

CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture with an Efficient Conflict-free Memory Mapping Scheme

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu*

School of Integrated Circuits, Tsinghua University, China.

CHES 2022, Issue 1

- Introduction
- Optimized Radix-4 NTT/INTT Algorithm
- Conflict-free Memory Mapping Scheme
- Hardware Architecture of Radix-2/4 NTT
- Implementation Result and Comparison

Introduction

- Optimized Radix-4 NTT/INTT Algorithm
- Conflict-free Memory Mapping Scheme
- Hardware Architecture of Radix-2/4 NTT
- Implementation Result and Comparison

NTT Related Cryptographic Scheme

Polynomial computation in MLWE-based scheme e.g. Kyber

 $\square \mathbb{R}_q = \mathbb{Z}_q[x] / \langle f(x) \rangle \quad q \equiv 1 \pmod{2N}$

 $\square f(x) = x^N + 1 \implies \text{Negative Wrapped Convolution (NWC)}$

 $\square \omega$: *N*-*th* roots of unity

 $\square \phi$: 2*N*-*th* roots of unity

Radix-2 Gentleman-Sande BFU

Temporal Conflict

D Read After Write (RAW) pipelined hazard

- $N/4d \ge pipeline \ depth$
- More stringent when considering the higher radix NTT

	STAGE0					STAGE1							
	0	1	2	3	4	5	6	7	•	• •			
fotob data	a ₀	a ₄	a ₈	a ₁₂	a ₀	a 4	a ₈	a ₁₂		ſ	SI	ïme	
fetCh data	a ₁	a ₅	a 9	a ₁₃	a ₂	a ₆	a ₁₀	a ₁₄	• • •		Operatior ▲		
	a ₂	a_6	a ₁₀	a ₁₄	a ₁	a 5	a ₉	a ₁₃					
	a ₃	a ₇	a ₁₁	a ₁₅	a ₃	a ₇	a ₁₁	a ₁₅					
pipeline depth						empor	al con	flict		•		>	
				a_0	a4	a ₈	a ₁₂	a ₀	a ₄	a ₈	a ₁₂		
store data				a ₁	a_5	a 9	a ₁₃	a ₂	a ₆	a ₁₀	a ₁₄		
into banks				a ₂	a_6	a ₁₀	a ₁₄	a ₁	a ₅	a ₉	a ₁₃		
				a ₃	a ₇	a ₁₁	a ₁₅	a ₃	a ₇	a ₁₁	a ₁₅		

The dataflow of 16-point radix-2 in-place NTT with d = 2

Spatial Conflict

[Joh92]

Memory mapping scheme for in-place FFT with arbitrary radix

Placing multiple butterfly units leads to access conflict

(a) Radix-2 in-place NTT with d = 1.

(b) Radix-2 in-place NTT with d = 2.

Motivations

3Ds in lattice-based PQC:

- **D**iverse security parameters of lattice-based scheme
- **D***ifferent resource constraints of computation platform*
- <u>D</u>ifferent throughput requirements of practical application

```
e.g. \begin{bmatrix} N = 1024 \ q = 12289 & Falcon \\ N = 256 & q = 8380417 & Dilithium \end{bmatrix}
```

Embedded device vs. Server

loT vs. 5G

Introduction

- Optimized Radix-4 NTT/INTT Algorithm
- Conflict-free Memory Mapping Scheme
- Hardware Architecture of Radix-2/4 NTT
- Implementation Result and Comparison

The Derivation of <u>Radix-4 NTT</u> without Preprocessing

The Derivation of <u>Radix-4 INTT</u> without Postprocessing

$$a_{i} = N^{-1} \cdot \phi_{2N}^{-i} \cdot \sum_{j=0}^{N-1} A_{j} \omega_{N}^{-ij} \mod q \xrightarrow{\qquad \text{split}} a_{i} = N^{-1} \cdot (\phi_{2N}^{-i} \cdot \sum_{j=0}^{N/4-1} A_{j} \phi_{2N}^{-ij} \omega_{N}^{-ij} + \phi_{2N}^{-i} \cdot \sum_{j=N/4}^{2N/4-1} A_{j} \omega_{N}^{-ij} + \phi_{2N}^{-i} \cdot \sum_{j=N/4}^{2N/4-1} A_{j} \omega_{N}^{-ij} + \phi_{2N}^{-i} \cdot \sum_{j=N/4}^{2N/4-1} A_{j} \omega_{N}^{-ij} + \phi_{2N}^{-i} \cdot \sum_{j=0}^{N/4-1} A_{j} \omega_{N}^{-ij} + \phi_{2N}^{-i} \cdot \sum_{j=0}^{N/4-1} A_{j} \omega_{N}^{-ij} + \phi_{2N}^{-i} \cdot \sum_{j=0}^{N/4-1} A_{j} \omega_{N}^{-ij} + \phi_{2N}^{-i} \cdot \omega_{4}^{-i} \cdot \sum_{j=0}^{N/4-1} A_{j+N/4} \omega_{N}^{-ij} + \phi_{2N}^{-i} \cdot \omega_{4}^{-3i} \cdot \sum_{j=0}^{N/4-1} A_{j+N/4} \omega_{N}^{-ij} + \phi_{2N}^{-i} \cdot \sum_{j=0}^{N/4-1} A_{j+N/4} \omega_{N}^{-ij} +$$

