
CHES, September 2022, Leuven, Belgium

Automated Generation of Masked Hardware (AGEMA)
David Knichel, Amir Moradi, Nicolai Müller and Pascal Sasdrich

Crypto Device

CHES, September 2022, Leuven, BelgiumAGEMA 2

𝑖𝑛
𝑜𝑢𝑡

𝐹௞

Passive Physical Attacks

CHES, September 2022, Leuven, BelgiumAGEMA 3

Physical characteristics can be exploited to extract secret information:

• Timing

• Power Consumption

• Electromagnetic radiations

• …

Masking

CHES, September 2022, Leuven, BelgiumAGEMA

Masking randomizes the intermediate values of a cryptographic computation to avoid
dependencies between these values and the power consumption

It is usually applied on an algorithmic level

• Does not rely on the power consumption characteristics of the device

Each intermediate value is concealed by a random mask that is different for every execution

Basically, it corresponds to a secret sharing scheme:

• Boolean secret sharing

4

Boolean Secret Sharing

CHES, September 2022, Leuven, BelgiumAGEMA

First order Boolean secret sharing (two shares):

• Secret: 𝑥
• Random: 𝑚
• One needs to know share 𝑥ଵ and 𝑥ଶ to compute secret 𝑥

• Neither of them alone provides enough information

Linear Function 𝐹

• Definition 𝐹 𝑥 ⊕ 𝑧 ൌ 𝐹 𝑥 ⊕ 𝐹ሺ𝑧ሻ
• Boolean share before 𝐹: 𝑥ଵ, 𝑥ଶ with 𝑥ଵ ⊕ 𝑥ଶ ൌ 𝑥
• Boolean share after 𝐹: 𝐹 𝑥ଵ , 𝐹 𝑥ଶ with 𝐹 𝑥ଵ ⊕ 𝐹 𝑥ଶ ൌ 𝐹 𝑥ଵ ⊕ 𝑥ଶ ൌ 𝐹ሺ𝑥ሻ

Non-linear Function?

5

Shares: 𝑥ଵ, 𝑥ଶ
𝑥ଵ ൌ 𝑥 ⊕ 𝑚
𝑥ଶ ൌ 𝑚 𝑥ଵ ⊕ 𝑥ଶ ൌ 𝑥

Masking in Hardware

CHES, September 2022, Leuven, BelgiumAGEMA

Pre-computing the masked tables in software

• Sequential operations, time consuming, low efficiency

• High efficiency is desired in hardware

Ad-hoc/heuristic schemes

6

masked
Sbox

m
x⊕m S(x)⊕m'

Masking in Hardware

CHES, September 2022, Leuven, BelgiumAGEMA

Pre-computing the masked tables in software

• Sequential operations, time consuming, low efficiency

• High efficiency is desired in hardware

Ad-hoc/heuristic schemes

Processing the mask (𝒎) and masked data (𝒙 ⊕ 𝒎) simultaneously

• Joint distribution of leakages

• It is called to be due to glitches [actually not always true]

• Possible attacks

7

masked
Sbox

m
x⊕m S(x)⊕m'

Masking in Hardware

CHES, September 2022, Leuven, BelgiumAGEMA

Pre-computing the masked tables in software

• Sequential operations, time consuming, low efficiency

• High efficiency is desired in hardware

Ad-hoc/heuristic schemes

Processing the mask (𝒎) and masked data (𝒙 ⊕ 𝒎) simultaneously

• Joint distribution of leakages

• It is called to be due to glitches [actually not always true]

• Possible attacks

Systematic schemes

• Threshold Implementation, provable security

8

masked
Sbox

m
x⊕m S(x)⊕m'

Threshold Implementation

AGEMA

Let’s consider an Sbox:

9

𝑥ଵ ⊕ 𝑥ଶ ⊕ 𝑥ଷ ൌ 𝑥 𝑦ଵ ⊕ 𝑦ଶ ⊕ 𝑦ଷ ൌ 𝑦

CHES, September 2022, Leuven, Belgium

Threshold Implementation

AGEMA

Let’s consider an Sbox:

𝑥ଵ ⊕ 𝑥ଶ ⊕ 𝑥ଷ ൌ 𝑥 𝑦ଵ ⊕ 𝑦ଶ ⊕ 𝑦ଷ ൌ 𝑦

Each 𝑓 should be
independent of one share

10CHES, September 2022, Leuven, Belgium

Threshold Implementation

AGEMA

Let’s consider an Sbox:

𝑥ଵ ⊕ 𝑥ଶ ⊕ 𝑥ଷ ൌ 𝑥 𝑦ଵ ⊕ 𝑦ଶ ⊕ 𝑦ଷ ൌ 𝑦

Example:

