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1.1 What are fault attacks

» Fault Attack (FA) first proposed by Boneh et al in 1996

» Active attacks against cryptographic implementations

» Two stages: fault injection and fault analysis

1. Background
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1.2 Fault Attack -- Fault Injection

» Techniques » Categorties
* Clock Glitch e Non-invasive
* Voltage Spike o .
. EM Pulse Semi-invasive
*  Optical Laser * Invasive

» Mostly target some special intermediate

» Location and timing

1. Background




1. Background

1.3 Fault model

» Granularity: how many bits are affected (fault width)
» Modification (fault type)

Stuck-at, e.g. zero or one

Random

» Control: on the fault location and on timing
Precise

» Duration or effect of the fault

Transient
Persistent

Permanent

Byte 76543210

R
128 64 32 168 B8 4 2 r &

Word

15 14 1312 11 10 8 8 7 6 5 4 3 2 1 0O
HEREERRER | | | | | |
DWord

M 23 15 7 V]
EEEEEAEENEERENS | 0 | |

adopted from Josep Balasch in IACR Summer School 2015
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1.4 Persistent Fault Analysis (PFA)

» Fault Model

* The adversary can inject faults before the encryption of a block cipher

- Typically, these faults alter a stored algorithm constant, e.g., S-box

* The injected faults are persistent

- The affected constant stays faulty unless refreshed
- All iterations are computed with the faulty constant

* The adversary is capable of collecting multiple ciphertext outputs

- A watchdog counter on detected faults is considered out of scope
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1.5 Core Idea of Persistent Fault Attack
X . r rr o N\
@ Persistent ' £ @ Persistent C'=C"=C
ault injection > = ault analysis  Corrvect Ciphertexts
f ., 9 cl '}

. J

Alversa Iy

03 15 q
S-box

al | 16 ﬂﬂ‘rersar}’

@ Encryption with persistent faults

C'#C

Faulty Ciphertexts




1. Background

1.6 PFA on AES

> A statistical analysis on the last round, exploiting three types of fault leakages

» v and v* are khown

%

—

5 »
S[0]l= S*0]=* v=v*
normal encryption faulty encription
k; .;!:,-
Last round X i Xj i
ast roun J I S CI. _ﬂ S:k f:..:
i L N
Pr(y;) : i
f{ ! D e Fnuh‘ sy o
Prob abi ity -
di sribution of B X maodel 0 V
substitution cupouts 0 2* 8 4t
- ll-n‘-:\_._-l__-t$kj
Pr(g)
17 qrerreerrror -
Probability =
disoribution of 0 0 vl k|
- é ﬂ
ciphertexts 0 2 0 78

Guess

\

Exploiting ¢; with Pr(.)=0
C;i=V & JETJ'

Exploiting ¢; with max(Pr(.))
ETJ'=‘IFH: s JE.’J'

Exploiting ¢; with Pr(.) =0
c;=v*® k;
c;7=vOEk;
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16 PFA on AES 5 X10° | .

C1=0X2E,k1=0X61 0x2e=0x4f

Example:

» Through statistical method, we can
clearly see two distinct curves
* A blue curve represents the byte with

higher frequency
* A red curve represents the byte with lower

Probability

c1=0x2c, k1=0x63 0x2c=0x4f

frequency
» Both of them can be used to recover the T VR I
key by te Number of ciphertexts x10°
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2. Motivation

2.1 Motivation and Ideas

» Differential Fault Analysis (DFA)

* After injecting the fault, the fault starts to propagate at the fault injection location

* One fault injection for one exploitation of fault leakages

* The deeper the fault injection goes, the more complex the analysis is

Plaintext

\ 4

Round,

— ———p>

— ———p>

\ 4

Round,

Round,

—— — =

—— — =

Round,,
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2.1 Motivation and Ideas

> Persistent Fault Analysis (PFA)

* The fault is injected before encryption

* One fault injection for the multiple exploitations of fault leakages
*  PFA (CHES 2018) only uses the last round of fault leakages

N 3§

Faulty
Ciphertext

Plaintext = = = = Round; F - - - Round, —~———> Round; ———— Round,, ———
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2. Motivation