The Derivation of <u>Radix-4 INTT</u> without Postprocessing

Divide and Conquer for Butterfly Operation

ω

Two-layer radix-4 Cooley-Tukey butterfly unit in forward NTT

$T_0 = (F_0 + F_2 \cdot \phi_{2N}^{2(2i+1)})$	$A_i = T_0 + T_2$
$T_1 = (F_0 - F_2 \cdot \phi_{2N}^{2(2i+1)})$	$A_{i+N/4} = (T_1 + T_3 \cdot \omega_4^1)$
$T_2 = (F_1 \cdot \phi_{2N}^{2i+1} + F_3 \cdot \phi_{2N}^{3(2i+1)})$	$A_{i+2N/4} = (T_0 - T_2)$
$T_3 = (F_1 \cdot \phi_{2N}^{2i+1} - F_3 \cdot \phi_{2N}^{3(2i+1)})$	$A_{i+3N/4} = (T_1 - T_3 \cdot \omega_4^1),$

Num. of Op.	MM.	MA.	MS.	
Direct	#5	#6	#6	
Two-layer	#4	#4	#4	
Variation	↓20%	√33%	√33%	

ω

Divide and Conquer for Butterfly Operation

Two-layer radix-4 Gentleman-Sande butterfly unit in inverse NTT

$T_0 = F_0 + F_2$	$a_{4i} = T_0 + T_2$
$T_1 = F_0 - F_2$	$a_{4i+1} = (T_1 + T_3) \cdot \phi_{2N}^{-(2j+1)}$
$T_2 = F_1 + F_3$	$a_{4i+2} = (T_0 - T_2) \cdot \phi_{2N}^{-2(2j+1)}$
$T_3 = (F_1 - F_3) \cdot \omega_4^{-1}$	$a_{4i+3} = (T_1 - T_3) \cdot \phi_{2N}^{-3(2j+1)}$

Num. of Op.	MM.	MA.	MS.	
Direct	#5	#6	#6	
Two-layer	#4	#4	#4	
Variation	↓20%	√33%	√33%	

□ The bit-reversed operation is needed in classic NTT and INTT operation.

□ The bit-reversed operation is needed in classic NTT and INTT operation.

□ The bit-reversed operation is needed in classic NTT and INTT operation.

Opt. tech. 1: Derive three new tricks as following

- Introduction
- Optimized Radix-4 NTT/INTT Algorithm
- Conflict-free Memory Mapping Scheme
- Hardware Architecture of Radix-2/4 NTT
- Implementation Result and Comparison

The data flow of 8 points radix-2 DIT-NR NTT.

- $\square G_{p,k,j}^{i} : \text{The } i\text{--th point in stage } p, \text{ group } k \text{ and round } j$ where i = 0, 1, ..., R-1 and R denotes the radix
- □ The four data points at stage 1 can be parallelly accessed in two types of order as below:

(1) Four data points with the same group index k $\{G_{1,0,0}^0, G_{1,0,0}^1, G_{1,0,1}^0, G_{1,0,1}^1\} \rightarrow \{G_{1,1,0}^0, G_{1,1,0}^1, G_{1,1,1}^0, G_{1,1,1}^1\}$

(2) Four data points with the same round index j $\{G_{1,0,0}^0, G_{1,0,0}^1, G_{1,1,0}^0, G_{1,1,0}^1\} \rightarrow \{G_{1,0,1}^0, G_{1,0,1}^1, G_{1,1,1}^0, G_{1,1,1}^1\}$

The data flow of 8 points radix-2 DIT-NR NTT.

- $\square G_{p,k,j}^{i} : \text{The } i\text{--th point in stage } p, \text{ group } k \text{ and round } j$ where i = 0, 1, ..., R-1 and R denotes the radix
- □ The four data points at stage 1 can be parallelly accessed in two types of order as below:

(1) Four data points with the same group index k $\{G_{1,0,0}^0, G_{1,0,0}^1, G_{1,0,1}^0, G_{1,0,1}^1\} \rightarrow \{G_{1,1,0}^0, G_{1,1,0}^1, G_{1,1,1}^1, G_{1,1,1}^1\}$

(2) Four data points with the same round index j $\{G_{1,0,0}^0, G_{1,0,0}^1, G_{1,1,0}^0, G_{1,1,0}^1\} \rightarrow \{G_{1,0,1}^0, G_{1,0,1}^1, G_{1,1,1}^0, G_{1,1,1}^1\}$

- \square d: Number of BFUs;
- $\square B: Number of banks, B = R \times d, N \mid B;$

$$\square T = log_r N; M = log_r B; C = T - M;$$

- \checkmark Automated configuration
- ✓ Initialized for different radix $R = r^k$
- ✓ Facilitate other stride access
- $\checkmark\,$ We further extend this method in our paper at DAC 2022*

*Xiangren Chen, Bohan Yang, ..., Leibo Liu. 2022. Efficient access scheme for multi-bank based NTT architecture through conflict graph. (DAC '22).

