
A FINER-GRAIN ANALYSIS OF

THE (NON) LEAKAGE RESILIENCE OF OCB

Francesco Berti, Shivam Bhasin, Jakub Breier, Xiaolu Hou, Romain Poussier*

François-Xavier Standaert et Balasz Udvarhelyi

Université Catholique de Louvain (Belgium)

Nanyang Technological University (Singapore)

*Now working at ANSSI (France)

OUTLINE

• Introduction and trivial attack paths
• OCB

• Trivial attacks

• First level of protection
• Baseline second-order attack

• Improved attack

• Second level of protection
• SPA on whitening values

• Breaking confidentiality and integrity

• Conclusion

OCB

• OCBv3 is an authenticated mode of encryption, finalist of the NIST CAESAR

competition. It does not provide misuse resistance.

• By design, it does not claim any inherent protection against side-channel attacks,

suggesting that all part of OCB should be implemented using strong SCA

countermeasures. However, targetting a mode of encryption can be more complex

than directly attacking the primitive itself.

• This study: finer grain analysis of the whole OCB mode against SCA, exhibiting the

different attack paths and potentially mitigate the requirement to strongly protect all

parts of OCB.

DPA: any side-channel attack making use of varying plaintext value (kocher’s DPA, CPA,

MIA, template, ML...)

SPA: any side-channel attack making use of a single plaintext value, potentially

repeated (template, ML…)

OCB OVERVIEW

Two functions init

and inc

Padding for last

message if

incomplete

Checksum is the

sum of the

messages

The Associated Data (AD) is processed similarily replacing the message blocks by the AD

ones. However, it uses 𝛿0 = 0

INITIALIZATION

1. Init. Computation of 𝛿0 ≃ 𝐵𝐶𝑘 𝑛𝑜𝑛𝑐𝑒
• Only unknown is the master key 𝑘, 𝑛𝑜𝑛𝑐𝑒 is known

2. Inc. Computation of 𝛿𝑖
• 𝑙0 only depends on the master

key 𝑘
• Double is the multiplication by two

over 𝔽256
• 𝑛𝑡𝑧(𝑖) = the number of remaining (LSBs)

0 in the decomposition of 𝑖 in base 2

TRIVIAL ATTACKS

While OCB does not claim any protection against SCAs, attacking a mode can be harder

than directly attacking the primitive itself (AES in this case).

We denote by trivial any attack on OCB that is « equivalent » to directly attacking the

primitive

1. DPA against OCB decryption: in this case, the adversary is able to query OCB-AES

with the same nonce several times. 𝛿1 would thus be fixed, and the attacker targets

the first decryption block 𝑐1
1. Schoolbook DPA on the first AES round using 𝑘 ⊕ 𝛿1 as key material to recover

2. Predict the state value at the second rounnd, and target the second AES round

key

TRIVIAL ATTACKS

While OCB does not claim any protection against SCAs, attacking a mode can be harder

than directly attacking the primitive itself (AES in this case).

We denote by trivial any attack on OCB that is « equivalent » to directly attacking the

primitive

2. DPA against OCB initialization: during the initialization procedure, it computes

𝐴𝐸𝑆𝑘 𝑛𝑜𝑛𝑐𝑒 where 𝑛𝑜𝑛𝑐𝑒 is known. This is a trivial known plaintext SCA scenario on

the primitive

3. DPA against the associated data: when processing AD, 𝛿1 is always unknown but

fixed. One can thus apply the same attack as for the decryption case (first 𝑘 ⊕ 𝛿1
then 𝑘)

TRIVIAL ATTACKS

While OCB does not claim any protection against SCAs, attacking a mode can be harder

than directly attacking the primitive itself (AES in this case).

