Introduction Linear layers Non-linear layers Perf. vs security

Bitslice Masking and Improved Shuffling: How and When to
Mix Them in Software?

Melissa Azouaoui, Olivier Bronchain, Vincent Grosso
Kostas Papagiannopoulos, Francois-Xavier Standaert

CHES 2022, Leuven, Belgium
B b, ¢ W UCLouvain

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 1/20

Introduction Linear layers Non-linear layers Perf. vs security

Contents

Introduction

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 2 /20

Introduction Linear layers Non-linear layers Perf. vs security

Design space for side-channel countermeasures

Countermeasures compared on:
» Run time overheads.
» Worst-case security (N).

Worst-case security ()

Overheads

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 3/20

Introduction Linear layers Non-linear layers Perf. vs security

Design space for side-channel countermeasures

Countermeasures Compared on:
Design 1

» Run time overheads.
» Worst-case security (N).

Worst-case security ()

Overheads

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 3/20

Introduction Linear layers Non-linear layers Perf. vs security

Design space for side-channel countermeasures

Countermeasures Compared on:
Design 1

Design 2 » Run time overheads.

» Worst-case security (N).

Worst-case security ()

Overheads

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 3/20

Introduction Linear layers Non-linear layers Perf. vs security

Design space for side-channel countermeasures

Bes@red 1security Countermeasures compared on:
DE?%EQ 2 » Run time overheads.

» Worst-case security (N).

— Best design depends on desired security.

Worst-case security ()

Overheads

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 3/20

Introduction Linear layers Non-linear layers Perf. vs security

Design space for side-channel countermeasures

Desired security Countermeasures compared on:
D§§5§rn’ % » Run time overheads.

» Worst-case security (N).

— Best design depends on desired security.

Worst-case security ()

Best design is device dependent:

> Noise level.

Overheads » Platform architecture.

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 3/20

Introduction Linear layers Non-linear layers Perf. vs security

Design space for side-channel countermeasures

Worst-case security ()

Bes@red security Countermeasures compared on:
DE?%EL‘ % » Run time overheads.

» Worst-case security (N).

— Best design depends on desired security.

Best design is device dependent:

> Noise level.

Overheads » Platform architecture.

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 3/20

Introduction Linear layers Non-linear layers Perf. vs security

Existing side-channel countermeasures

(MI(X;L) <1)

Masking:
» Randomized the data processed.
» Sharing of x := (x%,x%,...,x971)
» Noise amplification:

C C

~

N

S IIMIXE L)~ MI(X; L)

» Data Layout:

0-th share
1-th share
2-th share
Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

4/ 20

Introduction Linear layers Non-linear layers Perf. vs security

Existing side-channel countermeasures

(MI(X;L) <1)

Masking:

» Randomized the data processed.

» Sharing of x := (x%,x%,...,x971)

» Noise amplification:

C C

~

N

S IIMIXE L)~ MI(X; L)

» Data Layout:

0-th share
1-th share
2-th share

Olivier Bronchain

>

>

>

v

Shuffling:

Randomized processing order.
Execution based on a perm. of size 7
Noise addition:

n-c

N~ S D

Data Layout:

EEEEN
(LD

indep. data

Perm:

data:

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

4/ 20

Introduction Linear layers Non-linear layers Perf. vs security

Existing side-channel countermeasures

(MI(X;L) <1)

Masking:

» Randomized the data processed.

» Sharing of x := (x%,x%,...,x971)

» Noise amplification:

C C

~

N

S IIMIXE L)~ MI(X; L)

» Data Layout:

0-th share
1-th share
2-th share

Olivier Bronchain

>

>

>

v

Shuffling:

Randomized processing order.
Execution based on a perm. of size 7

Noise addition:

N~ S D

Data Layout:

Perm: n
ow [[o[]

indep. data

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 4 /20

Introduction Linear layers Non-linear layers Perf. vs security

Existing side-channel countermeasures

(MI(X;L) <1)

Masking:

» Randomized the data processed.

» Sharing of x := (x%,x%,...,x971)

» Noise amplification:

C C

~

N

S IIMIXE L)~ MI(X; L)

» Data Layout:

0-th share
1-th share
2-th share

Olivier Bronchain

>

>

>

v

Shuffling:

Randomized processing order.
Execution based on a perm. of size 7

Noise addition:

N~ S D

Data Layout:

[2[s]2]z]0]
[el [~]

indep. data

Perm:

data:

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

4/ 20

Introduction Linear layers Non-linear layers Perf. vs security

Existing side-channel countermeasures

(MI(X;L) <1)

Masking:

» Randomized the data processed.

