A Security Model for Randomization-based Protected Caches

Jordi Ribes-González, Oriol Farràs

Universitat Rovira i Virgili

Carles Hernández Universitat Politècnica de València

Vatistas Kostalabros, Miquel Moretó Barcelona Supercomputing Center

Cryptographic Hardware and Embedded Systems (CHES) 19th September 2022 1 Introduction to Cache Side-channels and RPCs

- 2 Our Model for RPCs
- 3 Security Definition and Analysis
- 4 Pseudo-random and Multi-epoch Cases
- 5 Performance Analysis
- 6 Conclusions

1 Introduction to Cache Side-channels and RPCs

2 Our Model for RPCs

3 Security Definition and Analysis

4 Pseudo-random and Multi-epoch Cases

5 Performance Analysis

6 Conclusions

Unió Europea Fons Europeu de Desenvolupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

 Unió Europea
 The DRAC project, which is funded by the European regional form European

 form Europea
 Development Fund (ERDF), has a total cost of €4.000.000 of
The DRAC project, which is funded by the European Regional which 2.000.000 (50%) are subsidized.

Unió Europea Fons Europeu de Desenvolupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

 Unió Europea
 The DRAC project, which is funded by the European regional form European

 form Europea
 Development Fund (ERDF), has a total cost of €4.000.000 of
which 2.000.000 (50%) are subsidized.

Main memory

process_A_data_1
process_A_data_2

Generalitat de Catalunya Departament de Recerca i Universitats

 Unió Europea
 The DRAC project, which is funded by the European regional form European

 form Europea
 Development Fund (ERDF), has a total cost of €4.000.000 of
which 2.000.000 (50%) are subsidized.

Unió Europea Fons Europeu de Desenvolupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

 Unió Europea
 The DRAC project, which is funded by the European regional form European

 form Europea
 Development Fund (ERDF), has a total cost of €4.000.000 of
The DRAC project, which is funded by the European Regional which 2.000.000 (50%) are subsidized.

 Unió Europea
 The DRAC project, which is funded by the European regional form European

 form Europea
 Development Fund (ERDF), has a total cost of €4.000.000 of
The DRAC project, which is funded by the European Regional which 2.000.000 (50%) are subsidized.

Main memory

process_A_data_1
process_A_data_2
process_A_data_3
process_A_data_4
:
process_B_data_1
process_B_data_1 process_B_data_2
process_B_data_1 process_B_data_2 process_B_data_3
process_B_data_1 process_B_data_2 process_B_data_3 process_B_data_4
process_B_data_1 process_B_data_2 process_B_data_3 process_B_data_4 :

Generalitat de Catalunya Departament de Recerca i Universitats

Unió Europea Fons Europeu de Desenvolupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

Generalitat de Catalunya Departament de Recerca

Unió Europea Fons Europeu de Desenvolupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of

Generalitat de Catalunya Departament de Recerca i Universitats

The DRAC project, which is funded by the European Regional agional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

Generalitat de Catalunya Departament de Recerca

Unió Europea fons Europea de Desenvolupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

Generalitat de Catalunya Departament de Recerca

Unió Europea Fons Europeu de Desenvolupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached
- Exploit access latency to eavesdrop on external processes

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached
- Exploit access latency to eavesdrop on external processes

- Cache memories reduce the latency of memory accesses
- Cache side-channel: access latency reveals if data is already cached
- Exploit access latency to eavesdrop on external processes
- Randomization-based Protected Caches: randomize cache addresses

Study the security of RPCs

- against single-target access-based attacks in
- shared large caches (LLC)

In particular, resistance against **Prime+Probe** and **Evict+Probe** attacks.

Study the security of RPCs

- against single-target access-based attacks in
- shared large caches (LLC)

In particular, resistance against **Prime+Probe** and **Evict+Probe** attacks.

Several previous RPCs have been found insecure. Aims:

- address the break-and-repair cycle
- analyze the impact of access-based attacks

Study the security of RPCs

- against single-target access-based attacks in
- shared large caches (LLC)

In particular, resistance against **Prime+Probe** and **Evict+Probe** attacks.

