
BAT: Small and Fast KEM over NTRU Lattices

Pierre-Alain Fouque, Paul Kirchner, Thomas Pornin, Yang Yu

CHES 2022

September 2022

1 / 12



Our initial Goal

BAT: a New KEM companion for Falcon signature, based on NTRU

Latency and efficiency of TLS are impacted by lattice schemes

Maximal IP packet size: 1536 bytes

Falcon: smallest |ct|+ |pk| among all known lattice signature schemes

Falcon has some drawbacks: FPA and hard to protect against SCA

BAT avoids these issues: no need to FPA and easier to protect

BAT ciphertext size:
1 473 bytes for BAT-512(NIST-I)
2 1006 bytes for BAT-1024 (NIST-V)
3 LW-BAT: 203 bytes for 80-bit security

BAT enjoys fast encap/decap ' Kyber, but relatively slow keygen

2 / 12



Our initial Goal

BAT: a New KEM companion for Falcon signature, based on NTRU

Latency and efficiency of TLS are impacted by lattice schemes

Maximal IP packet size: 1536 bytes

Falcon: smallest |ct|+ |pk| among all known lattice signature schemes

Falcon has some drawbacks: FPA and hard to protect against SCA

BAT avoids these issues: no need to FPA and easier to protect

BAT ciphertext size:
1 473 bytes for BAT-512(NIST-I)
2 1006 bytes for BAT-1024 (NIST-V)
3 LW-BAT: 203 bytes for 80-bit security

BAT enjoys fast encap/decap ' Kyber, but relatively slow keygen

2 / 12



Performance Comparison

Security Ciphertext
(bytes)

PK
(bytes)

Keygen
(kcycles)

Encaps
(kcycles)

Decaps
(kcycles)

BAT 128 bits 473 521 30.6 · 103 8.4 54.3
BAT 256 bits 1006 1230 185.7 · 103 18.5 118.6

LW-BAT 80 bits(c) 203 225 23.6 · 103 55.7 248.0
NTRU-HRSS 128 bits 1140 1140 220.3 34.6 65.0

NTTRU 128 bits 1248 1248 6.4 6.1 7.8
Kyber 128 bits 768 800 33.9 45.2 34.6
Kyber 256 bits 1568 1568 73.5 97.3 79.1
Saber 128 bits 736 672 45.2 62.2 62.6
Saber 256 bits 1472 1312 126.2 153.8 155.7
LAC 128 bits 712 544 59.6 89.1 140.2
LAC 256 bits 1424 1056 135.8 208.0 359.2

Round5 128 bits 620 461 46 68 95
Round5 256 bits 1285 978 105 166 247

Round5-iot 96 bits(c) 394 342 41 52 28

RSA 4096 128 bits(c) 512 512 2.19× 106 212.1 13690

ECC 128 bits(c) 32 32 46 176 130
SIKE p434 128 bits 346 330 5.9× 103 9.7× 103 10.3× 103

Compressed
SIKE p434

128 bits 236 197 10.2× 103 15.1× 103 11.1× 103

3 / 12



BAT: a New decryption process for NTRU (more natural ?)

NTRU

Public key: h = g/f mod q
g , f small coeff. ∈ Zq[X ]
Secret key: (f , f −1 mod p)
Encrypt: c = phr + m mod q
p masking mod., r random
Decrypt:
c ′ = fc = pgr + fm mod q
c ′ = pgr + fm over Z
(f −1 mod p)c ′ = m mod p

BAT

Public key: h = g/f mod q

Secret key: Bf ,g =

(
g G
f F

)
s.t. gF − fG = q
Encrypt: c = hm + r mod q

Decrypt: Dec.

(
c
0

)
w/ Bf ,g

Lh,q = {(u, v)t |u = hv mod q}
has Bf ,g (short basis)

Solving 2 linear equations with 2 unknowns:(
Fc
−fc

)
=

(
F −G
−f g

)(
r
−m

)
4 / 12



New efficient NTRU Decoding

Decoding algorithms

Given c , find short polynomials (e, s) s.t. c = hs + e

All operations simple and efficient: no high-precision arithmetic

Large decoding distance means high security level: large errors (s, e)

Babai Rounding: efficient and simple but cannot decode large errors

Nearest Plane: decode larger errors but require high-prec. arithmetic

Falcon and the BAT New NTRU decoding

Falcon: Signature size ∝ maximal Gram-Schmidt norm of Bf ,g (NP)

BAT: Decode larger errors than Babai Rounding

BAT: All algorithms can be implemented using fixed-point arithmetic

BAT: expensive computations are pre-computed in the Key Gen

BAT: Optimization between the distribution of e and s

5 / 12



New efficient NTRU Decoding

Decoding algorithms

Given c , find short polynomials (e, s) s.t. c = hs + e

All operations simple and efficient: no high-precision arithmetic

Large decoding distance means high security level: large errors (s, e)

Babai Rounding: efficient and simple but cannot decode large errors

Nearest Plane: decode larger errors but require high-prec. arithmetic

Falcon and the BAT New NTRU decoding

Falcon: Signature size ∝ maximal Gram-Schmidt norm of Bf ,g (NP)