» Sharing of x := (x%,x%,...,x971)

» Noise amplification:

C C

~

N

S IIMIXE L)~ MI(X; L)

» Data Layout:

0-th share
1-th share
2-th share

Olivier Bronchain

>

>

>

v

Shuffling:

Randomized processing order.
Execution based on a perm. of size 7

Noise addition:

N~ S D

Data Layout:

[2[4+]1]z]0]
| [afe] [~]

indep. data

Perm:

data:

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

4/ 20

Introduction Linear layers Non-linear layers Perf. vs security

Existing side-channel countermeasures

(MI(X;L) <1)

Masking:

» Randomized the data processed.

» Sharing of x := (x%,x%,...,x971)

» Noise amplification:

C C

~

N

S IIMIXE L)~ MI(X; L)

» Data Layout:

0-th share
1-th share
2-th share

Olivier Bronchain

>

>

>

v

Shuffling:

Randomized processing order.
Execution based on a perm. of size 7

Noise addition:

N~ S D

Data Layout:

HEOHNED
EIEIEIE

indep. data

Perm:

data:

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

4/ 20

Introduction Linear layers Non-linear layers Perf. vs security

Existing side-channel countermeasures

(MI(X;L) <1)

Masking:

» Randomized the data processed.

» Sharing of x := (x%,x%,...,x971)

» Noise amplification:

C C

~

N

S IIMIXE L)~ MI(X; L)

» Data Layout:

0-th share
1-th share
2-th share

Olivier Bronchain

>

>

>

v

Shuffling:

Randomized processing order.
Execution based on a perm. of size 7

Noise addition:

N~ S D

Data Layout:

Perm: n
o [l]n]x]

indep. data

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 4 /20

Introduction Linear layers Non-linear layers Perf. vs security

Existing side-channel countermeasures

(MI(X;L) <1)

Masking:
» Randomized the data processed.
» Sharing of x := (x%,x%,...,x971)

» Noise amplification:

C C

N a0~ NI 0y

» Data Layout:

0-th share
1-th share
2-th share

>

>

>

v

Shuffling:

Randomized processing order.
Execution based on a perm. of size 7
Noise addition:

n-c

N~ S D

Data Layout:

FEERE

indep. data

Perm:

data:

— How to amplify shuffling thanks to masking ? (1)

Olivier Bronchain

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

4/ 20

Introduction Linear layers Non-linear layers Perf. vs security

Design space for side-channel countermeasures

1. Security: Rivain et al. [RPDO09]:
> Explore design space for shuffling + masking. ~ » Linear layers: (/)
» Evaluate the security: » Non-linear layers: 7

» Paper & pencil.
» Confirmed with simulations.

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 5 /20

Introduction Linear layers Non-linear layers Perf. vs security

Design space for side-channel countermeasures

1. Security: Rivain et al. [RPDO09]:
> Explore design space for shuffling + masking. ~ » Linear layers: (/)

» Evaluate the security: » Non-linear layers: 7

» Paper & pencil.
» Confirmed with simulations.

2. Performances:

» Explore perf. bitslice and shuffle.
» Benchmarks on Cortex-M4.

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 5 /20

Introduction Linear layers Non-linear layers Perf. vs security

Design space for side-channel countermeasures

1. Security: Rivain et al. [RPDO09]:
> Explore design space for shuffling + masking. ~ » Linear layers: (/)

» Evaluate the security: » Non-linear layers: 7

» Paper & pencil.
» Confirmed with simulations.

2. Performances:

» Explore perf. bitslice and shuffle.
» Benchmarks on Cortex-M4.

3. Performances vs. security:

» Pertinence of masking and shuffling combination.

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 5/20

Introduction Linear layers Non-linear layers Perf. vs security

Contents

Linear layers

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 6 /20

Introduction Linear layers Non-linear layers Perf. vs security

Protecting masked linear layers

0 0 0 0 0
BEEIEE
1 1 1 1
X2 X2 X2 X2 X, 1

0 [X X X% » 1 =5 independent data x; and y;

» d =3 shares x' and y'.

Setting:

EX[EX
Iy
ENE3

A2
TIEIFIEE
AR

indep. data

indep. shares

.H

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 7 /20

Introduction Linear layers Non-linear layers Perf. vs security

Protecting masked linear layers

0 0 0 0 0
3
1 1 1 1
X2 X2 X2 X2 2 .
0 [X X X% T 0T 0T 0T » 1 =5 independent data x; and y;
. . » d = 3 shares x' and y’
T Y Y y-
d=xoy @
2 2 2 2 2
Yo |YTi|Y2 | Y3 |V
NEBEEE Goal:
¥ y2 > Compute all: z/ = x/ @ y]

indep. data

Setting:

E[EX(EY
Iy
ESENEY

I
..
52

!

indep. shares

.H

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 7 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

n Description:
.... » Shuffle between variables
D:I:I:I:‘ » Permutations:
(LT TT] > Number: 1.

