Towards A Formal Treatment Of Logic Locking

Pierluigi Nuzzo, Peter Beerel, University of Southern California
Alex Malozemoff, Marios Georgiou, Ben Hamlin, Galois
Motivation: Decentralized Manufacturing

- Designer comes up with new chip design
- Sends the description to the fab
- Fab prints the chip and sends it back to the designer
- A malicious fab can
 - Overproduce for its own benefit
 - Extract intellectual property from chip (improved algorithms, ML models, etc)
 - Extract sensitive data hardcoded in the chip
 - Extract secret keys
Motivation: Decentralized Manufacturing

- Designer comes up with new chip design
- Sends the description to the fab
- Fab prints the chip and sends it back to the designer
- A malicious fab can
 - Overproduce for its own benefit
 - Extract intellectual property from chip (improved algorithms, ML models, etc)
 - Extract sensitive data hardcoded in the chip
 - Extract secret keys
Common Pitfalls and Cryptography Misuse

● Lack of Formal Threat Model
 ○ Limited set of assumed attacks; e.g., SAT attacks
 ○ Implicit or informal assumptions

● Lack of Rigorous Security Definitions
 ○ What is the adversary's task? E.g., original circuit, predicate of circuit, …
 ○ What are the adversary’s resources? E.g., description of chip, black box access to chip, …
 ○ How much (computational) power does the adversary have? E.g., polynomial time/space, unbounded, …

● Confusion with Software Obfuscation
Formalizing Logic Locking: Syntax and Correctness

What is Logic Locking? At its core:

A procedure **Lock** that on input circuit **C** produces “locked circuit” **L** and key **k**

Correctness:

L should function exactly as **C** when given **k** as input: \(L(k,x) = C(x) \)
Formalizing Logic Locking: Security - Most Prior Efforts

- Only consider SAT attacks, structural attacks, removal attacks, etc.
 - In practice, adversaries can do a lot more than SAT attacks, etc.
 - Cryptography quantifies security over well-defined classes of adversaries, and the class of "adversaries who perform SAT attacks" is not well defined.
- Don’t formally capture what adversary has access to
- Don't formally characterize adversary's goals
 - What if the adversary can recover an important part of the circuit?

Goal: Formalize logic locking and address these issues from past formalizations
Formalizing Logic Locking: Security - New Definitions

- **Ideally**: Adversary should “learn nothing” about C from L when not given k
- **Approach**: Consider an interactive game between an Adversary and a Challenger

A logic locking scheme is IND-LL-secure if all adversaries win with $\sim \frac{1}{2}$ probability
Formalizing Logic Locking: Security

Comparison to prior approaches:

- We do not constrain Adversary to any specific attack
- We consider a particularly strong setting: Adversary knows everything about the two circuits (it chose them), but still cannot figure out which circuit was locked
- Captures many concrete security goals: An adversary who can't distinguish also can't...
 - Use the SAT attack (or SMT, AI, or any other means) to recover the key
 - Recover the locked circuit (or even a significant part of it)
- Can be extended to security with leakage/side-channel attacks
Formalizing Logic Locking: Simulation Security

A “game based” definition is not as intuitive.

A more intuitive definition can be given using simulators.

Idea: Imagine an entity (the "simulator") that does not have access to the locked circuit

- If we can show that the adversary (with access to the locked circuit) cannot "learn more" than the simulator, the scheme is secure
- Why? Because the simulator doesn't even have the locked circuit!

"Simulation security" is another common approach towards defining security
Formalizing Logic Locking: Simulation Security

Anything that can be computed by the adversary given L and oracle access to C, can also be computed by a "simulator" given only oracle access to C (and in particular, no L)

Logic locking is SIM-LL secure if b and b' have (nearly) equal distributions
IND-LL implies SIM-LL

Proof Sketch.

By IND-LL, the Adversary cannot distinguish between L and L'.