BAT: Decode larger errors than Babai Rounding

BAT: All algorithms can be implemented using fixed-point arithmetic

BAT: expensive computations are pre-computed in the Key Gen

BAT: Optimization between the distribution of e and s

5 / 12



Babai Rounding vs. Nearest Plane Decoding

Babai Rounding decoder:

(
e ′

−s ′
)

=

(
c
0

)
− Bf ,g

⌊
B−1

f ,g

(
c
0

)⌉

As B−1
f ,g = 1

q

(
F −G
−f g

)
, (e ′, s ′) = (e, s) if

(
F −G
−f g

)(
e
−s

)
=

(
Fc mod q
−fc mod q

)
It is correct iff max{‖fe + gs‖∞, ‖Fe + Gs‖∞} ≤ q/2

NP decoder correct iff max{‖fe + gs‖∞, ‖F ∗e + G ∗s‖∞} ≤ q/2,
where F ∗,G ∗ are the Gram-Schmidt orthogonalized basis B∗f ,g

‖(g , f )‖ ≈ ‖(G ∗,F ∗)‖, but ‖(G ,F )‖ ≈
√

n
12 · ‖(g , f )‖

‖(e, s)‖ is dominated by ‖(G ,F )‖ in Babai Rounding, ‖(g , f )‖ in NP

6 / 12



Babai Rounding vs. Nearest Plane Decoding

Babai Rounding decoder:

(
e ′

−s ′
)

=

(
c
0

)
− Bf ,g

⌊
B−1

f ,g

(
c
0

)⌉

As B−1
f ,g = 1

q

(
F −G
−f g

)
, (e ′, s ′) = (e, s) if

(
F −G
−f g

)(
e
−s

)
=

(
Fc mod q
−fc mod q

)
It is correct iff max{‖fe + gs‖∞, ‖Fe + Gs‖∞} ≤ q/2

NP decoder correct iff max{‖fe + gs‖∞, ‖F ∗e + G ∗s‖∞} ≤ q/2,
where F ∗,G ∗ are the Gram-Schmidt orthogonalized basis B∗f ,g

‖(g , f )‖ ≈ ‖(G ∗,F ∗)‖, but ‖(G ,F )‖ ≈
√

n
12 · ‖(g , f )‖

‖(e, s)‖ is dominated by ‖(G ,F )‖ in Babai Rounding, ‖(g , f )‖ in NP

6 / 12



A New Decoding Algorithm for NTRU

Goal: Replace the large (G ,F ) by some small (G ′,F ′) of size ≈ ‖(g , f )‖

B∗f ,g =

(
g G ∗ = G − vg
f F ∗ = F − vf

)
where v = F f̄ +Gḡ

f f̄ +gḡ

(G ′,F ′) = (G − gbveq′ ,F − f bveq′)
If q′ is large, (G ′,F ′) converges to (G ∗,F ∗) whose norm is ≈ ‖(g , f )‖

Refinement: Distributions of e and s are not the same ‖s‖ � ‖e‖

Better decoding if we tweak the

(
g ′ G ′

f ′ F ′

)
with‖g ′‖ > ‖g‖ ≈ ‖f ‖ > ‖f ′‖ and ‖G ′‖ > ‖G‖ ≈ ‖F‖ > ‖F ′‖
γ = σe/σs tweaking parameter

7 / 12



A New Decoding Algorithm for NTRU

Goal: Replace the large (G ,F ) by some small (G ′,F ′) of size ≈ ‖(g , f )‖

B∗f ,g =

(
g G ∗ = G − vg
f F ∗ = F − vf

)
where v = F f̄ +Gḡ

f f̄ +gḡ

(G ′,F ′) = (G − gbveq′ ,F − f bveq′)
If q′ is large, (G ′,F ′) converges to (G ∗,F ∗) whose norm is ≈ ‖(g , f )‖

Refinement: Distributions of e and s are not the same ‖s‖ � ‖e‖

Better decoding if we tweak the

(
g ′ G ′

f ′ F ′

)
with‖g ′‖ > ‖g‖ ≈ ‖f ‖ > ‖f ′‖ and ‖G ′‖ > ‖G‖ ≈ ‖F‖ > ‖F ′‖
γ = σe/σs tweaking parameter

7 / 12



BAT scheme

BAT Encryption

c1 =
⌊hs mod q

k

⌉
e = (hs mod q)− kc1

if ‖(γs, e)‖ > thres., return ⊥
else return (c1, c2 = m⊕H(s))

BAT Decryption

(e, s)← Decode (c1, k , sk)
if ‖(γs, e)‖ > thres., return ⊥
else if c1 =

⌊hs mod q
k

⌉
, return

H(s)⊕ c2

Key Encapsulation Method derived from the Encryption Scheme using
Duman et al. [eprint 2021/1352]. Security proof in the QROM

8 / 12



Security Assumptions

(Decision) NTRU assumption: R = Z[x ]/(xn + 1), χ distrib. of f , g

AdvNTRU
R,q,χ (A) = Pr[b = 1 | f , g ←↩ χ; b ← A(f −1g mod q)]−

Pr[b = 1 | u ←↩ U(R×q ); b ← A(u)]

(Search) Ring-LWR assumption: χ = U(R mod 2)

AdvRLWR
R,q,k,χ(A) = Pr

a←↩U(R×q ),s←↩χ

[
A

(
a,

⌊
(as mod q)

k

⌉)
= s

]

9 / 12



Security parameters and attack cost

n = 2` and q′ is used to control the decryption failure rate.

q = bk + 1: b size of each ciphertext coefficient, k decoding distance.

