

Outline

● Context
● What We Set Out To Ask
● What We Did
● Selected Results
● Selected Outcomes & Recommendations
● Room For Improvement
● What Next
● Questions?

2

Context - Some Background

● We all want secure computing &
communication, cheaply & quickly.

● It’s a multi-dimensional problem.
● Security models rely on

abstractions like HW / ISA / SW.
● Good abstractions enable formal

reasoning & proofs of security over
that abstraction.

● Unless the abstraction captures
everything necessary to model
threats, you can’t prove security.

● Does the abstraction actually hold
for the implementation?

3

ISAs

Software

Digital (micro-arch)

Analog

Magic

* Die shot from Zeptobars.com

int main (int argc, char ** argv)
{

printf(“Hello, CHES!\n”);
 return rand() & 0x1;
}

Context - What’s the problem?

4

● The ISA is an excellent abstraction
for functionality, but leaks
implementation details.

● Without being able to build good
abstractions, it’s harder to reason
about security / correctness.

● Start by understanding what the
abstraction does (not) capture.

● In the past, we’ve looked at power
side-channels mostly in the context
of just one device…

● We can’t model security without
being able to understand the
abstractions we rely on.

int main (int argc, char ** argv)
{

printf(“Hello, CHES!\n”);
 return rand() & 0x1;
}

ISAs

Software

Digital (micro-arch)

Analog

Magic

Goals: What did we set out to achieve?

● Understand the ISA abstraction from the perspective of micro-architectural power leakage.

● Try to replicate “folklore” and past results from previous works.

● See if we can use our knowledge of CPU design to find new effects.

● See if these effects are present across a range of devices.

● Create a suite of “micro-benchmarks” which can be reused across new devices to find
effects and qualify models.

● Qualitatively assess how different devices will leak differently.

● Create a framework for understanding and presenting all of this.

○ (A paper was not a good way of doing it…)

5

Context: (Some) Related Work

6

Terminology: My implementation is broken because…

7

Architectural

Micro-architectural

Timing

Power

EM

● {Architectural, Micro-architectural} leakage from a {Timing, Power, EM} Channel.

● The Leakage is {Inter, Intra}-instruction in nature.

● As Power/EM leakage, it stems from {Sequential, Combinatorial} circuit behaviour.

● Combinatorial leakage is always intra-cycle, and is {Glitching, Non-glitching} in nature.

● Sequential leakage may also be {Inter, Intra}-instruction.

Intra-Instruction

Inter-Instruction

Glitching Combinatorial

Non-glitching Combinatorial

Sequential

8

3 Different Evaluation Platforms

9

4 Different device vendors.

10

6 Different CPU models

11

5 Different Pipeline Architectures

12

6 Different Instruction Set Architectures

Selected Content: Micro-benchmarks

● We built 32 different
micro-benchmarks.

● Each designed to test some
hypothesis about the
micro-architecture.

● Using common instructions
present in all CPU
architectures.

● Split into a high level goal and a
low level implementation.

13

Selected Case Study 1: Load/Store & Hidden State

14

Selected Case Study 2: “Speculative” leakage.

15

● Can instructions which aren’t
executed from an architectural
perspective still cause leakage?

● Yes. Yes they can.

● Very important in looping
constructs, e.g. the instruction
“after” the branch back.

● Implies leakage models need to
be execution pipeline aware.

Selected Case Study 2: “Speculative” leakage.

16

● Can instructions which aren’t
executed from an architectural
perspective still cause leakage?

● Yes. Yes they can.

● Very important in looping
constructs, e.g. the instruction
“after” the branch back.

● Implies leakage models need to
be execution pipeline aware.

17

18

An Aside: What We Could Have Done Better

● In the paper: We wanted to do more justice to past work but ran out of space.
There is room for a wonderful SoK paper on this.

● A more quantitative assessment method: Just seeing if there is a leakage
peak manually does not scale to many experiments!

● We went for breadth over depth. There are still many more sub-experiments
one could perform to analyse certain effects further.

● We really wanted to include an x86 Micro-controller, but getting the thing to
run code was a truly cursed process.

19

Conclusions: Device Naming

Not exactly news, but our results really emphasise this:

“We evaluated our implementation on an:”

● ARM Cortex-M3
● ARM Cortex-M3 with the ARM-v7m Architecture
● ARM Cortex-M3 with the ARM-v7m from ST-Micro
● ARM Cortex-M3 with the ARM-v7m from ST-Micro in an STM32F100RBT6B

device
● ARM Cortex-M3 with X options, in an STM32F100RBT6B device

from ST-Micro, hosted on a CW308 UFO board.

20

Conclusions: Evaluating Masked Implementations

Given that we found:

- The “same” CPU core, in two different devices, implemented by the same
manufacturer…

- Had completely different leakage characteristics.

What does this mean for evaluation of masked implementations?

Our recommendation:

- Try to evaluate on >1 “different” devices (guidance in the paper).
- You can claim a much more robust implementation if it works in both places.
- Standards bodies must not pick only one standard evaluation platform.

21

Conclusions: Building Quality Leakage Models

How can we better validate leakage models or tools?

- Validate across multiple devices!

- We hope our set of micro-benchmarks can serve as “unit tests” for per-device
leakage models.

- Testing on one cipher or implementation might not be enough.

- Build machine-readable descriptions of micro-architecture for devices.

- These descriptions are inputs to more generic device leakage modelling engines.

- E.g. “Coco-alma”, or “Masking in fine-grained leakage models” are great examples
of this direction.

22

What Next?

● There’s always more devices to test…
● There’s always more micro-architectural effects to characterise…
● This was not an attack paper, or a countermeasure paper.

○ How can these effects be exploited?
● Which types of leakage are “more” dangerous?
● How to characterise leakage in the UN-Core part of the system?

Bigger Picture:

● Community wide DSL for describing micro-architectures & their leakage
characteristics as a common input to everyone’s leakage tooling. Like SMT2
for the sat-solving community.

23

24

Thank You For Listening
I Hope You Have Questions?

