
Efficient Implementations of Rainbow and UOV using
AVX2

1Kyung-Ah Shim, 1Sangyub Lee, and 2Namhun Koo

1National Institute for Mathematical Sciences, Republic of Korea
2Institute for Mathematical Sciences, Ewha Womans University, Republic of Korea

CHES 2022
19 September, 2022

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (1/25)

Contents

MQ-PKC (preliminaries)

Implementations of UOV and Rainbow

Our Efficient Implementations of UOV and Rainbow

Block Matrix Inversion
Precomputation

Conclusion

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (2/25)

MQ-PKC (1/5)

Key Generation

– P = S ◦ F ◦ T : public key
1 F : easily invertible quadratic map
2 S, T : invertible affine(or linear) maps

– (F , S, T) : secret key

Figure: Structure of MQ Signature Scheme

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (3/25)

MQ-PKC (2/5)

Signature Generation or Decryption

For given message M and hash value h = H(M), compute s with h = P(s) so
that s = (T −1 ◦ F−1 ◦ S−1)(h). Then s is a signature for message M .

Signature Verification or Encryption

Compute P(s) = h’. If h = h’ accept it. If not, reject it.

Figure: Structure of MQ Signature Scheme

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (4/25)

MQ-PKC (3/5)

How to construct easily invertible F : Single Field Type - OV map

Notations

– x1, · · · , xv : Vinegar variables (v : the number of Vinegar variables)
– xv+1, · · · , xv+o : Oil variables (o : the number of Oil variables, the number of

equations in F)
– n = v + o : the number of variables in F

Each component function F (k) of F = (F (1),F (2), · · · ,F (o)) is of the form

F (k)(x1, · · · , xn) =

v∑
i=1

v∑
j=i

α
(k)
ij xixj +

v∑
i=1

n∑
j=v+1

α
(k)
ij xixj +

n∑
i=1

β
(k)
i xi+γ(k)

where α
(k)
ij , β

(k)
i , γ(k) ∈ Fq.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (5/25)

MQ-PKC (4/5)

How to construct easily invertible F : Single Field Type - OV map

How to invert F
– Choose Vinegar variables at random and plug them into each F (k)

v∑
i=1

v∑
j=i

α
(k)
ij xixj +

v∑
i=1

n∑
j=v+1

α
(k)
ij xixj +

v∑
i=1

β
(k)
i xi +

n∑
i=v+1

β
(k)
i xi + γ(k)

Then the red parts are converted to constants in above equation.
– since there are no quadratic terms with oil variables in each F (k) with

1 ≤ k ≤ o, we obtain a linear equation with Oil variables xv+1, · · · , xn for
each F (k).

– In other words, we obtain a linear equation system with o equations with o
variables which can be easily solvable.

– If this linear equation system is not solvable, choose Vinegar variables and try
again.

– Note that the obtained linear equation system would be solvable with very
high probability.

[KPG99] A. Kipnis, J. Patarin, and L. Goubin, Unbalanced Oil and Vinegar Signature Schemes, Eurocrypt 1999, LNCS Vol 1592, pp.206-222, Springer.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (6/25)

MQ-PKC (5/5)

MQ signarure schemes using OV map

UOV(Unbalanced Oil and Vinegar) - ”unbalanced’ means v > o.

Rainbow - multi-layered UOV : a Finalist of NIST PQC standardization

There are many other variants of UOV and Rainbow

An important remark about Rainbow

Recently Beullens proposed a simple attack on Rainbow[Beu22] : an
equivalent key of Rainbow with security level 1 can be recovered in 53 hours
by a laptop.

Because of this attack, Rainbow team announced that they replace the
Rainbow level 1 parameters with their level 3 parameters and level 3 with
level 5 parameters.

