The Hidden Parallelepiped is Back Again: Power Analysis Attacks on Falcon

Morgane Guerreau1 Ange Martinelli2 Thomas Ricosset1 Mélissa Rossi2

1Thales, 2ANSSI

September 20, 2022
Introduction

Two Power Analysis attacks on Falcon:

- Efficient DPA attack on the preimage computation
- STA on the trapdoor sampler leading to HPP attack

M. Guerreau, A. Martinelli, T. Ricosset, M. Rossi

The Hidden Parallelepiped is Back Again
Two Power Analysis attacks on Falcon:

- Efficient DPA attack on the preimage computation
- STA on the trapdoor sampler leading to HPP attack
Closest Vector Problem: Given a lattice Λ and a vector c in \mathbb{R}^n, find a vector v in Λ such that $\|v - c\|$ is minimal.
Closest Vector Problem: Given a lattice Λ and a vector c in \mathbb{R}^n, find a vector v in Λ such that $\|v - c\|$ is minimal.

CVP is easy to solve with a good basis, but hard with a bad basis.
Closest Vector Problem: Given a lattice Λ and a vector c in \mathbb{R}^n, find a vector v in Λ such that $\|v - c\|$ is minimal.

CVP is easy to solve with a good basis, but hard with a bad basis.

Basic signature scheme:
- Convert the message to sign to a vector c in \mathbb{R}^n
Lattice-based cryptography

Closest Vector Problem: Given a lattice Λ and a vector c in \mathbb{R}^n, find a vector v in Λ such that $\|v - c\|$ is minimal.

CVP is easy to solve with a good basis, but hard with a bad basis.

Basic signature scheme:
- Convert the message to sign to a vector c in \mathbb{R}^n
- Use the good basis (secret key) to solve CVP
Closest Vector Problem: Given a lattice \(\Lambda \) and a vector \(c \) in \(\mathbb{R}^n \), find a vector \(v \) in \(\Lambda \) such that \(\|v - c\| \) is minimal.

CVP is easy to solve with a good basis, but hard with a bad basis.

Basic signature scheme:
- Convert the message to sign to a vector \(c \) in \(\mathbb{R}^n \)
- Use the good basis (secret key) to solve CVP
- Anyone can verify the signature \(v \) with a bad basis (public key)
Lattice-based cryptography

Closest Vector Problem: Given a lattice Λ and a vector \mathbf{c} in \mathbb{R}^n, find a vector \mathbf{v} in Λ such that $\|\mathbf{v} - \mathbf{c}\|$ is minimal.

CVP is easy to solve with a **good basis**, but hard with a **bad basis**.

Basic signature scheme:

- Convert the message to sign to a vector \mathbf{c} in \mathbb{R}^n
- Use the **good basis** (secret key) to solve **CVP**
- Anyone can verify the signature \mathbf{v} with a **bad basis** (public key)

Note: It is hard to derivate the **good basis** from the **bad basis**.
NTRUSign/GGH:

- Message m is hashed to a point $c := H(m) \in \mathbb{Z}^n$
NTRUSign/GGH:

- Message m is hashed to a point $c := H(m) \in \mathbb{Z}^n$
- Use round-off algorithm to solve CVP:

Signature: $s = \lfloor cB^{-1}\rfloor B$ with B the private basis
NTRUSign/GGH:
- Message m is hashed to a point $c := H(m) \in \mathbb{Z}^n$
- Use round-off algorithm to solve CVP:

Signature: $s = \lfloor cB^{-1} \rfloor B$ with B the private basis
$\implies s - c$ belongs to the fundamental parallelepiped $\mathcal{P}(B)$.
NTRUSign/GGH:

- Message m is hashed to a point $c := H(m) \in \mathbb{Z}^n$
- Use round-off algorithm to solve CVP:

Signature: $s = \lfloor cB^{-1} \rfloor B$ with B the private basis

$\implies s - c$ belongs to the fundamental parallelepiped $P(B)$.
NTRUSign/GGH:

- Message m is hashed to a point $c := H(m) \in \mathbb{Z}^n$
- Use round-off algorithm to solve CVP:

Signature: $s = \lfloor cB^{-1} \rfloor B$ with B the private basis

$\implies s - c$ belongs to the fundamental parallelepiped $\mathcal{P}(B)$.