𝑥 ൌ 𝑎, 𝑏, 𝑐, 𝑑 𝑦 ൌ 𝑒, 𝑓, 𝑔, ℎ

𝑆ଵ 𝑎, 𝑏, 𝑐, 𝑑 ൌ 𝑒

𝑒 ൌ 𝑎 ⊕ 𝑏𝑐 ⊕ 𝑑

𝑒 ൌ 𝑎ଵ ⊕ 𝑎ଶ ⊕ 𝑎ଷ ⊕ 𝑏ଵ𝑐ଵ ⊕ 𝑏ଵ𝑐ଶ ⊕ 𝑏ଵ𝑐ଷ ⊕ 𝑏ଶ𝑐ଵ ⊕

 𝑏ଶ𝑐ଶ ⊕ 𝑏ଶ𝑐ଷ ⊕ 𝑏ଷ𝑐ଵ ⊕ 𝑏ଷ𝑐ଶ ⊕ 𝑏ଷ𝑐ଷ ⊕ 𝑑ଵ ⊕ 𝑑ଶ ⊕ 𝑑ଷ

Each 𝑓 should be
independent of one share

11CHES, September 2022, Leuven, Belgium

Threshold Implementation

CHES, September 2022, Leuven, BelgiumAGEMA

Let’s consider an Sbox:

12

𝑥ଵ ⊕ 𝑥ଶ ⊕ 𝑥ଷ ൌ 𝑥 𝑦ଵ ⊕ 𝑦ଶ ⊕ 𝑦ଷ ൌ 𝑦

Example:

𝑥 ൌ 𝑎, 𝑏, 𝑐, 𝑑 𝑦 ൌ 𝑒, 𝑓, 𝑔, ℎ

𝑆ଵ 𝑎, 𝑏, 𝑐, 𝑑 ൌ 𝑒

𝑒 ൌ 𝑎 ⊕ 𝑏𝑐 ⊕ 𝑑

𝑒 ൌ 𝑎ଵ ⊕ 𝑎ଶ ⊕ 𝑎ଷ ⊕ 𝑏ଵ𝑐ଵ ⊕ 𝑏ଵ𝑐ଶ ⊕ 𝑏ଵ𝑐ଷ ⊕ 𝑏ଶ𝑐ଵ ⊕

 𝑏ଶ𝑐ଶ ⊕ 𝑏ଶ𝑐ଷ ⊕ 𝑏ଷ𝑐ଵ ⊕ 𝑏ଷ𝑐ଶ ⊕ 𝑏ଷ𝑐ଷ ⊕ 𝑑ଵ ⊕ 𝑑ଶ ⊕ 𝑑ଷ

Each 𝑓 should be
independent of one share

𝒇𝟏 ൌ 𝒃𝟐𝒄𝟑 ⊕ 𝒃𝟑𝒄𝟐 ⊕ 𝒂𝟐 ⊕ 𝒅𝟐 ⊕ 𝒃𝟐𝒄𝟐

𝒇𝟐 ൌ 𝒃𝟑𝒄𝟏 ⊕ 𝒃𝟏𝒄𝟑 ⊕ 𝒂𝟑 ⊕ 𝒅𝟑 ⊕ 𝒃𝟑𝒄𝟑

𝒇𝟑 ൌ 𝒃𝟏𝒄𝟐 ⊕ 𝒃𝟐𝒄𝟏 ⊕ 𝒂𝟏 ⊕ 𝒅𝟏 ⊕ 𝒃𝟏𝒄𝟏

are clear
where to go
(to which 𝑓)

can be arbitrarily
distributed among
two component
functions

How to Make a Masked Design?

CHES, September 2022, Leuven, BelgiumAGEMA 13

Unprotected
Implementation

(behavioral verilog)

How to Make a Masked Design?

CHES, September 2022, Leuven, BelgiumAGEMA 14

Unprotected
Implementation

(behavioral verilog)

Manual Design

• Not straightforward
• Based on experience
• Algorithmic level
• Prone to

errors/defeats

How to Make a Masked Design?

CHES, September 2022, Leuven, BelgiumAGEMA 15

Unprotected
Implementation

(behavioral verilog)

Manual Design

• Not straightforward
• Based on experience
• Algorithmic level
• Prone to

errors/defeats

Side-Channel
Protected

Implementation
(behavioral verilog)

Non-Composability in the TI context

CHES, September 2022, Leuven, BelgiumAGEMA 16

𝑥ଶ TI ୗ୆୓ଡ଼

8

8

8

8

8

8

⊕
⊕

⊕

uniform Not necessarily
uniform

𝑥ଵ

𝑥ଷ

𝑦ଵ

𝑦ଶ

𝑦ଷ

Composability

CHES, September 2022, Leuven, BelgiumAGEMA

Masking large and complex circuits is a hard task especially for high security orders

Composable hardware gadgets offer a systematic way to generate provable secure designs

• Arbitrary security orders possible

• Based on formal security notions

• Following divide-and-conquer approach based on fundamental building blocks

• Simply replacing unprotected gates (or larger modules) with its masked and composable
counterpart

17

How to Make a Secure Design?