Parame	ter N =	= 16	R = 2	d = 2	В	= 4					
old address	mix radix R-B	step num	ber slide distanc	e bank index	ł	oank address	Bank O		Bank	 7	
0 1 2 3	000 001 002 003	(0+0) mod 2 = 0	(0x2) 0 mod 4 = 0	$(0+0) \mod 4 = (0+1) \mod 4 = (0+2) \mod 4 = 2$ $(0+2) \mod 4 = 2$ $(0+3) \mod 4 = 3$	$G_{2,0,0}$	00		Bank 0'	2	-	Bank 1'
4 5 6 7	010 011 012 013	(0+1) mod 2 = 7	(1x2) 1 mod 4 = 2	$(2+0) \mod 4 = 2$ $(2+1) \mod 4 = 3$ $(2+2) \mod 4 = 6$ $(2+3) \mod 4 = 7$	$\begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$	01	10 12 me	0 1 6 7	8 14	merge	2 3 4 5
8 9 10 11	100 101 102 103	(1+0) mod 2 =	(1x2) 1 mod 4 = 2	$(2+0) \mod 4 = 2$ $(2+1) \mod 4 = 3$ $(2+2) \mod 4 = 6$ $(2+3) \mod 4 = 7$	$\begin{array}{c} 2 \\ 3 \\ 0 \\ 1 \\ \end{array} \\ G_{2,1,0} \\ \end{array}$	10			35		8 9 14 15
12 13 14 15	110 111 112 113	(1+0) mod 2 = ($\begin{array}{c} (0x2)\\ 0 \mod 4 = 0 \end{array}$	$(0+0) \mod 4 = 0$ $(0+1) \mod 4 = 2$ $(0+2) \mod 4 = 2$ $(0+3) \mod 4 = 3$	2 3	11	11 13 Bank 1		15 Bank 3	5	

Case study of 16-point radix-2 in-place NTT with 2 BFUs

Reduce 4 banks to 2 banks

- Introduction
- Optimized Radix-4 NTT/INTT Algorithm
- Conflict-free Memory Mapping Scheme
- Hardware Architecture of Radix-2/4 NTT
- Implementation Result and Comparison

The routing structure of radix-4 PE array.

PE types	#MM	#MA	#MS	#Half
PEO	1	1/2	1/2	2
PE1	0	1/2	1/2	2
PE2	2	1/2	1/2	2
PE3	1	1/2	1/2	2
Total	4	4/8	4/8	8

✓ sel_p = 0/1 perform NTT/INTT

- $\checkmark\,$ Barrett reduction based modular multiplier
- \checkmark The multiplication by ω_4^1 is a constant modular multiplier within PE3.

- Introduction
- Optimized Radix-4 NTT/INTT Algorithm
- Conflict-free Memory Mapping Scheme
- Hardware Architecture of Radix-2/4 NTT
- Implementation Result and Comparison

□ Theoretical Evaluation Between Radix-4 and Radix-2 Multi-bank based NTT

Туре	AGU Address Generator	MMU Memory Map	AB Arbiter	INN Interconnect Network	Banks	BFU Butterfly Unit	TF ROM Twiddle Factor	NTT/INTT cycles
Radix – 2	2 <i>n</i>	2n × 2 - to - 1 MUXs	2n × 2 – to – 1 MUXs	$2n \times 2 - to - 1$ $MUXs$	2 <i>n</i>	n × MA/MS/MM	N-1	$(N/2d)\log_2 N$
Radix – 4	n	$n \times 4 - to - 1$ $MUXs$	$n \times 4 - to - 1$ MUXs	$n \times 4 - to - 1$ MUXs	n	n × MA/MS/ <mark>MM</mark> *	N-1	$(N/d)\log_4 N$
Variation	↓ 50%		↓75%	↓ 75%	↓ 50%			

n: number of processing element

□ Implementation platform: Vivado 2020.2 + Virtex-7 FPGA (xc7vx690tfffg1761-3)

D Benefits of radix-4 : e.g. #BFU = 8 \Rightarrow LUT ATP \downarrow 2.2 \times FF ATP \downarrow 1.2 \times #BRAMs \downarrow 1.5

(a) radix-2 NTT

(b) radix-4 NTT

The variation of ATP in radix-2 and radix-4 NTT (N = 1024, 14-bit q)

Implementation Result and Comparison

The comparison between radix-4 NTT core and other works.

Thank You!

Q & A

Reference code: https://github.com/xiang-rc/cfntt_ref