Security n (b, k , q) σf q′ Decrypt. Fail.

80 bits 256 (64, 2, 128) 0.595 64513 2−71.9

128 bits 512 (128, 2, 257) 0.596 64513 2−146.7

256 bits 1024 (192, 4, 769) 0.659 64513 2−166.7

Security Key Recovery Message Recovery

primal hybrid primal hybrid

80 bits 87.8 / 236 90.3 83.3 / 219 79.5

128 bits 152.1 / 475 164.1 144.6 / 447 140.1

256 bits 274.4 / 933 314.4 278.6 / 949 275.7

Table: Concrete security estimate. “A/B”: attack cost A and BKZ blocksize B.

10 / 12



Security parameters and attack cost

n = 2` and q′ is used to control the decryption failure rate.

q = bk + 1: b size of each ciphertext coefficient, k decoding distance.

Security n (b, k , q) σf q′ Decrypt. Fail.

80 bits 256 (64, 2, 128) 0.595 64513 2−71.9

128 bits 512 (128, 2, 257) 0.596 64513 2−146.7

256 bits 1024 (192, 4, 769) 0.659 64513 2−166.7

Security Key Recovery Message Recovery

primal hybrid primal hybrid

80 bits 87.8 / 236 90.3 83.3 / 219 79.5

128 bits 152.1 / 475 164.1 144.6 / 447 140.1

256 bits 274.4 / 933 314.4 278.6 / 949 275.7

Table: Concrete security estimate. “A/B”: attack cost A and BKZ blocksize B.

10 / 12



BAT: Storage and Speed Performances

Table: The required storage (full format, including the header byte)

Security Public Key
(bytes)

Ciphertext (with
FO, bytes)

Private key
(short, bytes)

Secret Key
(long, bytes)

80 bits 225 203 225 1473

128 bits 521 473 417 2953

256 bits 1230 1006 801 6030

Table: The performance of the plain C implementation

Security Key Generation
(cycles)

Encapsulation
(cycles)

Decapsulation
(cycles)

80 bits ≈ 23.8× 106 82131 392036

128 bits ≈ 37.2× 106 35785 279260

256 bits ≈ 264.7× 106 71007 537580

Measured on Intel i5-8259U CPU clocked at 2.3 GHz; TurboBoost is disabled

11 / 12



BAT: Storage and Speed Performances

Table: The required storage (full format, including the header byte)

Security Public Key
(bytes)

Ciphertext (with
FO, bytes)

Private key
(short, bytes)

Secret Key
(long, bytes)

80 bits 225 203 225 1473

128 bits 521 473 417 2953

256 bits 1230 1006 801 6030

Table: The performance of the plain C implementation

Security Key Generation
(cycles)

Encapsulation
(cycles)

Decapsulation
(cycles)

80 bits ≈ 23.8× 106 82131 392036

128 bits ≈ 37.2× 106 35785 279260

256 bits ≈ 264.7× 106 71007 537580

Measured on Intel i5-8259U CPU clocked at 2.3 GHz; TurboBoost is disabled

11 / 12



Conclusion

We present a new NTRU-based KEM, called BAT

more compact than all known lattice-based KEMs

encap/decap are fast comparable to Kyber

The complexity of the code as well as its running time is asymmetric

cheap daily operations are favourable to small devices

expensive keygen can be compensated by frequent key usage or
regular key creation for forward secrecy

BAT and Falcon use similar key structure

BAT has simpler and faster daily operations

BAT is implemented fully over integers and smaller, thus more
compatible with small devices

12 / 12



Conclusion

We present a new NTRU-based KEM, called BAT

more compact than all known lattice-based KEMs

encap/decap are fast comparable to Kyber

The complexity of the code as well as its running time is asymmetric

cheap daily operations are favourable to small devices

expensive keygen can be compensated by frequent key usage or
regular key creation for forward secrecy

BAT and Falcon use similar key structure

BAT has simpler and faster daily operations

BAT is implemented fully over integers and smaller, thus more
compatible with small devices

12 / 12



Conclusion

We present a new NTRU-based KEM, called BAT

more compact than all known lattice-based KEMs

encap/decap are fast comparable to Kyber

The complexity of the code as well as its running time is asymmetric

cheap daily operations are favourable to small devices

expensive keygen can be compensated by frequent key usage or
regular key creation for forward secrecy

BAT and Falcon use similar key structure

BAT has simpler and faster daily operations

BAT is implemented fully over integers and smaller, thus more
compatible with small devices

12 / 12