> Size .

Z=xer @ Djjjj

[T TTT]

EENCE

HEEEN
HEEEN

indep. data

indep. shares

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

;
R
[[
EEEEN

3_ 30,3
zZ; =x{ Oy

HEREN
HEREN

X

Ry

indep. shares

:

indep. data

Olivier Bronchain

0
HENEIN

1
1]]

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

Description:
» Shuffle between variables

» Permutations:

» Number: 1.
» Size: 7.

8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

indep. shares

n Description:

.... » Shuffle between variables
| ||

L |]

» Permutations:
» Number: 1.

HEREIN
» Size: 7.
3_ .3 3 1
2=gon@® [[[4]]
HEREIN
0
HEREN
1
HEREIN
2
HEREN
indep. data
Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

k n Description:

.. X » Shuffle between variables
HEE
HRE]

Ry

» Permutations:
» Number: 1.
HREE > Size .
i @
e [(4] |
[[
[[

indep. data

Bt

4
20

@
]
L]

indep. shares
=[]
N

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

k n Description:

.. X3 » Shuffle between variables
HEE
HRE]

4
21

[[#lx
[4l
| [[4]

indep. data

» Permutations:

> Number: 1.
== > Size: .
1
[]

Bt

&
L[]l [=]

Il
X
=
@

4

vi P

e

1
2

indep. shares
ES
INE3|EY

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

indep. shares

Description:

3 o]
... » Shuffle between variables
... » Permutations:

L

> Number: 1.
[[#]#] > Size: .

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

k n Description:
. » Shuffle between variables
... X5 » Permutations:

2 2
HEEEE T > Number: 1.
| [S]2])] -
» Size: 7.

indep. shares
EYES

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

Description:

0 0 0 .
.. » Shuffle between variables
xd | xd | x} .
2| X3 [*a » Permutations:
L

> Number: 1.
HEIEIE > Size: .

indep. shares
£l

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

Description:

0 0 0 .
.. » Shuffle between variables
X:l X:l X:l .
2 [X3 [*a » Permutations:
L

> Number: 1.
HEIEIE > Size: .

indep. shares
£l

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

3 Description:
: » Shuffle between variables

1 1 .
. » Permutations:

2 2 2
- Gl
p4 P4 P4 V4
1% |5 |4 .
» Size: 7.
1 1
f=xov @

ZO =
2 2
ATl | [#]4]2
%

| [
| [#]4]4

indep. data

B

¢3<

st

E3

2
@
2]

indep. shares
EY/ESIES

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

3 Description:
: » Shuffle between variables

1 1 1 .
. » Permutations:
2 2 2
. » Number: 1.
Z Z zZ Z,
1 2 3 4 .
» Size: 7.
1 1 1
A @ | |4d]4]=]
2 2
| [3[3]#

R
¢3<
==

E3

»—AX,_.
52

1 _
zZ; =

HEARE
vi[vA] 4]
| [#]4]4

indep. data

N
“H

indep. shares
EY/ESIES

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

Description:
0 0 0 0 .
» Shuffle between variables
1 1 1 .
. » Permutations:
2 2 2 2
oT 0l 0l 0 > Number: 1.
V4 V4 y4 Z,
;
1 1 1 1
i @ [d]=]=]=]
EEEE

X
:
==

E3

1 _
Z; =

HEARE
AL
EHEAGE

indep. data

I\)><>—l

@
i

2]

indep. shares
EY/ESIES

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

anan "
Description:
0 0 0 0 0 .
» Shuffle between variables
1 1 1 .
. » Permutations:
2 2 2 2
i > Number: 1.
BEEEE
0 1 2 3 4 H
» Size: 7.
1 1 1
%@ [4[3]4]
2 2 2
2[2]3]2

= =]
X
:
== [<]

0
20

HEERE
AL
vi[v2])4

indep. data

Il
3%
@
2]

indep. shares
EY/ESIES

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

Description:

0 0 0 0 0 .

» Shuffle between variables
1 1 1 1 .

» Permutations:

2 2 2 2
% oToT0l 0l » Number: 1.