2.1 Motivation and Ideas

» Enhanced Persistent Fault Analysis (EPFA)
e The fault model of EPFA is the same as that of PFA
* EPFA uses the last two rounds of fault leakages

The constraint equations of EPFA

S’(Iél)) =(S7(c1 ® k1) @ (k1 & S(k14 © k10) @ hag) - 14)
D (S (c14 D k1a) D (ko @ S(k1s & k1)) - 11)
@ (S (e11 @ k1) @ (ks @ S(ki6 @ k12)) - 1 )
D (S (cg @ k) @ (ks @ S(k13 @ ko)) - 9),

* The constraints constructed by EPFA depend on the block cipher itself

2\

Plaintext = = = = Round, = = = —»

Round,

—— - —p

Faulty

Round; === - Round,, F——
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2. Motivation

2.1 Motivation and Ideas

» There is a lunch (Free Fault Leakages)

Persistent fault leakages exist in each round

» There is no such thing as a free lunch

[ ]
the complexity increases exponentially

* How can we easily taste the free lunch?

Plaintext = = — —»

>

!\w&

\ﬂﬁ_@

AL

Round,

—— — =

It 1s ditficult to manually exploit fault leakage from deeper rounds

Round,

— — = = Round;

— ———p>

Round,,

The deeper fault leakages can be used directly without additional fault injection

For EPFA, the deeper the rounds are used, the more constraints are manually constructed, and
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2.1 Motivation and Ideas '" [x[- =
» From DFA to AFA o
> Algebraic Fault Analysis (AFA) — T |
-
* Introducing algebraic analysis to differential fault pron
analysis
. , , . > \ |-
* solving complex tfault propagation paths by algebraic —
solvers et

» Combining algebraic analysis with PFA can ease
the difficulty of exploiting free leakages (/)
* Algebraic Persistent Fault Analysis (APFA)

R

Plaintext — = — —»
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3.1 SPN Block Cipher

» SPN block ciphers contain three operations of the round function:
* Substitution layer (SB) , which substitutes the value according to the S-box

* Permutation layer (PL), which has a special mapping relationship between input and output
* Addition, the input is XORed with the round key (AK) or constant (AC).

-—ee o e = = =
i
b



3. Method

3.2 Core Idea

» SPN block cipher round function analysis:

* The form of fault leakages is same for each round

* The fault leakages of each round are only related to the round key K " and the intermediate
variable Y7

"

PL~ (K™ 1) ...p» Key Constraint

XT 5 ! 5 YT‘ 5 ! 5
. — > —> t : P o —1— » — —_—
LS glPL @ 5 S8’ glPL @ C

s I

PL_I{K’“) e P Key Constraint PL_I(KR) ....pp Key Constraint
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:(*r' — 1)-th round K1 th round K Last round KR

: | : | = |

1 I | ] I 1

1 r I ™ 1
3.2 re Id —se Pt B —X—— sl B +—F— - ——fE P P ——c
2 Coreldea = —f=h Pk D - L A Pk - __;

A »
PL=Y(K"1) --p» Key Constraint PL=I(K") ----p» Key Constraint PL=Y(KE) ----pp» Key Constraint

» A general method of fault leakage exploitation can be deduced:
* The output of the faulty S-box will not be equal to the original value V' (Line 1)
* The intermediate variable ¥" after AK contains the fault leakage (Line 2)

e Performing an inverse permutation operation on ¥ can exploit fault leakage (Line 3)
S[X/1#V ‘

Y™ =PL(SB (X)) & K" v = KI£Y ' ®V, 0<i<—
PL=Y(Y") =SB (X") @ PL™}(K") |

> The above formula only includes constant V and 7-th round variables K] and Y],
which are not related with other round a,

A
%
b
\\
19
b
I’,' \1

* The difference between different rounds is only the index of variables in the algebraic system
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3. Method

3.2 The algebraic representation of fault leakages

» How to convert Kl-r * Yir @ V to algebraic representation?