Hidden Parallelepiped Problem: Recover B from independent samples drawn uniformly in $\mathcal{P}(B)$ [NR06].
NTRUSign/GGH:
- Message m is hashed to a point $c := H(m) \in \mathbb{Z}^n$
- Use round-off algorithm to solve CVP:

Signature: $s = [cB^{-1}]B$ with B the private basis
$\implies s - c$ belongs to the fundamental parallelepiped $\mathcal{P}(B)$.

Hidden Parallelepiped Problem: Recover B from independent samples drawn uniformly in $\mathcal{P}(B)$ [NR06].

Deformed Parallelepiped Problem: Same as HPP when a partial perturbation is applied during round-off algorithm [DN12].
Hidden Parallelepiped Problem

NTRUSign/GGH:
- Message m is hashed to a point $c := H(m) \in \mathbb{Z}^n$
- Use round-off algorithm to solve CVP:

Signature: $s = \lfloor cB^{-1} \rfloor B$ with B the private basis
$\implies s - c$ belongs to the fundamental parallelepiped $P(B)$.

Hidden Parallelepiped Problem: Recover B from independent samples drawn uniformly in $P(B)$ [NR06].

Deformed Parallelepiped Problem: Same as HPP when a partial perturbation is applied during round-off algorithm [DN12].

GPV Framework: Replace the round-off algorithm by a trapdoor sampler: s is not always the closest vector [GPV08].
Hidden Parallelepiped Problem

NTRUSign/GGH:
- Message m is hashed to a point $c := H(m) \in \mathbb{Z}^n$
- Use round-off algorithm to solve CVP:

Signature: $s = \lfloor cB^{-1} \rfloor B$ with B the private basis
$\implies s - c$ belongs to the fundamental parallelepiped $\mathcal{P}(B)$.

Hidden Parallelepiped Problem: Recover B from independent samples drawn uniformly in $\mathcal{P}(B)$ [NR06].

Deformed Parallelepiped Problem: Same as HPP when a partial perturbation is applied during round-off algorithm [DN12].

GPV Framework: Replace the round-off algorithm by a trapdoor sampler: s is not always the closest vector [GPV08].
Instantiation of GPV framework with NTRU lattices

Let $\mathbb{R} = \mathbb{Z}[[x]]/(x^n + 1)$. Private key: $f, g, F, G \in \mathbb{R}$ with $fG - gF = q \mod (x^n + 1)$. Private basis: $B = g - fG - F \Rightarrow b_0 = (g_0, \ldots, g_{n-1}, -f_0, \ldots, -f_{n-1})$.

Sign (m, B):
1. $r \leftarrow$ random salt
2. $c \leftarrow$ HashToPoint($r || m$)
3. $t \leftarrow c \cdot B^{-1}$ \quad preimage computation
4. $v \leftarrow ffSampling(t, B)$ \quad trapdoor sampler
5. $s \leftarrow (t - v) \cdot B$
6. return (r, s).

Falcon.Sign ffSampling SamplerZ BaseSampler $z + \sim D_{\mathbb{Z}} + \sigma_{\text{max}}, 0$

$z \sim D_{\mathbb{Z}} + \sigma', \mu$

$v \sim D(t, 0) + \Lambda(B), \sigma, 0$
Instantiation of GPV framework with NTRU lattices

Let \(\mathcal{R} := \mathbb{Z}[x]/(x^n + 1) \).

Private key: \(f, g, F, G \in \mathcal{R} \) with \(fG - gF = q \mod x^n + 1 \)
Instantiation of GPV framework with NTRU lattices

Let $\mathcal{R} := \mathbb{Z}[x]/(x^n + 1)$.

Private key: $f, g, F, G \in \mathcal{R}$ with $fG - gF = q \mod x^n + 1$

Private basis: $\mathbf{B} := \begin{bmatrix} g & -f \\ G & -F \end{bmatrix} \implies \mathbf{b}_0 = (g_0, \ldots, g_{n-1}, -f_0, \ldots, -f_{n-1})$
Instantiation of GPV framework with NTRU lattices

Let \(R := \mathbb{Z}[x]/(x^n + 1) \).