BEEIEIE]

== 4]
== [<]

0 » Size: 7.
1 1 1 1 1
H=xon D

2 2 2 2
% %

% %
4

indep. data

indep. shares
EY/ESIES

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

31421 ..
... Description:
x5 X3 » Shuffle between variables

1 1 1 1

2 2 2 2 2
% % oToT0l 0l » Number: 1.
REEEE |
» Size: 7.
1 1 1 1 1

2= D i
S 2 Decrease MI(X; L) by a factor 7.
B |ve[2]y

c-n

N % e ———
% T, MI(X7; 1)
%

indep. data

» Permutations:

ENENEINEY
2] [][] [=]

2] 2]

indep. shares

— Masking does not amplify shuffling.

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-tuples on linear layers: description

3 Description:
x5 X3 » Shuffle between variables
1
x5 X oToT 0T 0T > Number: 1.
i » Size: 7.
EIEIEIE
2 2 Decrease MI(X; L) by a factor 7.
% v c-n
v vi N e o
% 4

indep. data

» Permutations:

| ENENEINEY
B 2] [][] [=]
2] 2]

indep. shares
Sl
EYES

— Masking does not amplify shuffling.

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 8 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: simulations

0 ,
10 _\ no shuffling \ no shuffling
i 10717—\‘ a8 1 N b
§ NN < 4
= -2 |
S 10
£
1073 -
5 T TTTTTTT T TTTTTTT T TTTIT T TTTTTTT T TTTTT T T TTTI
n=2 n=2
£ 4 N =4 St |
)
2 3 -
g
A2 7__7————-——_ 7:7—-——.—-_ -
1 T TTTTTT T TTTTTT T TTTTT T T TTTTTT T T 1T T TTTTT T
1072 107! 10° 0! 1072 107! 10° 10!

Olivier Bronchain

Expected security:

N ~

c-n

[1; MI(X7; L)

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 9 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

n Description:
.... » Shuffle the i-th share of each x;.
[::[::[::[::[:] » Permutations:

D:I:I:I:‘ » Number: d.
... > Size: 7.
7 =X DY @ D:I:I:I:‘
(LT TT]
LA [[]

HEEEN
(LTI

indep. data

indep. shares

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

n Description:
... » Shuffle the i-th share of each x;.

D:I:I:I:‘ » Permutations:
D:I:I:I:‘ ... » Number: d.

> Size: 7.
=Dy @ D:I:I:I:‘
[T TTT]
HEEER

HEEEN
(LTI

indep. data

indep. shares

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

n Description:
.. » Shuffle the i-th share of each x;.

D:I:I:I:‘ » Permutations:
D:I:I:I:‘ .. » Number: d.

> Size: 7.
=X D% @ D:I:I:I:‘
[T TTT]
HEEIRN

HEEEN
(LTI

indep. data

indep. shares

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

n Description:
. » Shuffle the i-th share of each x;.

D:I:I:I:‘ » Permutations:
EIEIEIEIN > Sizer .
B=x oy P D:I:I:I:‘
[T TTT]
B[]8]]

HEEEN
(LTI

indep. data

indep. shares

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

nn Description:

» Shuffle the i-th share of each x;.
» Permutations:
El > Number: d.

> Size: 7.
s=xos@ L[[1]]

AR

indep. data

indep. shares

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

nn Description:

» Shuffle the i-th share of each x;.
.... » Permutations:
D:I:I:I:‘ » Number: d.

> Size: 7.
o @ [[[4]

AREEr
L[] 4]

indep. shares

E

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

n Description:
x§ X3 » Shuffle the i-th share of each x;.

... » Permutations:
(T T 1T T T > Number: d.

> Size: 7.
1 1
d=xen @ (2] | [|4]
EEEEE

| [| 4]

indep. shares

:

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

n Description:
x§ X3 » Shuffle the i-th share of each x;.

X .. » Permutations:
> .
CITTE] o > e
e B > Size: 7.
d=xen @ [z]d] | [4]
Djjjj
sl] | [4]

indep. shares

E

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

n Description:
x§ » Shuffle the i-th share of each x;.
x5 . » Permutations:
> .
]f %% % > Size: 7.
1 1 1 1
g=xon @ (B[] [4]4]
80 [2 8] x) EEEEE

e[|n]v]

indep. shares

:

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

Description:
» Shuffle the i-th share of each x;.

» Permutations:
> .
ST T 5T 5o Number: d.
il et e 3 i > Size: 7.
1 1 1 1 1
#=xen @

indep. data

indep. shares

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

n Description:
x§ X3 » Shuffle the i-th share of each x;.
0 » Permutations:

sl [[> '
ST T 5T 5o Number: d.
il et e 3 i > Size: 7.

IEIEIEIE
AL

HEIFEE:

AEIFIEE]

Al L]

indep. data

ES[ER
I\)No
Il
X
s =
'iso
242
B[S

indep. shares

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

Description:
» Shuffle the i-th share of each x;.

» Permutations:

» Number: d.