Several previous RPCs have been found insecure. Aims:

- address the break-and-repair cycle
- analyze the impact of access-based attacks

Provable security approach to RPCs:

- 1. model RPCs
- 2. characterize security through game-based definitions
- 3. analyze security through security proofs and attacks
- 4. evaluate performance through a simulation

- Own access latency
- Timing external processes
- Cache flushing
- Cache collisions
- Cache coherence

- Own access latency
- Timing external processes
- Cache flushing
- Cache collisions
- Cache coherence

Focus on access-based attacks as Prime+Probe and Evict+Probe.

- Own access latency
- Timing external processes
- Cache flushing
- Cache collisions
- Cache coherence

Focus on access-based attacks as Prime+Probe and Evict+Probe.

Mitigation strategies:

- cache partitioning
- table-based randomization
- randomization-based protected caches

- Own access latency
- Timing external processes
- Cache flushing
- Cache collisions
- Cache coherence

Focus on access-based attacks as Prime+Probe and Evict+Probe.

Mitigation strategies:

- cache **partitioning** (bad for performance)
- table-based randomization (inefficient for LLC)
- randomization-based protected caches

3/16

1 Introduction to Cache Side-channels and RPCs

2 Our Model for RPCs

3 Security Definition and Analysis

4 Pseudo-random and Multi-epoch Cases

5 Performance Analysis

6 Conclusions

Cache memories

Generalitat de Catalunya Departament de Recerca niversitats

Unió Europea fons Europea de Desenvolupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

Cache memories

• consist of |S| cache sets,

Generalitat de Catalunya Departament de Recerca

Unió Europea Fons Europeu de Desenvolupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of

Cache memories

• consist of |S| cache sets, with a lines each (associativity),

Generalitat de Catalunya Departament de Recerca

Cache memories

- consist of |S| cache sets, with a lines each (associativity),
- and a replacement policy RP.

Cache memories

- consist of |S| cache sets, with *a* lines each (associativity),
- and a replacement policy RP.

Cache addresses comprise

- a set index which addresses cache sets, and
- a tag which is stored in some line according to RP.

Cache memories

- consist of |S| cache sets, with *a* lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Cache memories

- consist of |S| cache sets, with a lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Access-based attack in this context (with |S| = a = 4).

Cache memories

- consist of |S| cache sets, with *a* lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Access-based attack in this context (with |S| = a = 4).

Cache memories

- consist of |S| cache sets, with *a* lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Access-based attack in this context (with |S| = a = 4).

Cache memories

- consist of |S| cache sets, with *a* lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Cache memories

- consist of |S| cache sets, with *a* lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Access-based attack in this context (with |S| = a = 4).

Cache memories

- consist of |S| cache sets, with *a* lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Cache memories

- consist of |S| cache sets, with *a* lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Cache memories

- consist of |S| cache sets, with a lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Access-based attack in this context (with |S| = a = 4).

Cache memories

- consist of |S| cache sets, with a lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Access-based attack in this context (with |S| = a = 4).

Cache memories

- consist of |S| cache sets, with *a* lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a tag which is stored in some line according to RP.

Access-based attack in this context (with |S| = a = 4).

Cache memories

- consist of |S| cache sets, with *a* lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Cache memories

- consist of |S| cache sets, with a lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Cache memories

- consist of |S| cache sets, with a lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Cache memories

- consist of |S| cache sets, with *a* lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Access-based attack in this context (with |S| = a = 4).

Cache memories

- consist of |S| cache sets, with a lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Cache memories

- consist of |S| cache sets, with *a* lines each (associativity),
- and a replacement policy RP.
- Cache addresses comprise
 - a set index which addresses cache sets, and
 - a **tag** which is stored in some line according to RP.

Cache memories

- consist of |S| cache sets, with *a* lines each (associativity),
- and a replacement policy RP.

Cache addresses comprise

- a set index which addresses cache sets, and
- a **tag** which is stored in some line according to RP.

Address randomization: Hamper attacks by **scattering** accesses. Access-based attacks *take longer* and are *more difficult*!

Address randomization: Hamper attacks by **scattering** accesses. Access-based attacks *take longer* and are *more difficult*!

• Set-index randomization $(s,t) \rightarrow (\pi(s,t),t)$

Address randomization: Hamper attacks by **scattering** accesses. Access-based attacks *take longer* and are *more difficult*!

