
Curse of Re-encryption: A Generic Power/EM
Analysis on Post-Quantum KEMs

1

Rei Ueno1,2,3, Keita Xagawa4, Yutaro Tanaka1,2,
Akita Ito1,2, Junko Takahashi4, and Naofumi Homma1,2

1 Tohoku University, 2 JST CREST, 3 JST PRESTO,
4 NTT Social Informatics Laboratories

Cryptographic Hardware and Embedded Systems
20th September, 2022

Post-Quantum KEMs
• Essential public key primitive
• CCA-secure PKE, (authenticated) KX,
hybrid cryptography with DEM, etc.
• Based on quantum-resistant problems
• Lattice, code, and isogeny

• This talk is about power/EM side-channel
attack on them

• Post-quantum KEMs usually employ re-encryption
• Quite difficult to construct CCA-secure PKE directly
• Most KEMs are realized by combining CPA-secure PKE and equality
(validity) check with re-encryption

2

Key encapsulation mechanism
(KEM)

Encrypt secret seed
using Bob’s public key

Encrypted seed

Decrypt secret seed
using Bob’s secret key

Alice Bob

This study: Curse of re-encryption
• Power/EM analysis generally applicable to post-quantum KEMs
• Focus on re-encryption leakage instead of PKE decryption to
implement plaintext-checking (PC) oracle
• Key recovery of eight out of nine KEMs at NIST PQC third-round

3

Applicability of SCAs focusing on re-encryption-related leakage

This study: Curse of re-encryption
• Power/EM analysis generally applicable to post-quantum KEMs
• Focus on re-encryption leakage instead of PKE decryption to
implement plaintext-checking (PC) oracle
• Key recovery of eight out of nine KEMs at NIST PQC third-round

• We also propose deep learning (DL)-based distinguisher to
efficiently implement PC oracle
• Profiled attack, but no need for profiling device
• Directly applicable to protected (e.g., masked) implementations

• Perform experimental attack on various PRF implementations
• Key recovery is feasible for non-masked hw/sw and masked sw
• Masked hw based on threshold implementation would be effective as
countermeasure

4

Plaintext-checking (PC) oracle
• Decryption oracle which returns binary information on PKE
decryption result

• PC oracle is one of major oracles used for CCA on PKE
• Key-recovery PC attack (KR-PCA) is known for most CPA-secure
post-quantum PKEs
• KR-PCA on PKEs at 3rd-round NIST PQC KEM candidates is known
except for Classic McEliece 5

Attacker can generate valid ciphertext
for any plaintext using public key

PC oracle returns binary information of
whether m = m' for invalid ciphertext

Valid ciphertext c

PKE decryption
result m

Invalid ciphertext c'

m = m' ?

KR-PCA on lattice-based PKEs [GJN20]
• Lattice-based PKE decryption employs decode (e.g., rounding)
to remove noise incurred by PKE encryption
• PKE decryption result value µ before decode is secret-key dependent
• If querying invalid ciphertext c' = c + t, µ is changed to µ' = µ + t
• Decode result depends on value of t

• If attacker find border value of t that changes m, then he/she
can recover secret key by solving linear equations

6

q/4-q/4 q/2-q/2 0

m = 0 m = 1m = 1

A decode of lattice-based PKE
(q: modulus)

µ

µ + tµ

µ

c' is decode as m = 1

c' is decode as m = 0

µ + t

Query c'

Kyber-512 PKE and KR-PCA [HV20]

7

• Gen()
•
•
•
•

• Enc(ek = (A, B), m; t, e, f)
•
•
•

• Dec(dk = s, ct)
•
•

• Queries invalid ciphertext:
• Check mi to determine si
• Repeat checking for different t and i

-3 -2 -1 0 1 2 3
-3 1 1 1 0 0 0 0
-2 1 1 0 0 0 0 0
-1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 1
3 0 0 0 0 1 1 1

si

t
Value of mi given si and t

q/4-q/4 q/2-q/2 0

mi = 0 mi = 1mi = 1

Kyber.Decode

–usi
t – usi

KR-PCAs on PKE in NIST PQC third-round KEMs

8

†Partial key recovery for BIKE
※ SIKE currently no longer requires side-channels...😭 [CD22]

Fujisaki‒Okamoto (FO) transform
• Quite difficult to directly construct CCA-secure PKE
• FO transform realizes CCA-secure KEM from CPA-secure PKE
• Most post-quantum KEMs employ FO transform and its variants

9

• Quite difficult to directly construct CCA-secure PKE
• FO transform realizes CCA-secure KEM from CPA-secure PKE
• Most post-quantum KEMs employ FO transform and its variants

10

PKE decryption

Fujisaki‒Okamoto (FO) transform

• Quite difficult to directly construct CCA-secure PKE
• FO transform realizes CCA-secure KEM from CPA-secure PKE
• Most post-quantum KEMs employ FO transform and its variants

11

Re-encryption

Fujisaki‒Okamoto (FO) transform

• Quite difficult to directly construct CCA-secure PKE
• FO transform realizes CCA-secure KEM from CPA-secure PKE
• Most post-quantum KEMs employ FO transform and its variants

12

Equality check

Fujisaki‒Okamoto (FO) transform

Key idea: IND‒SCA game
• Exploit leakage during re-encryption to implement PC oracle

• PRF input fully depends on PKE decryption result m'
• Distinguish two cases from side-channels:
• If PKE decryption results are identical for c and c' (i.e., m = m'),
PRF leakage for c' is meaningfully similar to that for c
• Otherwise (i.e., m ≠ m'), they are different

13

Invalid ciphertext c'

m = m' ?