) :
Z V4 V4 y4 .
0 2]%3 > Size: 7.

indep. shares
=]
B
B
B
B

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

n Description:
] g » Shuffle the i-th share of each x;.
0 » Permutations:

» Number: d.

2 2 2
HEIEIN TR
A EIEIEIE] > Size: 1.
1 1 1 1 1
i@ [3]4]4]3]
2 2 2
GEEINE

Ea/ES
==

1 _
Z; =

HEERE
5 |4 []
slvi] |

indep. data

2|
,,}N

R
@

indep. shares
I
2]

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

nn Description:
] g » Shuffle the i-th share of each x;.

! X, » Permutations:

Ea/ES
==

212]2 2
ZO ZO ZO ZO ZO .
071 |%2|“3]% > Size: 7.
T R N P
d=xes @ g

2 2 2 2
AT GEEINE
HEEEE

5 |4 []
sli] |4

indep. data

indep. shares
5

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-shares on linear layers: description

2|1]a]s] it

n. 3 Description:

x§ X3 » Shuffle the i-th share of each x;.

) X, » Permutations:

EEEEN > Number: d.
SEEEE |
0]f1|%2|*3]% > Size: 7.

1 1 1 1 1

BEBEEE

i
2 22 Decrease MI(X'; L) by a factor 7.

E
H

I\)Nw
Il
wa
@
';<w
S

B[R] %

||]n] N ¢ L
~ i o ABY

% [T MIGXE D)/~ MI(X)

— Masking amplifies shuffling.

indep. shares

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 10 / 20

Introduction

Shuffling-shares on linear layers: simulations

Linear layers Non-linear layers Perf. vs security

0 ! 1
10 \\ no shuffling N no shuffling
§ 1071 7—\ n=2 ,\ n=
§ —n=4 —_—n=3
= -2 —
S 10 ‘\\
=
1073 b
30 T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘
n=2 n=2 p—rnt
= A Y L=
5 20 n n
z
5
g 10 —
3 =g
T \HHH‘ T \HHH‘ T \HHH‘ T HHH‘ T \HHH‘ T \HHH‘ T
1072 107! 10° 10t 1072 107! 10° 10t

Olivier Bronchain

Expected security:

d
C .
N ~ "

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

MI(X; L)?

11/ 20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: description

indep. shares

]10 1]a4fo]o0
50214 3]s
1216 |7 |11 13‘

HEEEN
HEEEN
BN

([T T]
HEEEN
Bl T T 1]

0 _
z;, =

oy P

indep. data

Olivier Bronchain

Description:
» Shuffle all the possible operations.

» Permutations:

» Number: 1.
» Size: d-n.

HEEEN
HEEEN
ENEEN

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

12 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: description

(10[1]4]0]0
5|214|3 |8
7|11 13‘ Description:

» Permutations:

12| 6
.... » Shuffle all the possible operations.
[T [[]]
L[]

» Number: 1.

.... » Size: d-n.
d-xew® [[[[]]
Bl T 1 1]
T BLLLL

indep. shares

|

HEEEN

sl [[]]
indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 12 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: description

(10[1]4a]0]0
5|214|3 |8
7|11 13‘ Description:

12| 6
... » Shuffle all the possible operations.
[T [[]]
L[]

» Permutations:

BERREIG i
=xioy @

2

Z

EINEEN
o] [][]

|

HEEEN

HEEE
indep. data

indep. shares

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 12 /20

In

tro

du

ction

Linear layers Non-linear layers

Perf. vs security

Shuffling-everything on linear layers: description

indep. shares

:

1011|1419
51214

12| 6
HERE
sl [[|

#=xey D

i [[#
sl [[|

indep. data

o

w
[ee]

~

11 13‘

oS
==

i

0 0

EINNE]

1

[[[[4]
2

A 1 [[]

Olivier Bronchain

Description:

» Shuffle all the possible operations.

» Permutations:

» Number: 1.
» Size: d-n.

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

12 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: description

1011|149
512|143 |8

o

indep. shares

indep. data

Description:
» Shuffle all the possible operations.

» Permutations:

» Number: 1.
» Size: d-n.

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 12 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: description

(10[1]4]0]0
5(12(14| 3|8
7 111 13‘ Description:

12| 6
.. » Shuffle all the possible operations.
... X3 » Permutations:
.... pr .. 5 » Number: 1.

» Size: d-n.

N
H
Il
X
—o
®
SD
ES(EA/EY
(==

indep. shares
5<,_.

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: description

126 | 7|11 13‘

indep. shares
=
=

indep. data

Olivier Bronchain

Description:
» Shuffle all the possible operations.

» Permutations:

» Number: 1.
» Size: d-n.