CHES, September 2022, Leuven, BelgiumAGEMA 18

Unprotected
Implementation

(behavioral verilog)

Manual Design

• Not straightforward
• Based on experience
• Algorithmic level
• Prone to

errors/defeats

Side-Channel
Protected

Implementation
(behavioral verilog)

How to Make a Secure Design?

CHES, September 2022, Leuven, BelgiumAGEMA 19

Unprotected
Implementation

(behavioral verilog)

Design’s netlist

Manual Design

• Not straightforward
• Based on experience
• Algorithmic level
• Prone to

errors/defeats

Side-Channel
Protected

Implementation
(behavioral verilog)

How to Make a Secure Design?

CHES, September 2022, Leuven, BelgiumAGEMA 20

Unprotected
Implementation

(behavioral verilog)

Design’s netlist

Manual Design

• Not straightforward
• Based on experience
• Algorithmic level
• Prone to

errors/defeats

Side-Channel
Protected

Implementation
(behavioral verilog)

Settings
• Level of protection (order)?
• Optimize for area or speed?

How to Make a Secure Design?

CHES, September 2022, Leuven, BelgiumAGEMA 21

Unprotected
Implementation

(behavioral verilog)

Design’s netlist

AGEMA

• Identifies gates/modules
to be secured

• Replaces with equivalent
variants

• Adjusts the control logic

Manual Design

• Not straightforward
• Based on experience
• Algorithmic level
• Prone to

errors/defeats

Side-Channel
Protected

Implementation
(behavioral verilog)

Settings
• Level of protection (order)?
• Optimize for area or speed?

How to Make a Secure Design?

CHES, September 2022, Leuven, BelgiumAGEMA 22

Unprotected
Implementation

(behavioral verilog)

Design’s netlist

AGEMA

• Identifies gates/modules
to be secured

• Replaces with equivalent
variants

• Adjusts the control logic

Manual Design

• Not straightforward
• Based on experience
• Algorithmic level
• Prone to

errors/defeats

Side-Channel
Protected

Implementation
(behavioral verilog)

Side-Channel
Protected

Implementation
(netlist)

Settings
• Level of protection (order)?
• Optimize for area or speed?

How to Make a Secure Design?

CHES, September 2022, Leuven, BelgiumAGEMA 23

Unprotected
Implementation

(behavioral verilog)

Design’s netlist

AGEMA

• Identifies gates/modules
to be secured

• Replaces with equivalent
variants

• Adjusts the control logic

Manual Design

• Not straightforward
• Based on experience
• Algorithmic level
• Prone to

errors/defeats

Side-Channel
Protected

Implementation
(behavioral verilog)

Side-Channel
Protected

Implementation
(netlist)

Settings
• Level of protection (order)?
• Optimize for area or speed?

• Free of heuristics
• Based on proofs
• Free of engineering‘s failures
• Open-source (GitHub)

Circuit Model

CHES, September 2022, Leuven, BelgiumAGEMA 24

Circuit Model

CHES, September 2022, Leuven, BelgiumAGEMA 25

Circuit Model

CHES, September 2022, Leuven, BelgiumAGEMA 26

Circuit Model

CHES, September 2022, Leuven, BelgiumAGEMA 27

Circuit Model

CHES, September 2022, Leuven, BelgiumAGEMA 28

Circuit Model

CHES, September 2022, Leuven, BelgiumAGEMA 29

Circuit Model

CHES, September 2022, Leuven, BelgiumAGEMA 30

Circuit Model

CHES, September 2022, Leuven, BelgiumAGEMA 31

Circuit Model

CHES, September 2022, Leuven, BelgiumAGEMA 32

Example

CHES, September 2022, Leuven, BelgiumAGEMA 33

General Procedure

CHES, September 2022, Leuven, BelgiumAGEMA 34

AGEMA

CHES, September 2022, Leuven, BelgiumAGEMA

• Requirements

• Composable security

• A secure circuit is not necessarily secure
when composed

• PINI (Probe-Isolating Non-Interference)

• PINI gadgets of essential gates

• AND/NAND/OR/NOR/…

35

AGEMA

CHES, September 2022, Leuven, BelgiumAGEMA

• Requirements

• Composable security

• A secure circuit is not necessarily secure
when composed

• PINI (Probe-Isolating Non-Interference)

• PINI gadgets of essential gates

• AND/NAND/OR/NOR/…

36

• Efficiency

• Provable security

• As long as the gadgets are PINI

• Extendable to any arbitrary order

• Not as efficient as manually-crafted designs

• Larger, higher latency, higher demand for
fresh masks

• Any engineer can make secure designs

• https://github.com/Chair-for-Security-
Engineering/AGEMA

Thanks!
Any Questions?

CHES, September 2022, Leuven, BelgiumAGEMA

amir.moradi@rub.de

37

Standardization Process

CHES, September 2022, Leuven, BelgiumAGEMA

https://csrc.nist.gov/Projects/masked-circuits

38