Private key: \(f, g, F, G \in R \) with \(fG - gF = q \mod x^n + 1 \)

Private basis: \(B := \begin{bmatrix} g & -f \\ G & -F \end{bmatrix} \implies b_0 = (g_0, \ldots, g_{n-1}, -f_0, \ldots, -f_{n-1}) \)

Sign(m, B):

1. \(r \leftarrow \) random salt
2. \(c \leftarrow \text{HashToPoint}(r||m) \)
3. \(t \leftarrow c \cdot B^{-1} \)
4. \(v \leftarrow \text{ffSampling}(t, B) \)
5. \(s \leftarrow (t - v) \cdot B \)
6. return \((r, s)\)
Instantiation of GPV framework with NTRU lattices

Let \(\mathcal{R} := \mathbb{Z}[x]/(x^n + 1) \).

Private key: \(f, g, F, G \in \mathcal{R} \) with \(fG - gF = q \mod x^n + 1 \)

Private basis: \(\mathcal{B} := \begin{bmatrix} g & -f \\ G & -F \end{bmatrix} \implies b_0 = (g_0, \ldots, g_{n-1}, -f_0, \ldots, -f_{n-1}) \)

Sign(m, B):

1. \(r \leftarrow \text{random salt} \)
2. \(c \leftarrow \text{HashToPoint}(r||m) \)
3. \(t \leftarrow c \cdot \mathcal{B}^{-1} \)
4. \(v \leftarrow \text{ffSampling}(t, \mathcal{B}) \)
5. \(s \leftarrow (t - v) \cdot \mathcal{B} \)
6. return \((r, s)\)
Power Analysis on the preimage computation

Sign(m, B):

2. $c \leftarrow \text{HashToPoint}(r || m)$
3. $t \leftarrow c \cdot B^{-1}$
4. $v \leftarrow \text{ffSampling}(t, B)$
5. $s \leftarrow (t - v) \cdot B$
Differential Power Analysis on the preimage attack

Original attack: DPA on a polynomial multiplication in FFT between a public digest c and a private polynomial f [KA21].

Three improvements:

1. Lowering the complexity of exhaustive search: double precision is unnecessary to recover the key.
2. Halving the number of required traces by combining patterns: complex multiplications involve a lot of operations.
3. Mitigating the noise by grouping similar challenges: we average power traces if challenges are the same (less precision).

<table>
<thead>
<tr>
<th>Number of traces</th>
<th>Probability of success</th>
</tr>
</thead>
<tbody>
<tr>
<td>all patterns</td>
<td></td>
</tr>
<tr>
<td>noise reduction</td>
<td></td>
</tr>
<tr>
<td>SotA</td>
<td></td>
</tr>
</tbody>
</table>
Original attack: DPA on a polynomial multiplication in FFT between a public digest c and a private polynomial f [KA21].

Three improvements:

- Lowering the complexity of exhaustive search: double precision is unnecessary to recover the key.
Differential Power Analysis on the preimage attack

Original attack: DPA on a polynomial multiplication in FFT between a public digest c and a private polynomial f [KA21].

Three improvements:

- **Lowering the complexity** of exhaustive search: double precision is unnecessary to recover the key.
- **Halving the number of required traces** by combining patterns: complex multiplications involve a lot of operations.

<table>
<thead>
<tr>
<th>Number of traces</th>
<th>Probability of success</th>
</tr>
</thead>
<tbody>
<tr>
<td>all patterns</td>
<td>noise reduction</td>
</tr>
</tbody>
</table>

1,000

0.5

0.7

0.9

0.2

0.6

0.4

0.8
Differential Power Analysis on the preimage attack

Original attack: DPA on a polynomial multiplication in FFT between a public digest c and a private polynomial f [KA21].

Three improvements:

- **Lowering the complexity** of exhaustive search: double precision is unnecessary to recover the key.
- **Halving the number of required traces** by combining patterns: complex multiplications involve a lot of operations.
- **Mitigating the noise** by grouping similar challenges: we average power traces if challenges are the same (less precision).
Differential Power Analysis on the preimage attack

Original attack: DPA on a polynomial multiplication in FFT between a public digest c and a private polynomial f [KA21].