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 12 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: description

12] 6 | 7 [11]13] Description:

» Shuffle all the possible operations.

B
... » Permutations:
HEENE > Number: 1.
0 0 0
ZO Z. 22

» Size: d-n.

indep. shares
Su
NS

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 12 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: description

126 | 7|11 13‘

indep. shares
=

indep. data

Olivier Bronchain

Description:
» Shuffle all the possible operations.

» Permutations:

» Number: 1.
» Size: d-n.

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

12 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: description

12] 6 | 7 [11]13] Description:

» Shuffle all the possible operations.

El
.. » Permutations:
» Number: 1.

2
X X;
s [1]+
0]|.,0|,0]|.,0]|.0 .
& % > Size: d 1

indep. shares

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 12 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: description

12/ 67|11 13‘ Description:

» Shuffle all the possible operations.

B

.. 3 » Permutations:

EEEINE > Number: 1.
JEIEIEIE:

Za » Size: d-n.

indep. shares
E3
NS

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 12 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: description

12] 6 | 7 [11]13] Description:

» Shuffle all the possible operations.
1,1 1,1 > P ions:
Xy | X X3 | Xy ermutations:

» Number: 1.

2 2 2
& % > Size: d 1

indep. shares
=

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 12 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: description

12] 6 | 7 [11]13] Description:

» Shuffle all the possible operations.

B

3 » Permutations:

EEEINE > Number: 1.
JEIEIEIE:

Za » Size: d-n.

indep. shares
=]
E
B
B
=

indep. data

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 12 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: description

» Permutations:

(10[1]4]0]0
5(12(14| 3|8
12|6|7|11 13‘ Description:
x§ » Shuffle all the possible operations.
;

ES[EES

1 1 1 1
x2 | x2 | x2 x2 » Number: 1.
SRR T u 20202012920 -
0|41 [%[%3|% » Size: d - .
1 1 1 1
d=xder @
2 2 2
T T T 3|22 |4
Yo YT | Y2 |Y3|Ya
1l 1],
% A
2 2 2 2
wlri]a] %

indep. data

e
AL

H

indep. shares

.-

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 12 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: description

» Permutations:

(10[1]4]0]0
5(12(14| 3|8
12] 6 | 7 [11]13] Description:
x§ » Shuffle all the possible operations.
A

ES[EES

e
x5 X ST 5T 5T 5o » Number: 1.
% 4 > Size: d -1,
1] 1] 1.1
B-xon @
2 2] .2].2
z5zi |z5 | z5 | z d-n
ol 0. 0[,0],0 04 C'(d])
Yo | Y1 |Y2|Y3|Ya Nwii
1] 2ol HiMI(X’L)
Yo Yi|Ya|Y3|Ya
— Masking amplifies shuffling.
HEREHE e amplfes hufin

indep. data

e
AL

!

indep. shares
S|
BS|EX

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 12 /20

Introduction Linear layers Non-linear layers Perf. vs security

Shuffling-everything on linear layers: simulations

d=2 d=3
10° ™S\ no shuffling N ™S no shuffling
o 7§ ne2 | al 4
kS —— 1 =3
£
5 1072 N - \
T 0-3 | Expected security:
T TTTTTT T TTTTTT T TTTTT T TTTTTT T TTTTT T TTTTT
_ _ L (dn
N ey il ol
y T, MI(X7: 1)
s 10 7
& Ju- Y
TTTTTT T TTTTTIT T TTTTT T T TTTTTIT T TTTTT T TTTTT T

0 1

107t 10 10

o2 o2

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 13 /20

Introduction Linear layers Non-linear layers Perf. vs security

Contents

Non-linear layers

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 14 /20

Introduction Linear layers Non-linear layers Perf. vs security

Non-linear layers: summary of the results

For shuffled multiplications:

» Shuffling-shares and shuffling-tuples still apply with similar gain.
» Shuffling-everything could not be analyzed with paper & pencil:
» Permutation on the output shares is not uniform.

Linear layer Non-linear layer
Gain | [lperm.|| | # perm. || Gain [[[perm.|| | # perm.
shuffling-tuples n n 1 n n 1
shuffling-shares n9 n d n9 n d?
shuffling-everything (d(']’) d-n 1 ? ? ?

Table: Summary of the shuffling + masking combinations.

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

15 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Non-linear layers: summary of the results

For shuffled multiplications:

» Shuffling-shares and shuffling-tuples still apply with similar gain.
» Shuffling-everything could not be analyzed with paper & pencil:
» Permutation on the output shares is not uniform.