- Set-index randomization $(s, t) \rightarrow (\pi_k(s, t), t)$
- Modeled as a keyed **pseudo-random function** (rekey,π)

1 Introduction to Cache Side-channels and RPCs

2 Our Model for RPCs

3 Security Definition and Analysis

4 Pseudo-random and Multi-epoch Cases

5 Performance Analysis

6 Conclusions

Even with RPCs, attacks are possible given enough cache accesses [Bourgeat et al.'20, Purnal et al.'21, our work].

RPCs establish a **rekeying period**.

Even with RPCs, **attacks are possible** given enough cache accesses [Bourgeat et al.'20, Purnal et al.'21, our work].

RPCs establish a rekeying period.

Up until now, rekeying has been set heuristically to thwart particular attacks, leading to insecure RPCs.

Can some rekeying periods provide provable security guarantees?

Even with RPCs, **attacks are possible** given enough cache accesses [Bourgeat et al.'20, Purnal et al.'21, our work].

RPCs establish a rekeying period.

Up until now, rekeying has been set heuristically to thwart particular attacks, leading to insecure RPCs.

Can some rekeying periods provide provable security guarantees?

Moreover, **key-invariant information** about the cache randomizer can be exploited [Bourgeat et al.'20].

Can security be enforced across different epochs?

Formally define and prove security against all attacks that

- aim to detect a victim access to a single target address
- are considered to succeed if their advantage crosses some threshold
- only exploit access latency information

This approach allows

- to provide concrete security guarantees
- to quantify the success of an attack under specific conditions

 Unió Europea Fons Europeu de Desenvolupament Regional
 The DRAC project, which is funded by the European Regional Development Fund (ERDF), has a total cost of €4.000.000 of
 which 2.000.000 (50%) are subsidized.

Generalitat de Catalunya Departament de Recerca i Universitats

Unió Europea Fons Europeu de Desenvolupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

Generalitat de Catalunya Departament de Recerca i Universitats

Unió Europea Fons Europeu de Desenvolupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

Generalitat de Catalunya Departament de Recerca i Universitats

 Unió Europea
 The DRAC project, which is funded by the European regional form European

 form Europea
 Development Fund (ERDF), has a total cost of €4.000.000 of
 which 2.000.000 (50%) are subsidized.

Generalitat de Catalunya Departament de Recerca i Universitats

Unió Europea Fons Europeu de Desenvolupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

Generalitat de Catalunya Departament de Recerca i Universitats

Unió Europea The DRAC project, which is funded by the European regional from European Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

Generalitat de Catalunya Departament de Recerca i Universitats

 Unió Europea
 The DRAC project, which is funded by the European regional form European

 form Europea
 Development Fund (ERDF), has a total cost of €4.000.000 of
 which 2.000.000 (50%) are subsidized.

Generalitat de Catalunya Departament de Recerca i Universitats

 Unió Europea
 The DRAC project, which is funded by the European regional form European

 form Europea
 Development Fund (ERDF), has a total cost of €4.000.000 of
 which 2.000.000 (50%) are subsidized.

The RPC C is *N*-access secure with advantage at most p if, for every x, for every N_1, N_2 such that $N_1 + N_2 = N$, and for every adversary A,

$$\operatorname{Adv}_{\mathcal{C},\mathcal{A}}^{\operatorname{RPC}}(N_1,N_2) := 2 \cdot \left| \operatorname{Pr} \left[b' = b \right] - 1/2 \right| \leq p.$$

Generalitat de Catalunya Departament de Recerca i Universitats

The DRAC project, which is funded by the European Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

As a first step, we assume an **ideal cache randomizer** ($\overline{\text{rekey}}, \overline{\pi}$) that behaves as a random oracle for functions from addresses to set indexes.

Ideal Cache Randomizer

For every $k \leftarrow \overline{\text{rekey}}()$, choose $\overline{\pi}_k$ uniformly at random.

As a first step, we assume an **ideal cache randomizer** ($\overline{\text{rekey}}, \overline{\pi}$) that behaves as a random oracle for functions from addresses to set indexes.

Ideal Cache Randomizer

For every $k \leftarrow \overline{\text{rekey}}()$, choose $\overline{\pi}_k$ uniformly at random.