We denote by trivial any attack on OCB that is « equivalent » to directly attacking the

primitive

4. DPA against incomplete messages: the last ciphertext block, if incomplete, is

computed as 𝑐𝑖 = 𝐴𝐸𝑆𝑘 𝛿𝑖 ⊕ 𝑚𝑖 . This is a trivial known ciphertext attack scenario,

as 𝛿𝑖 is not added before outputting the ciphetext

OUTLINE

• Introduction and trivial attack paths
• OCB

• Trivial attacks

• First level of protection
• Baseline second-order attack

• Improved attack

• Second level of protection
• SPA on whitening values

• Breaking confidentiality and integrity

• Conclusion

PROTECTION LEVEL 1

Having shown some trivial attack paths, we assume that the designer has strongly

protected the corresponding area with SCA countermeasures. We thus now ignore

the leakages corresponding to:

• OCB decryptions

• AD processing

• The initialization procedure

• The processing of last message block (if incomplete)

The adversary is now left with leakages corresponding to the main part of the OCB

encryption

AVAILABLE LEAKAGES

The available leakages are similar to the

decryption or AD processing case, except for

the fact that OCB is not misuse resistant

The nonce changes at each encryption, and so

does 𝛿𝑖. The « message » input is unknown

AVAILABLE LEAKAGES

Idea 1: apply a second-order attack,

considering as if 𝛿1 would be a mask

Use a leakage on 𝛿1 and on the Sbox

output of the first AES round.
𝑡0 = 𝐹0(𝛿1)

𝑡1 =

𝐹1 𝑆 𝑘 ⊕ 𝛿1 ⊕𝑚1

BASELINE ATTACK RESULT

• Cortex-m0

• SNR, LDA then template

attack

• Profiling: 800K traces

• Attack: 20 plaintexts of

80.000 128-bit blocs

each (total 1.6M AES

traces)

LINK WITH MASKING: INFORMATION THEORY ANALYSIS

• Red and orange curve have the

same slope for high noise levels,

confirming that it exploits a

statistical moment of order 2 as

for a 1st order masking scheme.

• However, the vertical offset,

showing that it is harder to attack

OCB than a regular masked AES

(required traces ≃
𝑐

𝑀𝐼
)

• Can be seen as more algebraic

complexity as for inner product

masking:

Masked aes: 𝑆 𝑘 ⊕𝑚1 ⊕𝛿1
baseline: 𝑆 𝑘 ⊕ 𝛿1 ⊕𝑚1

Simulations

OUTLINE

• Introduction and trivial attack paths
• OCB

• Trivial attacks

• First level of protection
• Baseline second-order attack

• Improved attack

• Second level of protection
• SPA on whitening values

• Breaking confidentiality and integrity

• Conclusion

SOME THOUGHTS ON OCB SECURITY

At first glance, it seems that the inner part of OCB is inherently protected against SCA by

implementing some kind of free first-order masking

The baseline attack is thus an « easy » path to defeat OCB, but suffers from the same

asymptotic trace complexity as when attacking a first-order masked implementation. For

that reason, it is not efficient for high-noise scenario

IMPROVED ATTACK OVERVIEW

𝑘 ⊕ δ0

8 + 𝑛 bits

of 𝑙0

16 Regular DPA with

16 + 𝑛 bits of

guessing space

Second round

attack with the

same traces

𝑘 ⊕ δ0 𝑘

The output of the first

round can now be

guessed

Guessing space

𝐴𝑅𝐾

INFORMATION FROM WHITENING VALUES

The baseline attack only considers the key as guessing space. We can design a more

efficient « horizontal » attack by including bits of 𝑙𝑖 into the guessing space.

𝑚1

δ1

𝑘

𝑘 ⊕ δ1 ⊕𝑚1

= 𝑘 ⊕ δ0 ⊕ 𝑙0 ⊕𝑚1

𝐴𝑅𝐾

𝑚2

δ2

𝑘

𝑘 ⊕ δ2 ⊕𝑚2

= 𝑘 ⊕ δ0 ⊕ 𝑙0 ⊕ 𝑙1 ⊕𝑚2

𝐴𝑅𝐾

𝑚3

δ3

𝑘

𝑘 ⊕ δ3 ⊕𝑚3

= 𝑘 ⊕ δ0 ⊕ 𝑙1 ⊕𝑚3

If we know the 𝑙𝑖, the attacker can target 𝑘 ⊕ δ0 as the new « key material »