Linear layer Non-linear layer
Gain | [lperm.|| | # perm. || Gain [[[perm.|| | # perm.
shuffling-tuples n n 1 n n 1
shuffling-shares n9 n d n9 n d?
shuffling-everything (d(']’) d-n 1 ? ? ?

Table: Summary of the shuffling + masking combinations.

— Next focus on shuffling-shares.

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 15 /20

Introduction Linear layers Non-linear layers Perf. vs security

Contents

Perf. vs security

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 16 / 20

Introduction Linear layers Non-linear layers Perf. vs security

Time versus security for shuffled ISW: open questions

Bitslice masking:
» Favors large #ANDs.
» Profits from parallelism.
» Randomness usage:

d-(d—1)
2

#AND -

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 17 /20

Introduction Linear layers Non-linear layers Perf. vs security

Time versus security for shuffled ISW: open questions

Bitslice masking:

» Favors large #ANDs.

Shuffling:

» Favors large #ANDs.

» Profits from parallelism. . e
—_— » Profits from serialization.

» Randomness usage: > Randomness usage:
d-(d-1
#AND.# &1 logy 1

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 17 /20

Introduction Linear layers Non-linear layers Perf. vs security

Time versus security for shuffled ISW: open questions

Bitslice masking:

» Favors large #ANDs.

Shuffling:

» Favors large #ANDs.

» Profits from parallelism. . e
—_— » Profits from serialization.

» Randomness usage: > Randomness usage:
d-(d-1
#AND~# &1 logy 1

Challenges when protecting ISW:
» Should we favor parallelism or serialization.
» Does it depend on the platform ?

» Does it depend on the primitive to protect ?

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 17 /20

Introduction Linear layers Non-linear layers Perf. vs security

Time versus security for shuffled ISW: design space (#AND = 64)

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 18 /20

Introduction Linear layers Non-linear layers Perf. vs security

Time versus security for shuffled ISW: design space (#AND = 64)

Option 1: ao by

» Only bitsliced ISW. \l{
. % 32-bit 32-bit

» 32 bits per reg (full para.).

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 18 /20

Introduction Linear layers Non-linear layers Perf. vs security

Time versus security for shuffled ISW: design space (#AND = 64)

Option 1: ao by

» Only bitsliced ISW.
_ % 32-bit 32-bit

» 32 bits per reg (full para.).

> Shuffled bitsliced ISW. DTS shing
32-bit 32-bit
» 32 bits per reg (full para.). co a

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 18 /20

Introduction Linear layers Non-linear layers Perf. vs security

Time versus security for shuffled ISW: design space (#AND = 64)
Option 1: ao by
» Only bitsliced ISW.
% 32-bit 32-bit
» 32 bits per reg (full para.).
Option 2: bo a by a
» Shuffled bitsliced ISW. L@@ Shuffing
32-bit 32-bit
» 32 bits per reg (full para.). b &
Optlon 3: bg ao by ai b, ax by as

» Shuffled bitsliced ISW.

» 16 bits per reg (inc. ser.).

Olivier Bronchain

Shuffling

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

18 /20

Introduction Linear layers Non-linear layers

Time versus security: experimental results

Perf. vs security

Cheap RNG

Expensive RNG

296
280 _
264 _

248 -

N (low noise)

232 —
216 —
0

opt. 1
opt. 2
opt. 3

opt. 1
opt. 2
opt. 3

36

230 —
264 -
248 -
232 —

N (high noise)

216 -

opt. 1
opt. 2
opt. 3

opt. 1
opt. 2
opt. 3

0 20 40 60 80 100 120 140

Olivier Bronchain

Cycles / bit

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

0

20 40 60 80 100 120 140

Cycles / bit

19 /20

Introduction

Time versus security: experimental results

Linear layers Non-linear layers Perf. vs security

Cheap RNG

Expensive RNG

296

280 -
264 -
48 |
232 —

N (low noise)
N

216 —
0

—e— opt. 1
opt. 2
opt. 3

| === opt. 1

opt. 2
opt. 3

36

230 —
264 -
248 -
232 —

N (high noise)

216 —

—e— opt. 1
opt. 2
opt. 3

—e— opt. 1
opt. 2
opt. 3

Olivier Bronchain

T T T T T T T
20 40 60 80 100 120 140

Cycles / bit

0

T T T T T T T
20 40 60 80 100 120 140

Cycles / bit

Opt 1: mask. only

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

19 /20

Introduction Linear layers Non-linear layers Perf. vs security

Time versus security: experimental results

Cheap RNG Expensive RNG
0
2 /
<
3
=
0
©
<
< 243 — _
.0 —e— opt. 1 —e— opt. 1
S _|
= —e— opt. 2 —e— opt. 2
16 _| .
210 opt. 3 opt. 3
0
2 T T T T T T T T T T T T T T

0 20 40 60 80 100 120 140
Cycles / bit

0

20 40 60 80 100 120 140
Cycles / bit

Opt 1: mask. only

Opt 2: mask. & shuffl.