Simulator:
1. Pick arbitrary C'
2. $L', k = \text{Lock}(C')$

By IND-LL, the Adversary cannot distinguish between L and L'.
SIM-LL does not imply IND-LL

Proof Sketch.

Given SIM-LL scheme \(\text{Lock}(C) \), we create \(\text{Lock}' \):

1. \((L, k) \leftarrow \text{Lock}(C)\)
2. \(L' = (L, C(0))\)
3. Output \((L', k)\)

- **Claim 1.** \(\text{Lock}' \) is also SIM-LL
 - \(C(0) \) can be learned by a Simulator by querying \(C \)
- **Claim 2.** \(\text{Lock}' \) is *not* IND-LL
 - The adversary can pick \(C_0, C_1 \) s.t. \(C_0(0) \neq C_1(0) \)
Functional Secrecy (implicit in previous works)

The adversary and the simulator have to guess the whole circuit (not just 1 bit).

A Logic Locking Scheme is FS-secure if $\Pr[C_{\text{adv}} = C] \approx \Pr[C_{\text{sim}} = C]$

Thm: SIM-LL implies FS
Function Recovery [CS21]

FR considers **unlearnable** circuits. Consider a set of circuits \mathcal{C}.

\mathcal{C} is **unlearnable** if the best adversary wins with $\sim 1/|\mathcal{C}|$ probability.

Diagram:
- Adversary
- Challenger

Choose \mathcal{C} at random from \mathcal{C}

x_1 → $C(x_1)$ → \vdots → x_n → $C(x_n)$

Check if $C' = C$
A logic locking scheme is FR-secure if the best adversary wins with $\sim 1/|\mathcal{C}|$ probability.
FS implies FR for unlearnable \mathcal{C}

Proof Sketch.

If a logic locking scheme is FS but not FR then is \mathcal{C} learnable:

1. An FR adversary $A_{FR}^{\mathcal{C}}(L)$ can guess \mathcal{C}
2. Let $A_{FS} = A_{FR}$ be an FS adversary
 a. $A_{FS}^{\mathcal{C}}(L)$ can also guess \mathcal{C}
3. By FS, there is a simulator S_{FS} such that $S_{FS}^{\mathcal{C}}$ can also guess \mathcal{C}
4. Therefore, S_{FS} can learn \mathcal{C}
More Relations

- IND-LL and SIM-LL imply CFS
 - Schemes secure against these retain security in a "compositional" setting
- Prior notions do not imply CFS
 - Schemes secure against these break down in a "compositional" setting!
Universal Circuits

A universal circuit \mathbf{UC}_n can evaluate any circuit of size n:

$$\mathbf{UC}_n([C], x) = C(x),$$

where $[C]^*$ is the description of C.

The (input) size of \mathbf{UC}_n has to be at least $\Omega(n \log n)$ since we need at least $n \log n$ bits to describe a circuit of size n.

* we often abuse notation and write C for the description too.
Universal Circuits are IND-LL secure

\[\text{Lock}(C) = (L,k) \text{ where:} \]

- \(L = UC \)
- \(k = C \)

\text{Lock} is correct: \(L(k,x) = UC(C,x) = C(x) \)

\text{Lock} is IND-LL with \textbf{perfect} security:

- \(L_0 \equiv UC \equiv L_1 \) where \((L_b,k) \leftarrow \text{Lock}(C_b) \)

Construction mimics FPGA [MGM⁺22]
Open Problems

● Universal Circuits are expensive
 ○ Can we trade perfect security for more efficient constructions?
 ○ **Pseudo-UC**: Circuit that can evaluate only a small number of circuits
 ■ Versus UC, which can evaluate all circuits
 ○ **Goal**: Hard for adversary to learn which circuits can be evaluated
 ○ Succinct “hiding” of a circuit’s **topology** is sufficient

● Current work focuses on combinational circuits. Next steps:
 ○ Develop definitions for latch locking
 ○ Develop definitions for sequential circuits