GUESSING WHITENING VALUES

𝑙𝟎 𝟎 𝑙𝟎 𝟏 𝑙𝟎 𝟐 𝑙𝟎 𝟑 𝑙𝟎 𝟒 𝑙𝟎 𝟓 𝑙𝟎 𝟔 𝑙𝟎 𝟕 𝑙𝟎 𝟖 𝑙𝟎 𝟗𝑙0 =

𝑙𝟎 𝟏 𝑙𝟎 𝟐 𝑙𝟎 𝟑 𝑙𝟎 𝟒 𝑙𝟎 𝟓 𝑙𝟎 𝟔 𝑙𝟎 𝟕 𝑙𝟎 𝟖 𝑙𝟎 𝟗𝑙1 =

𝑙𝟎 𝟐 𝑙𝟎 𝟑 𝑙𝟎 𝟒 𝑙𝟎 𝟓 𝑙𝟎 𝟔 𝑙𝟎 𝟕 𝑙𝟎 𝟖 𝑙𝟎 𝟗𝑙2 =

(ignores carry)

• 𝛿𝑖 = 𝛿𝑖−1 ⊕ 𝑙𝑛𝑡𝑧 𝑖 : The knowledge of 𝑙𝑖 translates into the knowledge of 𝛿𝑖

• Adding 8 + 𝑛 bits of guessing space on 𝑙0 allows knowing the first byte of 𝑙𝑖 for 𝑖 ∈
1, 𝑛 .

• The attack has a computational complexity of 216+𝑛 in order to use 2𝑛+1 − 1 traces.

However, when feasible, it is as trace-efficient as a regular unprotected DPA.

IMPROVED ATTACK RESULTS

We set the complexity parameter 𝑛 such that the complexity was feasible

Baseline Improved

OUTLINE

• Introduction and trivial attack paths
• OCB

• Trivial attacks

• First level of protection
• Baseline second-order attack

• Improved attack

• Second level of protection
• SPA on whitening values

• Breaking confidentiality and integrity

• Conclusion

PROTECTION LEVEL 2

• We now consider an implementation where all the block cipher calls are well protected

against SCA

• Only the computations of the δ𝑖 are exploitable leakages. Since 𝛿𝑖 = 𝛿𝑖 ⊕ 𝑙𝑛𝑡𝑧 𝑖 , given a

plaintext of 𝑛 128-bit blocks, 𝑙0 is loaded
𝑛

2
times.

• We thus perform an SPA on 𝑙0

𝑚1

δ1

𝑘

𝑚2

δ2

𝑘

𝑚3

δ3

𝑘

SPA ON WHITENING VALUES: RESULTS

Attack performed on

twisted (weaker) 8-bit

fashion of the

implementation

Exploiting the relations

between the different 𝑙𝑖
and the use of belief

propagation only

provided marginal results

PROTECTION LEVEL 2: IMPACT

• In this scenario, we now assume that the adversary is able to recover the 𝑙𝑖 as it is the

only part that is left unprotected.

• These leakages are not enough for key recovery. Yet, they allow breaking integrity

and confidentiality of OCB. Example with integrity:

𝑚2 ⊕ 𝑙1

δ1

𝑘

δ1

𝑐2 ⊕ 𝑙1

𝑚1 ⊕ 𝑙1

δ2

𝑘

δ2

𝑐1 ⊕ 𝑙1

𝑚3

δ3

𝑘

δ3

𝑐3

(𝑐2 ⊕ 𝑙1, 𝑐1 ⊕ 𝑙1, 𝑐3, τ) is a valid forgery

𝐸 𝑚2 ⊕ 𝑙1, 𝑚1 ⊕ 𝑙1, 𝑚3, 𝑁

𝑚1

δ1

𝑘

δ1

𝑐1

𝑚2

δ2

𝑘

δ2

𝑐2

𝑚3

δ3

𝑘

δ3

𝑐3

Query 𝐸 𝑚1, 𝑚2, 𝑚3, 𝑁 = (𝑐1, 𝑐2, 𝑐3, τ)

CONCLUSION
• While OCB does not provide inherent resistance against SCA, a finer-grain analysis

balances that statement

1. Some parts can be attacked with trivial schoolbook DPAs: initialization, processing of AD

incomplete message block and decryption
• Require strong protections against SCA

2. The inner block cipher calls be targeted using a second-order DPA (coslty in traces) or

using an extended key space guess (tradeoff data v.s. computation/memory)

• Might be sufficient to use weaker countermeasures (e.g. less shares for masked

implementations)

3. Whitening values outside the block cipher calls can be attacked using SPA. Probably

feasible against 8-bit implementations, but harder against larger architectures
• Recovering the whitening values allows breaking confidentiality and integrity

• Weak countermeasure might be sufficient, but should not be ignored.