[Beu22] W. Beullens, Breaking Rainbow Takes a Weekend on a Laptop, IACR ePrint Archive 2022/214 (presented at Crypto 2022), 2022.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (7/25)

Implementations of UOV and Rainbow (1/4)

Our parameter selection

UOV

Recently, Beullens proposed the intersection attack [Beu21] which is suitable
when v < 2o. As a result, UOV parameters frequently used in the past, for
example (o, v) = (44, 59) for Security Level I, are vulnerable under the
intersection attack.
So we suggested new UOV parameters considering the complexity of the
intersection attack (see a table in next slide).
Very recently, the Rainbow team (collaborated with Beullens) suggested new
UOV parameters after the simple attack had been proposed. Note that their
parameters are slightly different from our parameters.

Rainbow

Our implementation of Rainbow is based on source codes of Rainbow team
which are submitted for NIST PQC Standardization Round 3. So our
paremeters in our paper are same with NIST PQC Round 3.
In this presentation, we apply parameter changes of Rainbow due to the
attacks proposed in [Beu22].

[Beu21] W. Beullens, Improved Cryptanalysis of UOV and Rainbow, Eurocrypt 2021, LNCS 12696, pp. 348-373, 2021.
[Beu22] W. Beullens, Breaking Rainbow Takes a Weekend on a Laptop, IACR ePrint Archive 2022/214 (presented at Crypto 2022), 2022.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (8/25)

Implementations of UOV and Rainbow (2/4)

Scheme Security Category I III V

UOV

λ (Gates) 146 212 274
(o, v) (46, 70) (72, 109) (96, 144)

Direct Attack 144.05 212.05 274.847
Intersection Attack 166.87 236.36 291.501

Rainbow

λ (Gates) 177 226 -
(v, o1, o2) (68, 32, 48) (96, 36, 64) -

Direct Attack 234 285 -
Intersection Attack 177 226 -

Table: Suggested Parameters of UOV/Rainbow at Three SCs.

Note that we select q = 256 for all our parameters above.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (9/25)

Implementations of UOV and Rainbow (3/4)

Detail of our implementations

Similarly with Rainbow, we apply T =

(
I T ′

0 I

)
for UOV.

Intel(R) Core(TM) i9-10900X CPU running at the constant clock frequency
of 3.70GHz.

Each result is an average of 10,000 measurements for each function using the
C programming language with GNU GCC version 10.1.0 compiler on Centos
7.9.2009. Hyperthreading and Turbo Boost are switched off.

Scheme SC I III V

UOV
KeyGen. 29,077,126 98,870,925 161,016,435
Sign 201,834 707,959 1,486,775
Verify 125,312 222,012 485,344

Rainbow
KeyGen. 65,099,975 214,977,689 —
Sign 322,799 807,309 —
Verify 151,466 395,259 —

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (10/25)

Implementations of UOV and Rainbow (4/4)

Detail of our Implemtations on Signing process

Scheme Layer Operations I III V

UOV 1
Vinegar Value Substitutions 58.09 % 48.37 % 56.60 %

Computation of LS−1
V 36.38 % 47.98 % 41.71 %

Etc. 5.53 % 3.65 % 1.69 %

Rainbow

1
Vinegar Value Substitutions 18.58 % 34.37 % —

Computation of LS−1
V,1 11.37 % 8.03 % —

Etc. 1.26 % 0.68 % —

2
Vinegar Value Substitutions 39.54 % 29.07 % —

Computation of LS−1
V,2 25.38 % 25.34 % —

Etc. 3.88 % 2.51 % —

Run-time of UOV/Rainbow signing is mostly dominated by the two operations.

Substitution of Vinegar Values into the Central Polynomials

Solving Obtained Linear System

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (11/25)

Efficient Implementations of UOV and Rainbow

The most dominated part of signing of UOV and Rainbow

Substitution of Vinegar Values into the Central Polynomials -
computing the coefficient matrix LSV and constant term of the linear system
which we will obtain.

Solving Obtained Linear System - we require to compute the inverse
matrix LS−1

V of the coefficient matrix obtained above.

Key idea of our efficient implementations of UOV and Rainbow

Block Matrix Inversion - we replace an inversion of m×m matrix into two
inversions of m/2×m/2 matrices when m is even.

