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Shuffling-shares on linear layers: description

Description:
» Shuffle the i-th share of each x;.

» Permutations:

» Number: d.

) :
Z V4 V4 y4 .
0 2]%3 > Size: 7.
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=]
B
B
B
B

indep. data
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Shuffling-shares on linear layers: description

n Description:
] g » Shuffle the i-th share of each x;.
0 » Permutations:

» Number: d.

2 2 2
HEIEIN TR
A EIEIEIE] > Size: 1.
1 1 1 1 1
i@ [3]4]4]3]
2 2 2
GEEINE

Ea/ES
==

1 _
Z; =

HEERE
5 |4 [ ]
slvi] |

indep. data
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,,}N

R
@

indep. shares
I
2]
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Shuffling-shares on linear layers: description

nn Description:
] g » Shuffle the i-th share of each x;.

! X, » Permutations:

Ea/ES
==

212 ]2 2
ZO ZO ZO ZO ZO .
071 |%2|“3]% > Size: 7.
T R N P
d=xes @ g

2 2 2 2
AT GEEINE
HEEEE

5 |4 [ ]
sli] |4

indep. data

indep. shares
5
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Shuffling-shares on linear layers: description

2|1]a]s] it

n. 3 Description:

x§ X3 » Shuffle the i-th share of each x;.

) X, » Permutations:

EEEEN > Number: d.
SEEEE |
0]f1|%2|*3]% > Size: 7.

1 1 1 1 1

BEBEEE

i
2 22 Decrease MI(X'; L) by a factor 7.

E
H

I\)Nw
Il
wa
@
';<w
S

B[R] %

|| ]n] N ¢ L
~ i o ABY

% [T MIGXE D)/~ MI(X )

— Masking amplifies shuffling.

indep. shares

indep. data
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Shuffling-shares on linear layers: simulations

Linear layers Non-linear layers Perf. vs security

0 ! 1
10 \\ no shuffling N no shuffling
§ 1071 7—\ n=2 ,\ n=
§ —n=4 —_—n=3
= -2 —
S 10 ‘\\
=
1073 b
30 T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘
n=2 n=2 p—rnt
= A Y L=
5 20 n n
z
5
g 10 —
3 =g
T \HHH‘ T \HHH‘ T \HHH‘ T HHH‘ T \HHH‘ T \HHH‘ T
1072 107! 10° 10t 1072 107! 10° 10t
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Expected security:

d
C .
N ~ "
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Shuffling-everything on linear layers: description

indep. shares

]10 1]a4fo]o0
50214 3]s
1216 |7 |11 13‘

HEEEN
HEEEN
BN

([T T]
HEEEN
Bl T T 1]

0 _
z;, =

oy P

indep. data
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Description:
» Shuffle all the possible operations.

» Permutations:

» Number: 1.
» Size: d-n.

HEEEN
HEEEN
ENEEN
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Shuffling-everything on linear layers: description

(10[1]4]0]0
5|214|3 |8
7|11 13‘ Description:

» Permutations:

12| 6
.... » Shuffle all the possible operations.
[T [ []]
L[]

» Number: 1.

.... » Size: d-n.
d-xew® [ [ [ []]
Bl T 1 1]
T BLLLL

indep. shares

|

HEEEN

sl [ [ ] ]
indep. data
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Shuffling-everything on linear layers: description

(10[1]4a]0]0
5|214|3 |8
7|11 13‘ Description:

12| 6
... » Shuffle all the possible operations.
[T [ []]
L[]

» Permutations:

BERREIG i
=xioy @
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Z

EINEEN
o] [ ][]

|

HEEEN

HEEE
indep. data

indep. shares
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Perf. vs security

Shuffling-everything on linear layers: description

indep. shares

:

1011|1419
51214
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Description:

» Shuffle all the possible operations.

» Permutations:

» Number: 1.
» Size: d-n.
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Shuffling-everything on linear layers: description

1011|149
512|143 |8

o

indep. shares

indep. data

Description:
» Shuffle all the possible operations.

» Permutations:

» Number: 1.
» Size: d-n.
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Shuffling-everything on linear layers: description

(10[1]4]0]0
5(12(14| 3|8
7 111 13‘ Description:

12| 6
.. » Shuffle all the possible operations.
... X3 » Permutations:
.... pr .. 5 » Number: 1.

» Size: d-n.

N
H
Il
X
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SD
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indep. shares
5<,_.

indep. data
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Shuffling-everything on linear layers: description

126 | 7|11 13‘

indep. shares
=
=

indep. data

Olivier Bronchain

Description:
» Shuffle all the possible operations.