Three improvements:

- Lowering the complexity of exhaustive search: double precision is unnecessary to recover the key.
- Halving the number of required traces by combining patterns: complex multiplications involve a lot of operations.
- Mitigating the noise by grouping similar challenges: we average power traces if challenges are the same (less precision).
Hidden Parallelepiped attack on the trapdoor sampler

Sign(m, B):

2. $c \leftarrow \text{HashToPoint}(r || m)$
3. $t \leftarrow c \cdot B^{-1}$
4. $v \leftarrow \text{ffSampling}(t, B)$
5. $s \leftarrow (t - v) \cdot B$

- preimage computation
- trapdoor sampler
Hidden Parallelepiped attack on the trapdoor sampler

1. Side-channel analysis on the BaseSampler to recover samples
2. Utilisation of the samples to disclose a deformed parallelepiped
3. Application of HPP solver on filtered signatures
4. Private key recovering (possibly with lattice magic)
1. Side-channel analysis on the BaseSampler

\[\mathbf{v} \sim D_{(t,0) + \Lambda(B), \sigma, 0} \]
\[z \sim D_{\mathbb{Z}, \sigma', \mu} \]
\[z^+ \sim D_{\mathbb{Z}^+, \sigma_{\text{max}}, 0} \]
1. Side-channel analysis on the BaseSampler

\[\mathbf{v} \sim D_{(t,0)+\Lambda(B),\sigma,0} \]
\[z \sim D_{\mathbb{Z},\sigma',\mu} \]
\[z^+ \sim D_{\mathbb{Z}^+,\sigma_{\text{max}},0} \]

BaseSampler():
1. \(u \leftarrow \text{UniformBits}(72) \)
2. \(z^+ \leftarrow 0 \)
3. for \(i = 0 \ldots 16 \) do
4. \(z^+ \leftarrow z^+ + [u < \text{RCDT}[i]] \)
5. end
6. return \(z^+ \)
1. Side-channel analysis on the BaseSampler

BaseSampler():

1. \(u \leftarrow \text{UniformBits}(72) \)
2. \(z^+ \leftarrow 0 \)
3. \textbf{for} \(i = 0 \ldots 16 \) \textbf{do}
4. \hspace{1em} \(z^+ \leftarrow z^+ + [u < \text{RCDT}[i]] \)
5. \textbf{end}
6. \textbf{return} \(z^+ \)

Comparison on line 4 is in fact three successive substractions of 24 bits values, exploiting register underflow.
1. Side-channel analysis on the BaseSampler

Falcon.Sign \rightarrow ffSampling \rightarrow SamplerZ \rightarrow BaseSampler

$\mathbf{v} \sim D(t,0)+\Lambda(B),\sigma,0$

$\mathbf{z} \sim D_{\mathbb{Z},\sigma',\mu}$

$\mathbf{z}^+ \sim D_{\mathbb{Z}^+,\sigma_{\max},0}$

BaseSampler():

1. $u \leftarrow \text{UniformBits}(72)$
2. $z^+ \leftarrow 0$
3. **for** $i = 0 \ldots 16$ **do**
4. \hspace{1em} $z^+ \leftarrow z^+ + [u < \text{RCDT}[i]]$
5. **end**
6. **return** z^+

Comparison on line 4 is in fact three successive substractions of 24 bits values, exploiting register underflow.

\implies High difference in Hamming weight [KH18]
1. Side-channel analysis on the BaseSampler

BaseSampler()

1. \(u \leftarrow \text{UniformBits}(72) \)
2. \(z^+ \leftarrow 0 \)
3. \textbf{for} \(i = 0 \ldots 16 \) \textbf{do}
4. \(z^+ \leftarrow z^+ + [u < \text{RCDT}[i]] \)
5. \textbf{end}
6. \textbf{return} \(z^+ \)

Comparison on line 4 is in fact three successive subtractions of 24 bits values, exploiting register underflow.

\[\Rightarrow \] High difference in Hamming weight [KH18]

We are able to retrieve the value of \(z^+ \) through STA.
“Shifted” Babai’s nearest-plane algorithm: A Gaussian translation vector \vec{z} is applied to \vec{t} before solving CVP.
“Shifted” Babai’s nearest-plane algorithm: A Gaussian translation vector \vec{z} is applied to t before solving CVP.