Precomputation - the above two parts can be precomputed, and then signing
process can be significantly improved.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (12/25)

Block Matrix Inversion (1/6)

Theorem 1

Let R =

(
A B
C D

)
be a matrix partitioned into 2 × 2 blocks.

(i) Assume A is nonsingular. Then the matrix R is invertible if and only if the
Schur complement (D − CA−1B) of A is invertible and

R−1 =

(
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.

(ii) Assume D is nonsingular. Then the matrix R is invertible if and only if the
Schur complement (A−BD−1C) is invertible and

R−1 =

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
.

⇒ It requires two inversions and six matrix multiplications of the half-sized
matrices.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (13/25)

Block Matrix Inversion (2/6)

Theorem 2

For a nonsingular k × k matrix R in the above, R−1 · α requires two inversions,
two matrix multiplications of the half-sized block matrices and four block
matrix-vector products, where k is even and α = (α1, · · · , αk/2)

T.

Sketch of Proof. A nonsingular square matrix R of 2 × 2 blocks is represented by
the LDU decomposition of block matrices based on the Schur complement as

R =

(
A B
C D

)
=

(
I O

CA−1 I

)(
A O
0 D − CA−1B

)(
I A−1B
0 I

)
= L ·DSc · U.

So, we have R−1 = U−1 ·D−1
Sc · L−1.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (14/25)

Block Matrix Inversion (3/6)

Repeated BMI

An inversion of m×m matrix can be replaced by 2 inversions of m/2×m/2
matrices. In a similar manner, each of 2 inversions of m/2×m/2 matrices
can be replaced by 2 inversions of m/4×m/4 matrices if m is a multiple of 4.

Like this, for k = 2l · k′, we can apply the BMI l times. We define the
number of these iterations of the BMI as a depth. We cannot expect that l
iterations will always be effective, because 2l inversions of k/2l × k/2l

matrices are required.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (15/25)

Block Matrix Inversion (4/6)

Matrix Size GE BMI (Depth 1) BMI (Depth 2)
46 94,033 72,302 —
48 101,498 75,136 72,479
50 142,243 82,768 —
56 175,195 103,357 99,445
64 225,081 87,150 70,091
68 322,315 187,947 170,788
72 355,173 208,355 190,480
96 713,462 252,538 226,627
100 923,489 453,441 391,747

Table: Gaussian Elimination (GE) vs. Block Matrix Inversion Technique in CPU Cycles.

The larger the size, the greater the performance improvement.

Especially excellent improvements in the case of 64 and 96 are due to the
fact that the multiples of 32 are optimal parameters which are suitable for
the AVX2 vectorization.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (16/25)

Block Matrix Inversion (5/6)

Appling BMI to UOV and Rainbow Signing

After obtaining LSV from the Vinegar value substitution, we set

LSV =

(
A B
C D

)
and apply the BMI on LSV .

If A or [D−CA−1B] is not invertible then we choose another Vinegar values.

Note that the probability that the matrices are invertible is(
1− 1

q

)2

≈ 99.22%.

Details of our proposed algorithm applying BMI on the signing of Rainbow
and UOV are given in Algorithm 7 and 8 in our paper, respectively.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (17/25)

Block Matrix Inversion (6/6)

The below table describes our implementation results on our proposed BMI
method in CPU Cycles.

Compared to UOV implemented with Gaussian elimination, by using the BMI
with the depth 1, we obtain speedups of 12.36%, 20.41%, and 32.42% at the
three security categories, respectively.

Scheme SC I III V

UOV
G.E. 201,834 707,959 1,486,775

BMI (Depth 1) 176,884 563,519 1,004,704
BMI (Depth 2) — 535,660 981,351

Rainbow
G.E. 322,799 807,309 —

BMI (Depth 1) 270,731 650,400 —
BMI (Depth 2) 271,986 639,965 —

Table: Implementation Results of BMI on the Intel at Three SCs, in CPU cycles.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (18/25)

Precomputation (1/3)

The general idea of using an offline/online phase was first introduced by Even,
Goldreich, and Micali [EGM90].

Offline/Online Signing of UOV.

