage. However, these two bodies of literature rarely seem to interact.
- There is a need for practical guidance and information for engineers: How to approach writing leakage resistant code for a given device? How to design a new device with leakage resilience in mind?

An Aside: What We Could Have Done Better

- In the paper: We wanted to do more justice to past work but ran out of space. There is room for a wonderful SoK paper on this.
- A more quantitative assessment method: Just seeing if there is a leakage peak manually does not scale to many experiments!
- We went for breadth over depth. There are still many more sub-experiments one could perform to analyse certain effects further.
- We *really* wanted to include an x86 Micro-controller, but getting the thing to run code was a truly cursed process.

Conclusions: Device Naming

Not exactly news, but our results really emphasise this:

"We evaluated our implementation on an:"

- ARM Cortex-M3 🚫
- ARM Cortex-M3 with the ARM-v7m Architecture
- ARM Cortex-M3 with the ARM-v7m from ST-Micro 🚫
- ARM Cortex-M3 with the ARM-v7m from ST-Micro in an STM32F100RBT6B device
- ARM Cortex-M3 *with X options*, in an STM32F100RBT6B device from ST-Micro, *hosted on a CW308 UFO board*.

Conclusions: Evaluating Masked Implementations

Given that we found:

- The "same" CPU core, in two different devices, implemented by the same manufacturer...
- Had completely different leakage characteristics.

What does this mean for evaluation of masked implementations?

Our recommendation:

- Try to evaluate on >1 "different" devices (guidance in the paper).
- You can claim a much more robust implementation if it works in both places.
- Standards bodies must not pick only one standard evaluation platform.

Conclusions: Building Quality Leakage Models

How can we better validate leakage models or tools?

- Validate across multiple devices!
- We hope our set of micro-benchmarks can serve as "unit tests" for per-device leakage models.
- Testing on one cipher or implementation might not be enough.
- Build machine-readable descriptions of micro-architecture for devices.
- These descriptions are inputs to more generic device leakage modelling engines.
- E.g. "Coco-alma", or "Masking in fine-grained leakage models" are great examples of this direction.

What Next?

- There's always more devices to test...
- There's always more micro-architectural effects to characterise...
- This was not an attack paper, or a countermeasure paper.
 - How can these effects be exploited?
- Which types of leakage are "more" dangerous?
- How to characterise leakage in the UN-Core part of the system?

Bigger Picture:

• Community wide DSL for describing micro-architectures & their leakage characteristics as a common input to everyone's leakage tooling. Like SMT2 for the sat-solving community.

Thank You For Listening

I Hope You Have Questions?