PRF (e.g., SHA-3)

Attacker Side-channel

Side-channel distinguisher based on DL

• Neural network (NN) is used for distinguisher (PC oracle impl.)
• Train NN to distinguish whether PRF input is m or others
(Imitate PC oracle as conditional probability distribution given trace)

• Side-channel traces for PRF input m can be acquired without secret key
• Profiling is performed using target device, no need for profiling device 14

Target device

Attack phase

Query valid ciphertext c
for KR-PCA repeatedly

Query random ciphertext r
repeatedly

Training dataset
(Labeled side-channel traces)

Train NN to distinguish c and r
from given side-channel trace

Invalid ciphertext for KR-PCA

Probability of PKE decryption result being m
(and conversely not m)

Profiling phase

Attack (test) dataset
(Non-labeled side-channel traces)

Trained NN

Target device

Experimental attack
• Perform proposed attack on various PRF implementations

• Non-protected software: AES and SHAKE in pqm4
• Non-protected hardware: AES for SASEBO
• Protected software: Bit-sliced masked AES
• Protected hardware: Masked AES based on threshold implementation

• We need 100% accuracy for key recovery
• Use multiple traces for one PC oracle implementation
• Majority voting or likelihood ratio test from inference results

15

Non-protected
software

Non-protected
hardware

Protected
software

Protected
hardware

NN accuracy 0.998 0.999 0.960 0.515
Traces for
100% accuracy

2 2 5 1000 >

NN performance evaluated using 10,000 test traces

Traces required for key recovery
of NIST PQC third-round KEM candidates

16

Non-
protected
software

Non-
protected
hardware

Masked
software

Masked
hardware

2 2 5 1000 >

Traces required for 100% accuracy

• Total # traces for key recovery is
given by (# traces for one PC oracle)
× (# PC oracle accesses)

• Threshold implementation would be
especially effective as countermeasure

Concluding remarks
• Re-encryption is used for CCA security, but its leakage is
exploited to mount CCA

• End-to-end protection is mandatory as countermeasure
• PKE decryption, PRF, PKE encryption, and equality/validity check
• If PKE decryption is not masked, leakage of initial masking allows for
key-recovery SCA even on threshold implementation

• More efficient SCA based on multiple-valued PC oracle
[TUX+22] Y. Tanaka et al., “Multiple-valued Plaintext-checking Side-Channel Attacks on Post-
Quantum KEMs,” IACR ePrint Archive, https://eprint.iacr.org/2022/940

• Key-recovery attacks with fault injection
[XIU+21] K. Xagawa et al., “Fault-injection attacks against NIST’s post-quantum cryptography
round 3 KEM candidates,” ASIACRYPT 2021, pp. 33‒61, https://eprint.iacr.org/2021/840

17

18

Experimental condition

19

PC oracle realization with multiple traces
• PC oracle accuracy of 99% is insufficient for key recovery

• Key recovery requires completely correct PC oracles
• Requires 300‒3M PC oracle accesses

• Use t traces for one PC oracle access to improve accuracy
• Simplest method: Majority voting using multiple NN inference outputs
• Resulting accuracy is easily and analytically derived
• But it cannot fully exploit NN feature which outputs probability

• Likelihood ratio test: Compute negative log-likelihood (NLL) for
b ∈ {0, 1} to determine more likely value of b

• : NN output for b given trace with trained parameter
• Xi: i-th trace 20

On optimality of distinguishing attack

21
[TUX+22] Y. Tanaka et al., "Multiple-valued Plaintext-checking Side-Channel Attacks on
Post-Quantum KEMs," IACR ePrint Archive, https://eprint.iacr.org/2022/940

[Theorem 1, TUX+22] Optimal distinguishing attack
Let pB | X be the true conditional probability distribution of PC oracle output Bgiven a side-
channel trace X. Distinguisher with t traces defined as

maximizes the success rate of distinguishing attack.

• DL goal is to imitate true conditional probability distribution pB | X
• Right hand side is equivalent to argmin of NLL with pB | X

• Proposed distinguisher is optimal if NN completely imitates pB | X

• Maximum success rate = Minimum number of traces
• Proposed distinguisher may yield most efficient SCA with PC oracle