Offline phase

After choosing random Vinegar values sV = (s1, · · · , sv) ∈ Fv
q , substitute sV

into o equations F (k) (1 ≤ k ≤ o) to get the linear system LSV of o equations
and o unknowns and a constant vector cV = (c1, · · · , cm).
Compute LS−1

V . If LSV is not invertible then go back to the first step.
Store < sV , cV , LS−1

V > as the precomputed values.

Online phase

Choose a random salt r and compute h = H(H(m)||r) for a message m.
From < sV = (s1, · · · , sV), cV = (c1, · · · , cm), LS−1

V >, compute
LS−1

V · hT
V = α, where hV = (h1 − c1, · · · , hm − cm) and h = (h1, · · · , hm).

Compute T−1 · (SV , α)T = σ and output τ = (σ, r) as a signature on m.

[EGM90] S. Even, O. Goldreich, and S. Micali, On-line/off-line digital schemes, Crypto ’89, LNCS 435, pp. 263-275, 1990.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (19/25)

Precomputation (2/3)

Offline/Online Signing of Rainbow

The offline phase of the first layer of Rainbow is similar with UOV.

But in the second layer precomputation is limited - Some Vinegar variables
xv+1, · · · , xv+o1 of the second layer are detemined depending on the
(hashed) message h.

So precomputable values are :

LS−1
V,1 - the inverse of the coefficient matrix LSV,1 of the linear system

obtained in the first layer

CV,1 - a vector of constant terms in
(
F(1)(sV), · · · ,F(o1)(sV)

)
(
F(o1+1)(sV), · · · ,F(o1+o2)(sV)

)
- linear terms and constant terms when sV

is substituted into central polynomials in second layer

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (20/25)

Precomputation (3/3)

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (21/25)

Resilence against Leakage or Reuse of Precomputed Values

Store < sV , cV , LS
−1
V > Securely. The precomputed values < sV , cV , LS

−1
V >

should be stored securely.

Theorem 3

If (n+ 1) tuples < m(i), τ (i), s
(i)
V , c

(i)
V , LS

(i)−1
V > are given such that the n× n

matrix (σ(1)T σ(2)T · · · σ(n)T) is invertible then the secret key of UOV is
completely recovered in polynomial-time.

Theorem 4

If (n+ 1) tuples < m(i), τ (i), s
(i)
V , c

(i)
V , (LS

(i)
V)−1 > are given such that the n× n

matrix (σ(1)T σ(2)T · · · σ(n)T) is invertible then an equivalent key of Rainbow is
completely recovered in polynomial-time.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (22/25)

Resilence against Leakage or Reuse of Precomputed Values

Do not Reuse < sV , cV , LS
−1
V >. The precomputed value < sV , cV , LS

−1
V >

should not be reused in signing.

Theorem 5 [SK20]

If (m+ 1) signatures generated by the reused Vinegar values are given then

the equivalent key of UOV is completely recovered in polynomial time,

the complexity of the KRAs using good keys on Rainbow is determined by
solving a multivariate system of m quadratic equations with o1 variables.

Theorem 6

If (o2 + 1) signatures generated by reusing the precomputed values then an
equivalent key of Rainbow is recovered in polynomial-time with high probability.

[SK20] K. -A. Shim, and N. Koo, Algebraic Fault Analysis of UOV and Rainbow with the Leakage of Random Vinegar Values, IEEE Transactions on
Information Forensics and Security, Vol. 15, pp.2429-2439, 2020.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (23/25)

Conclusion

We presented two efficient implementation methods to improving signing of UOV
and Rainbow, and gave implementation results on our methods.

The Block Matrix Inversion - improves the process to solve the linear system

10-40% faster than Gaussian elimination

Precomputation - improves the process substituting Vinegar values and
solving the linear system

For UOV, about 17, 36, and 64 times improvements for Security Level 1, 3,
and 5, respectively.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (24/25)

This is the end of my presentation

Thank you for your attention.

K. -A. Shim, S. Lee, and N. Koo Efficient Implementations of Rainbow and UOV using AVX2 (25/25)