What happens when $\vec{z} := (z_0^+, \ldots, z_{n-1}^+) = (0, \ldots, 0)$?
"Shifted" Babai’s nearest-plane algorithm: A Gaussian translation vector \vec{z} is applied to \mathbf{t} before solving CVP.

What happens when $\vec{z} := (z_0^+, \ldots, z_{n-1}^+) = (0, \ldots, 0)$?

Filtering with all $z_i^+ = 0$
“Shifted” Babai’s nearest-plane algorithm: A Gaussian translation vector \vec{z} is applied to \mathbf{t} before solving CVP.

What happens when $\vec{z} := (z_0^+, \ldots, z_{n-1}^+) = (0, \ldots, 0)$?

Filtering with all $z_i^+ = 0$

Filtering with only $z_0^+ = 0$
3. Application of HPP solver

\[\mathbb{P}[z_i^+ = 0] \approx \text{erf}(\frac{\sqrt{2}}{2\sigma_i}) \in [0.4111, 0.5613] \text{ for all } i \in [0, n - 1] \]

(because of rejection sampling, not all \(z_i^+ \) are kept)
3. Application of HPP solver

\[P[z_i^+ = 0] \approx \text{erf}\left(\frac{\sqrt{2}}{2\sigma_i}\right) \in [0.4111, 0.5613] \text{ for all } i \in [0, n - 1] \]

(because of rejection sampling, not all \(z_i^+\) are kept)

\[\implies \text{we apply HPP solver from [DN12] on 40 to 55\% of the signatures} \]
3. Application of HPP solver

\[\mathbb{P}[z_i^+ = 0] \approx \text{erf}\left(\frac{\sqrt{2}}{2\sigma_i}\right) \in [0.4111, 0.5613] \text{ for all } i \in [0, n - 1] \]

(because of rejection sampling, not all \(z_i^+ \) are kept)

\[\implies \text{we apply HPP solver from [DN12] on 40 to 55\% of the signatures} \]

Baibai’s nearest-plane algorithm: uses \(\tilde{\mathbf{B}} := \text{GSO}(\mathbf{B}) \) instead of \(\mathbf{B} \) to solve CVP.
3. Application of HPP solver

\[P[z_i^+ = 0] \approx \operatorname{erf}\left(\frac{\sqrt{2}}{2\sigma_i} \right) \in [0.4111, 0.5613] \text{ for all } i \in [0, n - 1] \]

(because of rejection sampling, not all \(z_i^+ \) are kept)

\[\implies \text{ we apply HPP solver from [DN12] on 40 to 55\% of the signatures} \]

Baibai’s nearest-plane algorithm: uses \(\tilde{B} := \text{GSO}(B) \) instead of \(B \) to solve CVP.

\[\implies \text{ signatures belong to } \mathcal{P}(\tilde{B}), \text{ not } \mathcal{P}(B). \]
3. Application of HPP solver

\[\mathbb{P}[z_i^+ = 0] \approx \text{erf}\left(\frac{\sqrt{2}}{2\sigma_i}\right) \in [0.4111, 0.5613] \text{ for all } i \in [0, n-1] \]

(because of rejection sampling, not all \(z_i^+\) are kept)

\[\implies \text{we apply HPP solver from } [DN12] \text{ on } 40 \text{ to } 55\% \text{ of the signatures} \]

Baibai's nearest-plane algorithm: uses \(\tilde{\mathbf{B}} := \text{GSO}(\mathbf{B})\) instead of \(\mathbf{B}\) to solve \(\text{CVP} \).

\[\implies \text{signatures belong to } \mathcal{P}(\tilde{\mathbf{B}}), \text{ not } \mathcal{P}(\mathbf{B}). \]

\[\implies \text{we can only retrieve rows of } \tilde{\mathbf{B}} \text{ with HPP solver.} \]
3. Application of HPP solver

\[P[z_i^+ = 0] \approx \text{erf}\left(\frac{\sqrt{2}}{2\sigma_i}\right) \in [0.4111, 0.5613] \text{ for all } i \in [0, n - 1] \]

(because of rejection sampling, not all \(z_i^+\) are kept)

\[\implies \text{we apply HPP solver from [DN12] on 40 to 55\% of the signatures} \]

Baibai’s nearest-plane algorithm: uses \(\tilde{\mathbf{B}} := \text{GSO}(\mathbf{B})\) instead of \(\mathbf{B}\) to solve \(\text{CVP}\).