» Permutations:

» Number: 1.
» Size: d-n.
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Shuffling-everything on linear layers: description

12] 6 | 7 [11]13] Description:

» Shuffle all the possible operations.

B
... » Permutations:
HEENE > Number: 1.
0 0 0
ZO Z. 22

» Size: d-n.
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Shuffling-everything on linear layers: description

126 | 7|11 13‘

indep. shares
=

indep. data
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Description:
» Shuffle all the possible operations.

» Permutations:

» Number: 1.
» Size: d-n.
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Shuffling-everything on linear layers: description

12] 6 | 7 [11]13] Description:

» Shuffle all the possible operations.

El
.. » Permutations:
» Number: 1.

2
X X;
s [ 1 ]+
0]|.,0|,0]|.,0]|.0 .
& % > Size: d 1

indep. shares

indep. data
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Shuffling-everything on linear layers: description

12/ 67|11 13‘ Description:

» Shuffle all the possible operations.

B

.. 3 » Permutations:

EEEINE > Number: 1.
JEIEIEIE:

Za » Size: d-n.
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Shuffling-everything on linear layers: description

12] 6 | 7 [11]13] Description:

» Shuffle all the possible operations.
1,1 1,1 > P ions:
Xy | X X3 | Xy ermutations:

» Number: 1.

2 2 2
& % > Size: d 1

indep. shares
=

indep. data
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Shuffling-everything on linear layers: description

12] 6 | 7 [11]13] Description:

» Shuffle all the possible operations.

B

3 » Permutations:

EEEINE > Number: 1.
JEIEIEIE:

Za » Size: d-n.

indep. shares
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indep. data
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Shuffling-everything on linear layers: description

» Permutations:

(10[1]4]0]0
5(12(14| 3|8
12|6|7|11 13‘ Description:
x§ » Shuffle all the possible operations.
;
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Shuffling-everything on linear layers: description

» Permutations:

(10[1]4]0]0
5(12(14| 3|8
12] 6 | 7 [11]13] Description:
x§ » Shuffle all the possible operations.
A

ES[EES

e
x5 X ST 5T 5T 5o » Number: 1.
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B-xon @
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— Masking amplifies shuffling.
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Shuffling-everything on linear layers: simulations
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Non-linear layers: summary of the results

For shuffled multiplications:

» Shuffling-shares and shuffling-tuples still apply with similar gain.
» Shuffling-everything could not be analyzed with paper & pencil:
» Permutation on the output shares is not uniform.

Linear layer Non-linear layer
Gain | [lperm.|| | # perm. || Gain [ [[perm.|| | # perm.
shuffling-tuples n n 1 n n 1
shuffling-shares n9 n d n9 n d?
shuffling-everything (d(']’) d-n 1 ? ? ?

Table: Summary of the shuffling + masking combinations.
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Non-linear layers: summary of the results

For shuffled multiplications:

» Shuffling-shares and shuffling-tuples still apply with similar gain.
» Shuffling-everything could not be analyzed with paper & pencil:
» Permutation on the output shares is not uniform.

Linear layer Non-linear layer
Gain | [lperm.|| | # perm. || Gain [ [[perm.|| | # perm.
shuffling-tuples n n 1 n n 1
shuffling-shares n9 n d n9 n d?
shuffling-everything (d(']’) d-n 1 ? ? ?

Table: Summary of the shuffling + masking combinations.

— Next focus on shuffling-shares.
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Time versus security for shuffled ISW: open questions

Bitslice masking:
» Favors large #ANDs.
» Profits from parallelism.
» Randomness usage:

d-(d—1)
2

#AND -
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Time versus security for shuffled ISW: open questions

Bitslice masking:

» Favors large #ANDs.

Shuffling:

» Favors large #ANDs.

» Profits from parallelism. . e
—_— » Profits from serialization.

» Randomness usage: > Randomness usage:
d-(d-1
#AND.# &1 logy 1
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Time versus security for shuffled ISW: open questions

Bitslice masking:

» Favors large #ANDs.

Shuffling:

» Favors large #ANDs.

» Profits from parallelism. . e
—_— » Profits from serialization.

» Randomness usage: > Randomness usage:
d-(d-1
#AND~# &1 logy 1

Challenges when protecting ISW:
» Should we favor parallelism or serialization.
» Does it depend on the platform ?

» Does it depend on the primitive to protect ?
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Time versus security for shuffled ISW: design space  (#AND = 64)
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Time versus security for shuffled ISW: design space  (#AND = 64)

Option 1: ao by

» Only bitsliced ISW. \l{
. % 32-bit 32-bit

» 32 bits per reg (full para.).
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Time versus security for shuffled ISW: design space  (#AND = 64)

Option 1: ao by

» Only bitsliced ISW.
_ % 32-bit 32-bit

» 32 bits per reg (full para.).

