
Towards A Formal
Treatment Of Logic Locking

Pierluigi Nuzzo, Peter Beerel, University of Southern California

Alex Malozemoff, Marios Georgiou, Ben Hamlin, Galois

Motivation: Decentralized Manufacturing

● Designer comes up with new chip
design

● Sends the description to the fab
● Fab prints the chip and sends it

back to the designer
● A malicious fab can

○ Overproduce for its own benefit
○ Extract intellectual property from chip (improved algorithms, ML models, etc)
○ Extract sensitive data hardcoded in the chip
○ Extract secret keys

Description of chip

Motivation: Decentralized Manufacturing

● Designer comes up with new chip
design

● Sends the description to the fab
● Fab prints the chip and sends it

back to the designer
● A malicious fab can

○ Overproduce for its own benefit
○ Extract intellectual property from chip (improved algorithms, ML models, etc)
○ Extract sensitive data hardcoded in the chip
○ Extract secret keys

Description of locked chip

k

Common Pitfalls and Cryptography Misuse

● Lack of Formal Threat Model
○ Limited set of assumed attacks; e.g., SAT attacks
○ Implicit or informal assumptions

● Lack of Rigorous Security Definitions
○ What is the adversary’s task? E.g., original circuit, predicate of circuit, …
○ What are the adversary’s resources? E.g., description of chip, black box access to chip, …
○ How much (computational) power does the adversary have? E.g., polynomial time/space,

unbounded, …
● Confusion with Software Obfuscation

Formalizing Logic Locking: Syntax and Correctness

What is Logic Locking? At its core:

Correctness:

L should function exactly as C when given k as input : L(k,x) = C(x)

A procedure Lock that on input circuit C
produces “locked circuit” L and key k

Formalizing Logic Locking: Security - Most Prior Efforts

● Only consider SAT attacks, structural attacks, removal attacks, etc.
○ In practice, adversaries can do a lot more than SAT attacks, etc.
○ Cryptography quantifies security over well-defined classes of adversaries, and the class of

"adversaries who perform SAT attacks" is not well defined.
● Don’t formally capture what adversary has access to
● Don't formally characterize adversary's goals

○ What if the adversary can recover an important part of the circuit?

Goal: Formalize logic locking and address these issues from past formalizations

Formalizing Logic Locking: Security - New Definitions

● Ideally: Adversary should “learn nothing” about C from L when not given k
● Approach: Consider an interactive game between an Adversary and a

Challenger

● A logic locking scheme is IND-LL-secure if all adversaries win with ~½
probability

Adversary Challenger

Choose circuits C0 and C1 C0 and C1
Choose bit b at random

L, k ← Lock(Cb) L

b’ Check if b = b’

Formalizing Logic Locking: Security

Comparison to prior approaches:

● We do not constrain Adversary to any specific attack
● We consider a particularly strong setting: Adversary knows everything about

the two circuits (it chose them), but still cannot figure out which circuit was
locked

● Captures many concrete security goals: An adversary who can't distinguish
also can't...

○ Use the SAT attack (or SMT, AI, or any other means) to recover the key
○ Recover the locked circuit (or even a significant part of it)

● Can be extended to security with leakage/side-channel attacks

Formalizing Logic Locking: Simulation Security

A “game based” definition is not as intuitive.

A more intuitive definition can be given using simulators.

Idea: Imagine an entity (the "simulator") that does not have access to the locked
circuit

● If we can show that the adversary (with access to the locked circuit) cannot
"learn more" than the simulator, the scheme is secure

● Why? Because the simulator doesn't even have the locked circuit!

"Simulation security" is another common approach towards defining security

Formalizing Logic Locking: Simulation Security

Anything that can be computed by the adversary given L and oracle access to C,
can also be computed by a "simulator" given only oracle access to C (and in
particular, no L)

Logic locking is SIM-LL secure if b and b’ have (nearly) equal distributions

Adversary Simulator

C
x i

C(x i)

L

b

C
x i

C(x i)

Adversary
L

xi C(xi)

b’

No input

No input

IND-LL implies SIM-LL

Proof Sketch.

By IND-LL, the Adversary cannot distinguish between L and L’.

Adversary
Simulator:

1. Pick arbitrary C’
2. L’,k =Lock(C’)

C
x i

C(x i)

L

b

C
x i

C(x i)

Adversary
L’

xi C(xi)

b’

SIM-LL does not imply IND-LL

Proof Sketch.

Given SIM-LL scheme Lock(C), we create Lock’:

1. (L, k) ← Lock(C)
2. L’ = (L, C(0))
3. Output (L’, k)

● Claim 1. Lock’ is also SIM-LL
○ C(0) can be learned by a Simulator by querying C

● Claim 2. Lock’ is not IND-LL
○ The adversary can pick C0,C1 s.t. C0(0) ≠ C1(0)

Functional Secrecy (implicit in previous works)
The adversary and the simulator have to guess the whole circuit (not just 1 bit).

A Logic Locking Scheme is FS-secure if Pr[Cadv=C] ≈ Pr[Csim=C]

Thm: SIM-LL implies FS

Adversary Simulator

C
x i

C(x i)

L

Cadv

C
x i

C(x i)

Adversary
L

xi C(xi)
Csim

No input

Function Recovery [CS21]

FR considers unlearnable circuits. Consider a set of circuits C.

C is unlearnable if the best adversary wins with ~1/|C| probability

Adversary Challenger

Choose C at random from Cx1

C(x1)

Check if C’ = C

⋮

xn

C(xn)

C’

Function Recovery [CS21]

Adversary Challenger

Choose C at random from
unlearnable set C

x1

C(x1)

Check if C’ = C

⋮

xn

C(xn)

C’

L, k ← Lock(C) L

A logic locking scheme is FR-secure if the best adversary wins with ~1/|C| probability

FS implies FR for unlearnable C

Proof Sketch.

If a logic locking scheme is FS but not FR then is C learnable:

1. An FR adversary AFR
C(L) can guess C

2. Let AFS=AFR be an FS adversary
a. AFS

C(L) can also guess C
3. By FS, there is a simulator SFS such that SFS

C can also guess C
4. Therefore, SFS can learn C

More Relations

● IND-LL and SIM-LL imply CFS
○ Schemes secure against these retain security in a "compositional" setting

● Prior notions do not imply CFS
○ Schemes secure against these break down in a "compositional" setting!

Universal Circuits

A universal circuit UCn can evaluate any circuit of size n:

The (input) size of UCn has to be at least 𝛺(nlogn) since we need at least nlogn
bits to describe a circuit of size n.

* we often abuse notation and write C for the description too.

For any circuit C of size n and input x,
UCn([C], x) = C(x),

where [C]* is the description of C

Universal Circuits are IND-LL secure

Lock(C) = (L,k) where:

● L = UC
● k = C

Lock is correct: L(k,x) = UC(C,x) = C(x)

Lock is IND-LL with perfect security:

● L0 ≡ UC ≡ L1 where (Lb,k) ← Lock(Cb)

Construction mimics FPGA [MGM+22]

Open Problems

● Universal Circuits are expensive
○ Can we trade perfect security for more efficient constructions?
○ Pseudo-UC: Circuit that can evaluate only a small number of circuits

■ Versus UC, which can evaluate all circuits
○ Goal: Hard for adversary to learn which circuits can be evaluated
○ Succinct “hiding” of a circuit’s topology is sufficient

● Current work focuses on combinational circuits. Next steps:
○ Develop definitions for latch locking
○ Develop definitions for sequential circuits