* The nature of XORed operation:
A##B->-A®G B +#0
* Introducing an intermediate variable D, there is
T Y44
D=K' @V &V, D+0

* d; is the i-th bit of D, there must be an element in d; thatis 1

Remove?ir@Vfrom d1+yz+k’z+vz:0, 0§z<’w
the key search space dO VdiV--Vdy,_1=1




3. Method

3.3 APFA

Algorithm 1: APFA on block ciphers

using multiple rounds of fault leakages.

[

© 0o~ O o on L b

i e = =
W W = o

[
[N

input :C,[, f, N,
output: K

V=5[] ;
Sl =Sl f;
forr=1;r < R; r++ do

‘ GenKSR(r, K") :
end
forr=1;r < R; r++ do

‘ K"=GenInvPL(K") ;
end
for C € C do
forr=R— N,;r < Rir++ do
GenSB(X");
GenPL(X");
GenAK(X", KT7);
X"=GenInvPL(XT");

// Get the original value of the S.

// Generate the equations for the round key.

// Generate the equations for PL™!(K").

[
=1}

GenConst (X", K",V) ;

// Add constraints to the round key.

=t
=}

17

18
19

end
Xt =cC,;

end
K =RunAPFA()

// X% is assigned with C.
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4. Application

4.1 Application on PRESENT

» Lightweight SPN block cipher
» 4-bit SBox (16 elements)

» 80/128-bit key size, 64-bit block size

plaintext key register
' addRoundKey l
sBoxLayer
update
pLayer
sBoxLayer
update
pLayer
I addRoundKey
ciphertext
Q'\




4. Application

4.1 Application on PRESENT

» addRoundKey (AK)

* The input XORed with the round key, denoted as AK, can
be representation as:
xi+kl~+yl-=0, 0<i<n
where x;, ¥; and k; are one bit of the input, the output and
the round key, respectively.

plaintext key register
' addRoundKey l
sBoxLayer
update
pLayer
sBoxLayer
update
pLayer
I addRoundKey
ciphertext
Q'\
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The bit-based permutation, the relationship between the input bit x; and the output bit y; can

be represented by a permutation table Tp (one bit to one bit):

4.1 Application on PRESENT

» pLayer (PL)

0<i<n

Xi + Yrpi] = 0,

0,16,32,48,1,17,- -

.,15,31,47, 63]
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4.1 Application on PRESENT

» sBoxlLayer (SB)

* The truth table of faulty S-box can be transformed into an Algebraic Normal Form (ANF) first,
which can be later re-transformed to CNF and fed into the general SAT solvers.

The truth table of PRESENT .
AR AR AEAEARRED Algebraic Normal Form (ANF)
T S N B B Yo = Xo T Xp T X5 ¥ X1 %z
O T T Y S T B G |:> Y1 = X1+ X3+ X103 + Xox3 + XXX + XgX1 X3 + XgXX3
0o 1] 1] 1] 0] 1]1 Yo = Xog + X1+ XgXp + X1Xp + XpX3 + XgX1Xp + X1 XpX3 + X0X1X2X3
0 1 0 0 1 0 0 1 V3 = Xy + XgX1 + XoXp + XpX3 + X1X3 + XoX3 + X1X2X3 + XgX1X2X3
0 1 0 1 0 0 0 0
0 1 1 0 1 0 1 0
0 1 1 1 1 1 0 1
1 0 0 0 0 0 1 1
1 0 0 1 1 1 1 0 252 2
1 0 1 0 1 1 1 1 253 —272
1 0 1 1 1 0 0 0 —25;0 i";
X 258 2el
1 1 0 0 0 1 0 0 "~ 5e0 el
1 1 0 1 0 1 1 1 < 1 260 26
1 1 1 0 0 0 0 1 x 1 258 2
1 1 1 1 0 0 1 0 x 277 -25
x 278 -25
x 279 -25¢
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4.2 Application on LED

» AddRoundKey (AK), which is the same as PRESENST
» AddConstants (AC)

* The input XORed with the constant, denoted as AC, can be representation as:
Xi+Ci+yi=O, 0<i<n

where ¢; 1s the bit of the round constant.