> Shuffled bitsliced ISW. DTS shing
32-bit 32-bit
» 32 bits per reg (full para.). co a
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Time versus security for shuffled ISW: design space  (#AND = 64)
Option 1: ao by
» Only bitsliced ISW.
% 32-bit 32-bit
» 32 bits per reg (full para.).
Option 2: bo a by a
» Shuffled bitsliced ISW. L@@ Shuffing
32-bit 32-bit
» 32 bits per reg (full para.). b &
Optlon 3: bg ao by ai b, ax by as

» Shuffled bitsliced ISW.

» 16 bits per reg (inc. ser.).

Olivier Bronchain

Shuffling

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

18 /20



Introduction Linear layers Non-linear layers

Time versus security: experimental results

Perf. vs security

Cheap RNG

Expensive RNG

296
280 _
264 _

248 -

N (low noise)

232 —
216 —
0

opt. 1
opt. 2
opt. 3

opt. 1
opt. 2
opt. 3

36

230 —
264 -
248 -
232 —

N (high noise)

216 -

opt. 1
opt. 2
opt. 3

opt. 1
opt. 2
opt. 3

0 20 40 60 80 100 120 140
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Cycles / bit
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Time versus security: experimental results

Linear layers Non-linear layers Perf. vs security

Cheap RNG

Expensive RNG
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| === opt. 1
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T T T T T T T
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Cycles / bit

0

T T T T T T T
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Cycles / bit

Opt 1: mask. only
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Time versus security: experimental results

Cheap RNG Expensive RNG
0
2 /
<
3
=
0
©
<
< 243 — _
.0 —e— opt. 1 —e— opt. 1
S _|
= —e— opt. 2 —e— opt. 2
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210 opt. 3 opt. 3
0
2 T T T T T T T T T T T T T T
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0
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Opt 1: mask. only

Opt 2: mask. & shuffl.
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Time versus security: experimental results

Cheap RNG Expensive RNG
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o
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Opt 3: lager perm.
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Time versus security: experimental results

Cheap RNG Expensive RNG

N (low noise)

| === opt. 1
—e— opt. 2
——— opt. 3

—

N (high noise)
N
S

—e— opt. 1

—e— opt. 2

——o— opt. 3

—e— opt. 1
—e— opt. 2
——o— opt. 3

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Cycles / bit Cycles / bit
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Opt 1: mask. only
Opt 2: mask. & shuffl.
Opt 3: lager perm.

Take home:
Use fully the registers
and then shuffle.
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General conclusion for masking and shuffling combination

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 20 / 20


https://github.com/uclcrypto/bitslice_masking_and_shuffling

Introduction Linear layers Non-linear layers Perf. vs security

General conclusion for masking and shuffling combination

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 20 / 20


https://github.com/uclcrypto/bitslice_masking_and_shuffling

Perf. vs security

General conclusion for masking and shuffling combination

Masking or Masking + shuffling:

> J: masking is faster.
» [ masking + shuffling is faster.

log, oMl (A" L)
|

20 8 100
T

Figure: #AND=128, N = 2%
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Perf. vs security

General conclusion for masking and shuffling combination

Masking or Masking + shuffling:

> J: masking is faster.
» [ masking + shuffling is faster.

log, oMl (A" L)
|
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T

Figure: #AND=256, N = 264

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 20 /20


https://github.com/uclcrypto/bitslice_masking_and_shuffling

Introduction Linear layers Non-linear layers Perf. vs security

General conclusion for masking and shuffling combination

Masking or Masking + shuffling:

> J: masking is faster.
» [ masking + shuffling is faster.

log, oMl (A" L)

20 10 i 0 100 120
.

Figure: #AND=512, N = 264
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General conclusion for masking and shuffling combination

Masking or Masking + shuffling:

> J: masking is faster.
» [ masking + shuffling is faster.

log, oMl (A" L)
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.

Figure: #AND=1024, N = 2%4
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General conclusion for masking and shuffling combination

Masking or Masking + shuffling:
> J: masking is faster.
When to favor shuffling + masking: > [ masking + shuffling is faster.

» large of independent #AND.

» expensive randomness r.

|
=1

> relatively low noise.

log, oMl (A" L)

0 0 100 120

r

Figure: #AND=1024, N = 2%4
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General conclusion for masking and shuffling combination

Masking or Masking + shuffling:
> J: masking is faster.
When to favor shuffling + masking: > [ masking + shuffling is faster.
» large of independent #AND.

P expensive randomness r.

|
=1

» relatively low noise.

4
I h an ks I 0 10 i 0 100 120
[ ] r

Figure: #AND=1024, N = 2%4
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