\[\implies \text{signatures belong to } \mathcal{P}(\tilde{\mathbf{B}}), \text{ not } \mathcal{P}(\mathbf{B}). \]

\[\implies \text{we can only retrieve rows of } \tilde{\mathbf{B}} \text{ with HPP solver.} \]

Useful observation: Because of the algorithm used in Falcon to compute the GSO (ffLDL algorithm), we have the following:

\(\tilde{b}_0, \ldots, \tilde{b}_3 \approx b_0, \ldots, b_3 \) and \(\tilde{b}_n, \ldots, \tilde{b}_{n+3} \approx b_n, \ldots, b_{n+3} \)
4. Recovering the private key: Falcon-512

We combine several rows b_i to attenuate the noise on f, g.
Note: ulterior iterations of HPP solver are much less costly.
4. Recovering the private key: Falcon-512

We combine several rows b_i to attenuate the noise on f, g.

Note: ulterior iterations of HPP solver are much less costly.

Then, two possible ways to recover the exact private key (f, g):

- Mere rounding when $\sigma(f', g') - (f, g)$ is small enough
4. Recovering the private key: Falcon-512

- We combine several rows b_i to attenuate the noise on f, g.

Note: ulterior iterations of HPP solver are much less costly.

Then, two possible ways to recover the exact private key (f, g):
- Mere rounding when $\sigma(f', g') - (f, g)$ is small enough
- Solve DBDD instance with Leaky LWE/NTRU tool [Dac+20]
4. Recovering the private key: Falcon-512

- We combine several rows b_i to attenuate the noise on f, g.

 Note: ulterior iterations of HPP solver are much less costly.

Then, two possible ways to recover the exact private key (f, g):

- Mere rounding when $\sigma(f', g') - (f, g)$ is small enough
- Solve DBDD instance with Leaky LWE/NTRU tool [Dac+20]

![Graph showing the relationship between Estimated BKZ block size β and Number of measured signatures.](image-url)

- More than 2500h CPU time
- Less than 10h CPU time
Conclusion

Sign(m, B):

2. $c \leftarrow \text{HashToPoint}(r||m)$
3. $t \leftarrow c \cdot B^{-1}$
4. $v \leftarrow \text{ffSampling}(t, B)$
5. $s \leftarrow (t - v) \cdot B$

Preimage computation: Improvement of State-of-the-Art attack.
Trapdoor sampler: Novel attack combining SCA and HPP.
Conclusion

\[\text{Sign}(m, B): \]

2. \(c \leftarrow \text{HashToPoint}(r||m) \)
3. \(t \leftarrow c \cdot B^{-1} \)
4. \(v \leftarrow \text{ffSampling}(t, B) \)
5. \(s \leftarrow (t - v) \cdot B \)

- **Preimage computation**: Improvement of State-of-the-Art attack.
- **Trapdoor sampler**: Novel attack combining SCA and HPP.

Future works:
- Template attack on the SamplerZ
- Combination with [Fou+20] (replacing timing attack by STA)
Conclusion

\[\text{Sign}(m, B) : \]
\begin{align*}
 2. & \quad c \leftarrow \text{HashToPoint}(r \| m) \\
 3. & \quad t \leftarrow c \cdot B^{-1} \\
 4. & \quad v \leftarrow \text{ffSampling}(t, B) \\
 5. & \quad s \leftarrow (t - v) \cdot B
\end{align*}

- preimage computation
- trapdoor sampler

Preimage computation: Improvement of State-of-the-Art attack.

Trapdoor sampler: Novel attack combining SCA and HPP.

Future works:
- Template attack on the SamplerZ
- Combination with [Fou+20] (replacing timing attack by STA)

Questions ?

References II

Partial countermeasure for BaseSampler

Main idea: invert the sign of the operands to replace the (hardware) underflow by a (logical) overflow.

Replace the last substraction by the following:

1. $b \leftarrow 0xffffffff$
2. $b := b - \bar{u} + RCDT[i] + c$
3. return $b \gg 24$

State of the register before the last operation:

State of the register after the last operation (original implementation):

State of the register after the last operation (with countermeasure):

- Bit set to 0
- Bit set to 1
- Bit set to either 1 or 0