AddRoundKey

AddConstants SubCells ShiftRows MixColumnsSerial .
(Optional)

i 1A

||
ORRONEONEG]
ORRONEON NG
Y
Y

Y
wiw|w|w

i
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4.2 Application on LED

» SubCells (SB), which is the same as PRSENST
» ShiftRows (PL), which is the bit-based permutation

Tpli] = Li{}J x 16 + (i — L%J x 16 + L%J x 12) mod 16, 0 < i < 64

AddRoundKey

AddConstants SubCells ShiftRows MixColumnsSerial .
(Optional)

i 1A

||
ORRONEONEG]
ORRONEON NG
Y
Y

Y
wiw|w|w

i




4. Application

MixColumnsSerial

4.2 Application on LED

» MixColumnsSerial (PL.)

* The MDS matrix multiplications (multiple bits to one bit), most of them are related to multiplication
operations on finite fields.

YO Yl Yg Yg Ox4 Ox1l Ox2 0x2 X 0 X 1 X 2 X 3

Y4 Y5 Y({; Y7 . 0x8 O0x6 O0xd 0x6 X 4 X 5 X 6 X 7

Yg Yg Ylg Yll Oxb Oxe Oxa 0x9 X 8 X 9 X 10 X 11

Y12 Y13 Y14 Y15 0x2 0x2 OXf OXb X12 X13 X14 X15

] ) SRT . 4
Table 3: LED’s Multiplication over GF(2%).
Yo 2! Y2 Y3 Yo Y1 Y2 Y3

0x2 T3 ro + T3 T To 0x9 To + T1 To T3 o
0x3 xo + T3 ro + 1 + 13 T+ To To + T3 Oxa r1+ 3 ro+T1+To+ 13 | T+ X0 + 23 To + To + I3
Ox4 To To + T3 To + T3 T1 Oxb To+ 1+ 23 Ty + T2 + T3 r1+ T3 To + To
0x5 o + T2 T, + X2 + 3 To + T2 + 23 T + T3 Oxc T+ T2 T + T3 To + X2 To + 1 + T3
0x6 To + I3 xro + T xo + x1 + 23 r1 + xo Oxd ro+x1 + T2 T3 To ro + 21
Ox7 | xp+xo+2x3 | 29 +21 +22 | o+ 21 + 2204+ 23 | 21+ 220+ 23 | Oxe T, + X9 + 13 T+ 11 To+ T+ 22 | T+ T+ T2+ 23
0x8 T T+ xo To + T3 To + T3 Oxf | g + 21 + 22 + 23 To To + 21 To + x1 + T2
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4.3 Application on SKINNY

» AddConstants (AC) and SubCells (SB) are the same as LED and PRESENT
» AddRoundTweakey (AK), is slightly different, only uses half of the round key for each round

ri+ki+y; =0 0<i<32 1 8 (1) (1)

i+yi=0, 32<i<64 _ (!
ity = M 0 1 1 O
10 1 0

» ShiftRows (PL) is similar to LED, but MixColumns (PL) only used a binary matrix

SubCells AddConstants AddRoundTweakey ShiftRows MixColumns

S|S|S]|S

s|s|s|s o > !

s[s[s]s >

S|S|S|S > 30 /
I,' \\\k
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4. Application

4.4 Application on SKINNY

» There is only AddConstans (AC) between SubCells (SB) and
AddRoundTweakey (AK) in SKINNY

> It means that the inverse permutation operation PL™! is not
required when build the equation for fault leakages

PL™ (KT I Key Constraint

Y

MixColumns

SubCells AddConstants AddRoundTweakey ShiftRows
S|S|S|S

S|S|S|S . Jd P+ -
s|s|s]|s " ” > ”
S|S|S|S >
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4.4 Application on Feistel Block Chiper LLBlock

X X,
» The round function of LBlock (2 < i < 33): <<<8
K | |
X' =FX"L K)o (X! <<y L P —@

F = PL(SB(AK (X', K))) e

» Due to the design of Feistel structure, the fault leakage of F is masked

by the previous intermediate state X' 1. ><

<<< 8
Ko ' l
- 619

X32 X33

Fig. 1. Encryption procedure of LBlock

32
I’ b
,I, \'l
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4.4 Application on Feistel Block Chiper LLBlock

X, X,
» There are 8 different parallel S-boxes in SB of LBlock. <<<8
K, | |
» Assume a single fault has been injected into one S-box S;, and the fault JF @
location is [.