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

19 /20

Introduction Linear layers Non-linear layers Perf. vs security

Time versus security: experimental results

Cheap RNG Expensive RNG

| === opt. 1

—e— opt. 2
g opt. 3 /

N (low noise)

N
2 |
o
< 243 — _
;%0 . —e— opt. 1 —e— opt. 1
; 2 7 —e— opt. 2 | | —— opt. 2
16 _| —
2 —o— opt. 3 —o— opt. 3
0
2 T T T T T T T T T T T T T T

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Cycles / bit Cycles / bit

Opt 1: mask. only

Opt 2: mask. & shuffl.

Opt 3: lager perm.

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software?

19 /20

Introduction Linear layers Non-linear layers Perf. vs security

Time versus security: experimental results

Cheap RNG Expensive RNG

N (low noise)

| === opt. 1
—e— opt. 2
——— opt. 3

—

N (high noise)
N
S

—e— opt. 1

—e— opt. 2

——o— opt. 3

—e— opt. 1
—e— opt. 2
——o— opt. 3

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Cycles / bit Cycles / bit

Olivier Bronchain

Opt 1: mask. only
Opt 2: mask. & shuffl.
Opt 3: lager perm.

Take home:
Use fully the registers
and then shuffle.

Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 19 /20

Introduction Linear layers Non-linear layers Perf. vs security

General conclusion for masking and shuffling combination

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 20 / 20

https://github.com/uclcrypto/bitslice_masking_and_shuffling

Introduction Linear layers Non-linear layers Perf. vs security

General conclusion for masking and shuffling combination

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 20 / 20

https://github.com/uclcrypto/bitslice_masking_and_shuffling

Perf. vs security

General conclusion for masking and shuffling combination

Masking or Masking + shuffling:

> J: masking is faster.
» [masking + shuffling is faster.

log, oMl (A" L)
|

20 8 100
T

Figure: #AND=128, N = 2%

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 20 /20

https://github.com/uclcrypto/bitslice_masking_and_shuffling

Perf. vs security

General conclusion for masking and shuffling combination

Masking or Masking + shuffling:

> J: masking is faster.
» [masking + shuffling is faster.

log, oMl (A" L)
|

20 il 100 120

T

Figure: #AND=256, N = 264

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 20 /20

https://github.com/uclcrypto/bitslice_masking_and_shuffling

Introduction Linear layers Non-linear layers Perf. vs security

General conclusion for masking and shuffling combination

Masking or Masking + shuffling:

> J: masking is faster.
» [masking + shuffling is faster.

log, oMl (A" L)

20 10 i 0 100 120
.

Figure: #AND=512, N = 264

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 20 /20

https://github.com/uclcrypto/bitslice_masking_and_shuffling

Introduction Linear layers Non-linear layers Perf. vs security

General conclusion for masking and shuffling combination

Masking or Masking + shuffling:

> J: masking is faster.
» [masking + shuffling is faster.

log, oMl (A" L)

20 10 0 0 100 120
.

Figure: #AND=1024, N = 2%4

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 20 /20

https://github.com/uclcrypto/bitslice_masking_and_shuffling

Introduction Linear layers Non-linear layers Perf. vs security

General conclusion for masking and shuffling combination

Masking or Masking + shuffling:
> J: masking is faster.
When to favor shuffling + masking: > [masking + shuffling is faster.

» large of independent #AND.

» expensive randomness r.

|
=1

> relatively low noise.

log, oMl (A" L)

0 0 100 120

r

Figure: #AND=1024, N = 2%4

20 10

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 20 /20

https://github.com/uclcrypto/bitslice_masking_and_shuffling

Introduction Linear layers Non-linear layers Perf. vs security

General conclusion for masking and shuffling combination

Masking or Masking + shuffling:
> J: masking is faster.
When to favor shuffling + masking: > [masking + shuffling is faster.
» large of independent #AND.

P expensive randomness r.

|
=1

» relatively low noise.

4
I h an ks I 0 10 i 0 100 120
[] r

Figure: #AND=1024, N = 2%4

log, oMl (A" L)

https://github.com/uclcrypto/bitslice_masking_and_shuffling

Olivier Bronchain Bitslice Masking and Improved Shuffling: How and When to Mix Them in Software? 20 / 20

https://github.com/uclcrypto/bitslice_masking_and_shuffling

	Introduction
	Linear layers
	Non-linear layers
	Perf. vs security

