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Passive Physical Attacks
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Physical characteristics can be exploited to extract secret information: 

• Timing

• Power Consumption

• Electromagnetic radiations

• …



Masking
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Masking randomizes the intermediate values of a cryptographic computation to avoid 
dependencies between these values and the power consumption

It is usually applied on an algorithmic level

• Does not rely on the power consumption characteristics of the device

Each intermediate value is concealed by a random mask that is different for every execution

Basically, it corresponds to a secret sharing scheme:

• Boolean secret sharing
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Boolean Secret Sharing
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First order Boolean secret sharing (two shares):

• Secret: 𝑥
• Random: 𝑚 
• One needs to know share 𝑥ଵ and 𝑥ଶ to compute secret 𝑥

• Neither of them alone provides enough information

Linear Function 𝐹

• Definition 𝐹 𝑥 ⊕ 𝑧 ൌ 𝐹 𝑥 ⊕ 𝐹ሺ𝑧ሻ
• Boolean share before 𝐹: 𝑥ଵ, 𝑥ଶ with 𝑥ଵ ⊕ 𝑥ଶ ൌ 𝑥 
• Boolean share after 𝐹: 𝐹 𝑥ଵ , 𝐹 𝑥ଶ with 𝐹 𝑥ଵ ⊕ 𝐹 𝑥ଶ ൌ 𝐹 𝑥ଵ ⊕ 𝑥ଶ ൌ 𝐹ሺ𝑥ሻ

Non-linear Function?
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Shares: 𝑥ଵ, 𝑥ଶ
𝑥ଵ ൌ 𝑥 ⊕ 𝑚 
𝑥ଶ ൌ 𝑚 𝑥ଵ ⊕ 𝑥ଶ ൌ 𝑥



Masking in Hardware
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Pre-computing the masked tables in software

• Sequential operations, time consuming, low efficiency

• High efficiency is desired in hardware

Ad-hoc/heuristic schemes
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Masking in Hardware
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Pre-computing the masked tables in software

• Sequential operations, time consuming, low efficiency

• High efficiency is desired in hardware

Ad-hoc/heuristic schemes

Processing the mask (𝒎) and masked data (𝒙 ⊕ 𝒎) simultaneously 

• Joint distribution of leakages

• It is called to be due to glitches [actually not always true]

• Possible attacks 
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Masking in Hardware
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Pre-computing the masked tables in software

• Sequential operations, time consuming, low efficiency

• High efficiency is desired in hardware

Ad-hoc/heuristic schemes

Processing the mask (𝒎) and masked data (𝒙 ⊕ 𝒎) simultaneously 

• Joint distribution of leakages

• It is called to be due to glitches [actually not always true]

• Possible attacks 

Systematic schemes

• Threshold Implementation, provable security
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Threshold Implementation

AGEMA

Let’s consider an Sbox: 
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𝑥ଵ ⊕ 𝑥ଶ ⊕ 𝑥ଷ ൌ 𝑥 𝑦ଵ ⊕ 𝑦ଶ ⊕ 𝑦ଷ ൌ 𝑦
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Threshold Implementation

AGEMA

Let’s consider an Sbox: 

𝑥ଵ ⊕ 𝑥ଶ ⊕ 𝑥ଷ ൌ 𝑥 𝑦ଵ ⊕ 𝑦ଶ ⊕ 𝑦ଷ ൌ 𝑦

Each 𝑓 should be 
independent of one share
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Threshold Implementation
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Let’s consider an Sbox: 

𝑥ଵ ⊕ 𝑥ଶ ⊕ 𝑥ଷ ൌ 𝑥 𝑦ଵ ⊕ 𝑦ଶ ⊕ 𝑦ଷ ൌ 𝑦

Example:

𝑥 ൌ 𝑎, 𝑏, 𝑐, 𝑑      𝑦 ൌ 𝑒, 𝑓, 𝑔, ℎ

𝑆ଵ 𝑎, 𝑏, 𝑐, 𝑑 ൌ 𝑒

𝑒 ൌ 𝑎 ⊕ 𝑏𝑐 ⊕ 𝑑

𝑒 ൌ 𝑎ଵ ⊕ 𝑎ଶ ⊕ 𝑎ଷ ⊕ 𝑏ଵ𝑐ଵ ⊕ 𝑏ଵ𝑐ଶ ⊕ 𝑏ଵ𝑐ଷ ⊕ 𝑏ଶ𝑐ଵ ⊕

        𝑏ଶ𝑐ଶ ⊕ 𝑏ଶ𝑐ଷ ⊕ 𝑏ଷ𝑐ଵ ⊕ 𝑏ଷ𝑐ଶ ⊕ 𝑏ଷ𝑐ଷ ⊕ 𝑑ଵ ⊕ 𝑑ଶ ⊕ 𝑑ଷ

Each 𝑓 should be 
independent of one share
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Threshold Implementation
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Let’s consider an Sbox: 
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𝑥ଵ ⊕ 𝑥ଶ ⊕ 𝑥ଷ ൌ 𝑥 𝑦ଵ ⊕ 𝑦ଶ ⊕ 𝑦ଷ ൌ 𝑦