We obtain:

Let $p \in [0,1]$. Then \overline{C} is *N*-access secure with advantage at most p for

$$N = \max\left\{N' : \sum_{i=0}^{N'-a} \binom{N'}{i} (1/|S|)^{N'-i} (1-1/|S|)^i \le p
ight\}.$$

Generalitat de Catalunya Departament de Recerca i Universitats

pea upament Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

9/16

As a first step, we assume an **ideal cache randomizer** ($\overline{\text{rekey}}, \overline{\pi}$) that behaves as a random oracle for functions from addresses to set indexes.

Ideal Cache Randomizer

For every $k \leftarrow \overline{\text{rekey}}()$, choose $\overline{\pi}_k$ uniformly at random.

We obtain:

Let $p \in [0,1]$. Then \overline{C} is *N*-access secure with advantage at most p for

$$N = \max\left\{ N' \; : \; \sum_{i=0}^{N'-a} inom{N'}{i} (1/|S|)^{N'-i} (1-1/|S|)^i \leq p
ight\}.$$

This result has been slightly improved in a scenario with noise.

Generalitat de Catalunya Departament de Recerca i Universitats

opea peu olupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

associativity a: 16

slices: 12 cache sets per slice: 1024 cache sets |S|: $12 \cdot 1024 = 12288$

The DRAC project, which is funded by the European Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

associativity *a*: 16 slices: 12 cache sets per slice: 1024 cache sets |S|: 12 \cdot 1024 = 12288

Suppose we want to thwart attacks with advantage bigger than 1%.


```
associativity a: 16
slices: 12
cache sets per slice: 1024
cache sets |S|: 12 \cdot 1024 = 12288
```


Suppose we want to thwart attacks with advantage bigger than 1%.

Ideal Case:

The ideal RPC $\bar{\mathcal{C}}$ is N-access secure with advantage at most 0.01 for

$$N = \max\left\{ N' \; : \; \sum_{i=0}^{N'-a} inom{N'}{i} (1/|S|)^{N'-i} (1-1/|S|)^i \leq 0.01
ight\}.$$

Generalitat de Catalunya Departament de Recerca i Universitats

pea upament Regional The DRAC project, which is funded by the European Regional Development Fund (ERDF), has a total cost of €4.000.000 of 10/10 which 2.000.000 (50%) are subsidized.

```
associativity a: 16
slices: 12
cache sets per slice: 1024
cache sets |S|: 12 \cdot 1024 = 12288
```


Suppose we want to thwart attacks with advantage bigger than 1%.

Ideal Case:

The ideal RPC \bar{C} is 100532-access secure with advantage at most 0.01.

1 Introduction to Cache Side-channels and RPCs

2 Our Model for RPCs

3 Security Definition and Analysis

4 Pseudo-random and Multi-epoch Cases

5 Performance Analysis

6 Conclusions

Cache randomizers are **not ideal** in practice.

We use **pseudo-random** cache randomizers (π_k , rekey):

Generalitat de Catalunya Departament de Recerca i Universitats

Unió Europea Fons Europeu de Desenvolupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of 11/16 which 2.000.000 (50%) are subsidized.

We say (π_k, rekey) is (ν, ε) -pseudo-random if every A has advantage at most ε in distinguishing the ν outputs of the oracle from random.

We say (π_k, rekey) is (ν, ε) -pseudo-random if every A has advantage at most ε in distinguishing the ν outputs of the oracle from random.

Extend previous result to **PRF cache randomizers**: advantages add up.

Suppose that

- the ideal RPC \bar{C} is *N*-access secure with advantage at most *p*,
- the cache randomizer is (N, ε) -pseudo-random.

Then C is *N*-access secure with advantage at most $p + \varepsilon$.

Unió Europea Fons Europeu de Desenvolupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of 12/16 which 2.000.000 (50%) are subsidized.

which 2.000.000 (50%) are subsidized.

The DRAC project, which is funded by the European Regional Development Fund (ERDF), has a total cost of \notin 4.000.000 of 12/16which 2.000.000 (50%) are subsidized.

The DRAC project, which is funded by the European Regional Development Fund (ERDF), has a total cost of €4.000.000 of which 2.000.000 (50%) are subsidized.