ﬁrg . ] <<< 8
1 LoL L g

Sg s1 |

¥
X32 X33
Fig. 1. Encryption procedure of LBlock
33 3
I’ *
,I, \'l

"~I
-...l
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4.4 Application on Feistel Block Chiper LLBlock

» The adversary needs to encrypt the same plaintext for twice, one for the <<< 8
normal encryption and the other for the encryption with faulty S-box. o

» We can exploit those ineffective ciphertexts do not visit S;[{]

» Fault leakage becomes K; # X; @D [ <<l< g
K3 '
F —@
» We use a total of 112 ciphertexts to recover the master key Y, )1(33

Fig. 1. Encryption procedure of LBlock

34
I" \\
,I LY
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E 5 4f -
Q [
[ 9] [1}]
@ 2 2
=z o
g k=
e =
£ a1t 12 |
= = Inflection Point
[= ) \ -
N 193] e

0 - - | " - — -

| | | | | O
15 20 25 30 35 40 45 50 ; :

\ !
25 27 30 35 40 45 50

Number of Ciphertexts
e IPRETTERES Number of Ciphertexts

Figure 3: APFA on PRESENT-80

and PRESENT-128. Figure 5: APFA on LED-64.

4. Application

10%
T I T
—— SKINNY-64-64
—— SKINNY-64-128
- 6
o
=]
3
< 4 B B
e
=
=4
E 2
S)
o3
0 i
| | | | |

10 15 20 25 30 35 40 45 50
Number of Ciphertexts

Figure 6: APFA with SKINNY-64-64 and
SKINNY-64-128.

Since APFA can use multiple rounds fault leakages, it is not sensitive to the key

length, and the number of ciphertexts required by PRESENT-80 and 128 are similar. 35




4. Application

Salving Time (seconds)
s
ot
S

From the slope of SKINNY-64-64, it can be found that
the deeper rounds, the less fault leakages can be exploited.

3 1 bt 6 7 8 9 10

The number of rounds used

Figure 4: APFA on PRESENT-128
with 40 faulty ciphertexts.

n — SKINNY-64-64 |/
— SKINNY-64-128

-~
S 19f -
=
4
S 10
[»]
[a
R -
<
| _
e

4

| | | |

10 15 20 25 30 35 40 45 50
Number of Ciphertexts

Figure 7: Relationship between N. and N,
for SKINNY-64-64 and SKINNY-64-128.

When fault leakages are sufficient to solve the master key, increasing the number of analysis rounds s
does not reduce the solving time (the extra time 1s used for the intermediate variables). 36 -
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4.6 Conclusion

» For the fitst time, We combine algebraic fault analysis with persistent fault analysis
* Ituses fewer ciphertexts as well as deeper rounds of fault information to recover the key.
* It can apply to various SPN-based block ciphers by algebraic versatility.
* Itis extended to Feistel-based light weight block ciphers (e.g., LBlock).

Table 1: Comparison of different PFA methods on different ciphers.

Analysis Method Reduced number of
Type RowlID | Design Cipher PFA-18 PFA-20 EPFA Thi Secti - hertexts in ti
223+20] | [223+20] | [XZY+20] is paper ection | ciphertexts in times
1 PRESENT-80 - 101 - 18 Sec. 7.3 5.61x
Lightweight 2 PRESENT-128 - - - 28 -
Block 3 SPN LED-64 - - 75 23 Sec. 7.4 3.26 x
Ciphers 4 SKINNY-64-64 - - 1550 10 Sec. .5 155.00x
5! SKINNY-64-128 - - - 33 s -
6 Feistel LBlock-80 - - - 112 Sec. 8.1 -
Classic b
Block 7 SPN AES-128 2281 1641 1000 1300 Sec. 8.2 -1.30x \‘\\
Ciphers o A
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THANKES!
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