Example:

𝑥 ൌ 𝑎, 𝑏, 𝑐, 𝑑      𝑦 ൌ 𝑒, 𝑓, 𝑔, ℎ

𝑆ଵ 𝑎, 𝑏, 𝑐, 𝑑 ൌ 𝑒

𝑒 ൌ 𝑎 ⊕ 𝑏𝑐 ⊕ 𝑑

𝑒 ൌ 𝑎ଵ ⊕ 𝑎ଶ ⊕ 𝑎ଷ ⊕ 𝑏ଵ𝑐ଵ ⊕ 𝑏ଵ𝑐ଶ ⊕ 𝑏ଵ𝑐ଷ ⊕ 𝑏ଶ𝑐ଵ ⊕

        𝑏ଶ𝑐ଶ ⊕ 𝑏ଶ𝑐ଷ ⊕ 𝑏ଷ𝑐ଵ ⊕ 𝑏ଷ𝑐ଶ ⊕ 𝑏ଷ𝑐ଷ ⊕ 𝑑ଵ ⊕ 𝑑ଶ ⊕ 𝑑ଷ

Each 𝑓 should be 
independent of one share

𝒇𝟏 ൌ 𝒃𝟐𝒄𝟑 ⊕ 𝒃𝟑𝒄𝟐 ⊕ 𝒂𝟐 ⊕ 𝒅𝟐 ⊕ 𝒃𝟐𝒄𝟐

𝒇𝟐 ൌ 𝒃𝟑𝒄𝟏 ⊕ 𝒃𝟏𝒄𝟑 ⊕ 𝒂𝟑 ⊕ 𝒅𝟑 ⊕ 𝒃𝟑𝒄𝟑

𝒇𝟑 ൌ 𝒃𝟏𝒄𝟐 ⊕ 𝒃𝟐𝒄𝟏 ⊕ 𝒂𝟏 ⊕ 𝒅𝟏 ⊕ 𝒃𝟏𝒄𝟏

are clear 
where to go 
(to which 𝑓)

can be arbitrarily
distributed among
two component
functions



How to Make a Masked Design?
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Unprotected 
Implementation

(behavioral verilog)
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Unprotected 
Implementation

(behavioral verilog)

Manual Design

• Not straightforward
• Based on experience
• Algorithmic level
• Prone to 

errors/defeats
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Non-Composability in the TI context
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𝑥ଶ TI ୗ୆୓ଡ଼
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Composability
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Masking large and complex circuits is a hard task especially for high security orders

Composable hardware gadgets offer a systematic way to generate provable secure designs

• Arbitrary security orders possible

• Based on formal security notions

• Following  divide-and-conquer approach based on fundamental building blocks

• Simply replacing unprotected gates (or larger modules) with its masked and composable 
counterpart
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How to Make a Secure Design?
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• Replaces with equivalent 
variants

• Adjusts the control logic
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Unprotected 
Implementation

(behavioral verilog)

Design’s netlist

AGEMA

• Identifies gates/modules
to be secured

• Replaces with equivalent 
variants

• Adjusts the control logic

Manual Design

• Not straightforward
• Based on experience
• Algorithmic level
• Prone to 

errors/defeats

Side-Channel 
Protected 

Implementation
(behavioral verilog)

Side-Channel 
Protected

Implementation
(netlist)

Settings
• Level of protection (order)?
• Optimize for area or speed?

• Free of heuristics
• Based on proofs
• Free of engineering‘s failures
• Open-source (GitHub)



Circuit Model
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Circuit Model
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Circuit Model
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Circuit Model
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Circuit Model
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Example
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General Procedure
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AGEMA
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• Requirements

• Composable security

• A secure circuit is not necessarily secure 
when composed

• PINI (Probe-Isolating Non-Interference)

• PINI gadgets of essential gates

• AND/NAND/OR/NOR/…
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when composed

• PINI (Probe-Isolating Non-Interference)

• PINI gadgets of essential gates

• AND/NAND/OR/NOR/…
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• Efficiency

• Provable security

• As long as the gadgets are PINI

• Extendable to any arbitrary order

• Not as efficient as manually-crafted designs

• Larger, higher latency, higher demand for 
fresh masks

• Any engineer can make secure designs

• https://github.com/Chair-for-Security-
Engineering/AGEMA



Thanks!
Any Questions?
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amir.moradi@rub.de
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Standardization Process
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https://csrc.nist.gov/Projects/masked-circuits
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