The RPC C is *R*-**Epoch** *N*-**Access Secure with advantage at most** *p* if, for all target addresses, every $N_{1,i} + N_{2,i} = N$, and every adversary A

$$\operatorname{Adv}_{\mathcal{C},\mathcal{A}}^{\operatorname{ME-RPC}}(R,N) := 2 \left| \operatorname{Pr} \left[b' = b \right] - 1/2 \right| \leq p.$$

Generalitat de Catalunya Departament de Recerca i Universitats

Iropea open volupament Regional volupament Regional Development Fund (ERDF), has a total cost of €4.000.000 of 12/1 which 2.000.000 (50%) are subsidized. Following [Abdalla-Bellare'00], we reduce multi-epoch security to

- single-epoch security and
- the **pseudo-randomness** of the rekeying algorithm.

Following [Abdalla-Bellare'00], we reduce multi-epoch security to

- single-epoch security and
- the **pseudo-randomness** of the rekeying algorithm.

As before, all advantages add up.

Suppose

- C is *N*-access secure with advantage at most p,
- rekey is (R, ε) -pseudo-random.

Then C is R-epoch N-access secure with advantage at most $R \cdot p + \varepsilon$.

Following [Abdalla-Bellare'00], we reduce multi-epoch security to

- single-epoch security and
- the **pseudo-randomness** of the rekeying algorithm.

As before, all advantages add up.

Suppose

- C is *N*-access secure with advantage at most p,
- rekey is (R, ε) -pseudo-random.

Then C is R-epoch N-access secure with advantage at most $R \cdot p + \varepsilon$.

Rekeying expands the time window where security is provably enforced.

Generalitat de Catalunya Departament de Recerca i Universitats

Suppose we want to thwart attacks with advantage **bigger than** 1%.

PRF case:

Assume the cache randomizer is (100000, 0.001)-pseudo-random.

Suppose we want to thwart attacks with advantage **bigger than** 1%.

PRF case:

Assume the cache randomizer is (100000, 0.001)-pseudo-random. The ideal RPC \overline{C} is 99317-access secure with advantage at most 0.009. The RPC C is 99317-access secure with advantage at most 0.01.

Suppose we want to thwart attacks with advantage bigger than 1%.

PRF case:

Assume the cache randomizer is (100000, 0.001)-pseudo-random. The ideal RPC \bar{C} is 99317-access secure with advantage at most 0.009. The RPC C is 99317-access secure with advantage at most 0.01.

Multi-epoch case:

Assume the rekeying algorithm is (10, 0.00001)-pseudo-random.

Suppose we want to thwart attacks with advantage **bigger than 1%**.

PRF case:

Assume the cache randomizer is (100000, 0.001)-pseudo-random. The ideal RPC \bar{C} is 99317-access secure with advantage at most 0.009. The RPC C is 99317-access secure with advantage at most 0.01.

Multi-epoch case:

Assume the rekeying algorithm is (10, 0.00001)-pseudo-random. The RPC C is 9-**epoch**, 64033-**access** secure with advantage at most 0.01.

Security is provably enforced for RN = 576297 accesses

1 Introduction to Cache Side-channels and RPCs

2 Our Model for RPCs

3 Security Definition and Analysis

4 Pseudo-random and Multi-epoch Cases

5 Performance Analysis

6 Conclusions

We use **ChampSim** to simulate the RPC in our running example, with

- cache randomizer: xor-based parametric randomizer [Trilla et all'18].
- L1 and L2 private caches: 8 ways, 64 and 1024 cache sets.
- replacement policy: PLRU.
- workload: SPEC2006 bechmark suite.

IPC for a randomized cache for different workloads and rekeying periods, normalized to a non-randomized setting

Generalitat de Catalunya Departament de Recerca i Universitats

The DRAC project, which is funded by the European Regional Development Fund (ERDF), has a total cost of €4.000.000 of 15/2 which 2.000.000 (50%) are subsidized.

1 Introduction to Cache Side-channels and RPCs

2 Our Model for RPCs

3 Security Definition and Analysis

4 Pseudo-random and Multi-epoch Cases

5 Performance Analysis

6 Conclusions

In this work, we introduce a security model for RPCs.

- We present game-based security definitions
- We show how to design RPCs to obtain security guarantees
- We provide a **performance evaluation**

Further research in this line

- improve security through additional hardware techniques
- broaden the scope of security definitions
- tighten the bounds for particular replacement policies

Generalitat de Catalunya Departament de Recerca i Universitats

Thank you! Any questions?