• Other modes might be preferred regarding inherent SCA protection

SNR ANALYSIS

EXPERIMENTAL SETUP

• Target: ARM cortex-m0 running at 48 MHz

• Implementation of OCB: C code optimized to use 32-bit values when possible. Sbox

using lookup tables for the AES.

• Scope: Picoscope 5244D sampled at 500MS/s.

• Test platform: STM32F0308 discovery board, power leakages.

• Testing methodology: all attacks follow the same procedure
1. SNR testing and identification of POI

2. Linear discriminant analysis based on (1)

3. Gaussien template attack based on (2)

• Traces sets:
• Profiling set: 800K traces of one 1128-bit random plaintext block

• Attack set: 20 plaintexts of 80.000 128-bit blocs each (total 1.6M AES traces)

IMPROVED ATTACK: THEORETICAL EVALUATION

This attack has a computational complexity of 216+𝑛 in order to use 2𝑛+1 − 1 traces.

PROTECTION LEVEL 2: IMPACT

In this scenario, we now assume that the adversary is able to recover the 𝑙𝑖 as it is the

only part that is left unprotected.

These leakages are not enough for key recovery. Yet, they allow breaking integrity and

confidentiality of OCB.

While we couldn’t exhibit any key recovery attack using the sole knowledge of 𝑙𝑖, we

still showed the following vulnerabilities:

• Attack against confidentiality: for certain messages, we are able to distinguish between

their ciphertexts made via OCB from random ones.

• Attack against integrity: We forge a valid pair (𝑐∗, 𝑡𝑎𝑔) using the knowledge of the 𝑙𝑖
and a valid pair (𝑐, 𝑡𝑎𝑔)

PROTECTION LEVEL 2: BREAKING INTEGRITY (DETAILS)

For a n-bloc message, tag τ = 𝐵𝐶𝑘 𝛿𝑛 ⊕σ𝑖𝑚𝑖

Encryption query of 3 128-bit message m: 𝐸 𝑚1, 𝑚2, 𝑚3, 𝑁 = (𝑐1, 𝑐2, 𝑐3, τ)

𝑐1
′ , 𝑐2

′ , 𝑐3
′ , τ = (𝑐2 ⊕ 𝑙1, 𝑐1 ⊕ 𝑙1, 𝑐3, τ) is a valid forgery, and would correspond to the

encryption of 𝑚′: 𝐸 𝑚2 ⊕ 𝑙1, 𝑚1 ⊕ 𝑙1, 𝑚3, 𝑁

𝑐1
′ = 𝐵𝐶𝑘 𝑚2 ⊕ 𝑙1⊕ 𝑙0⊕𝛿0 ⊕ 𝑙0⊕𝛿0 = 𝑐2 ⊕ 𝑙1

𝑐2
′ = 𝐵𝐶𝑘 𝑚2 ⊕ 𝑙1⊕ 𝑙0⊕ 𝑙1⊕𝛿0 ⊕ 𝑙0⊕ 𝑙1⊕𝛿0 = 𝑐1 ⊕ 𝑙1

𝑐3
′ = 𝑐3

And we have 𝑐1
′ ⊕𝑐2

′ ⊕ 𝑐3
′ = 𝑐2 ⊕ 𝑙1 ⊕𝑐1 ⊕ 𝑙1 ⊕𝑐3 = 𝑐1 ⊕ 𝑐2 ⊕𝑐3

IMPROVED ATTACK OVERVIEW

𝑘 ⊕ δ0

8 + 𝑛 bits

of 𝑙0

16 Regular DPA with

16 + 𝑛 bits of

guessing space

With 2𝑛+1 − 1 traces

Second round

attack with the

same traces

𝑘 ⊕ δ0 𝑘

The output of the first

round can now be

guessed

