The Hidden Parallelepiped is Back Again: Power Analysis Attacks on Falcon

Morgane Guerreau ${ }^{1} \quad$ Ange Martinelli ${ }^{2} \quad$ Thomas Ricosset ${ }^{1}$ Mélissa Rossi ${ }^{2}$

${ }^{1}$ Thales, ${ }^{2}$ ANSSI
September 20, 2022

THALES

$\Psi_{\text {Falcon }}$

Fast-Fourier Lattice-based
Compact Signatures over NTRU

$\Psi_{\text {Falcon }}$

Fast-Fourier Lattice-based Compact Signatures over NTRU

Two Power Analysis attacks on Falcon:

- Efficient DPA attack on the preimage computation
- STA on the trapdoor sampler leading to HPP attack

Lattice-based cryptography

Closest Vector Problem: Given a
lattice Λ and a vector \mathbf{c} in \mathcal{R}^{n}, find a vector \mathbf{v} in Λ such that $\|\mathbf{v}-\mathbf{c}\|$ is minimal.

Lattice-based cryptography

Closest Vector Problem: Given a lattice Λ and a vector \mathbf{c} in \mathcal{R}^{n}, find a vector \mathbf{v} in Λ such that $\|\mathbf{v}-\mathbf{c}\|$ is minimal.

CVP is easy to solve with a good basis, but hard with a bad basis.

Lattice-based cryptography

Closest Vector Problem: Given a lattice Λ and a vector \mathbf{c} in \mathcal{R}^{n}, find a vector \mathbf{v} in Λ such that $\|\mathbf{v}-\mathbf{c}\|$ is minimal.

CVP is easy to solve with a good basis, but hard with a bad basis. Basic signature scheme:

- Convert the message to sign to a vector \mathbf{c} in \mathcal{R}^{n}

Lattice-based cryptography

Closest Vector Problem: Given a lattice Λ and a vector \mathbf{c} in \mathcal{R}^{n}, find a vector \mathbf{v} in Λ such that $\|\mathbf{v}-\mathbf{c}\|$ is minimal.

CVP is easy to solve with a good basis, but hard with a bad basis.
Basic signature scheme:

- Convert the message to sign to a vector \mathbf{c} in \mathcal{R}^{n}
- Use the good basis (secret key) to solve CVP

Lattice-based cryptography

Closest Vector Problem: Given a lattice Λ and a vector \mathbf{c} in \mathcal{R}^{n}, find a vector \mathbf{v} in Λ such that $\|\mathbf{v}-\mathbf{c}\|$ is minimal.

CVP is easy to solve with a good basis, but hard with a bad basis.
Basic signature scheme:

- Convert the message to sign to a vector \mathbf{c} in \mathcal{R}^{n}
- Use the good basis (secret key) to solve CVP
- Anyone can verify the signature \mathbf{v} with a bad basis (public key)

Lattice-based cryptography

Closest Vector Problem: Given a lattice Λ and a vector \mathbf{c} in \mathcal{R}^{n}, find a vector \mathbf{v} in Λ such that $\|\mathbf{v}-\mathbf{c}\|$ is minimal.

CVP is easy to solve with a good basis, but hard with a bad basis.
Basic signature scheme:

- Convert the message to sign to a vector \mathbf{c} in \mathcal{R}^{n}
- Use the good basis (secret key) to solve CVP
- Anyone can verify the signature \mathbf{v} with a bad basis (public key)

Note: It is hard to derivate the good basis from the bad basis.

Hidden Parallelepiped Problem

NTRUSign/GGH:

- Message m is hashed to a point $\mathbf{c}:=H(m) \in \mathbb{Z}^{n}$

Hidden Parallelepiped Problem

NTRUSign/GGH:

- Message m is hashed to a point $\mathbf{c}:=H(m) \in \mathbb{Z}^{n}$
- Use round-off algorithm to solve CVP:

Signature: $\mathbf{s}=\left\lfloor\mathbf{c B}^{-1}\right\rceil \mathbf{B}$ with \mathbf{B} the private basis

Hidden Parallelepiped Problem

NTRUSign/GGH:

- Message m is hashed to a point $\mathbf{c}:=H(m) \in \mathbb{Z}^{n}$
- Use round-off algorithm to solve CVP:

Signature: $\mathbf{s}=\left\lfloor\mathbf{c} \mathbf{B}^{-1}\right\rceil \mathbf{B}$ with \mathbf{B} the private basis
$\Longrightarrow \mathbf{s}$ - \mathbf{c} belongs to the fundamental parallelepiped $\mathcal{P}(\mathbf{B})$.

Hidden Parallelepiped Problem

NTRUSign/GGH:

- Message m is hashed to a point $\mathbf{c}:=H(m) \in \mathbb{Z}^{n}$
- Use round-off algorithm to solve CVP:

Signature: $\mathbf{s}=\left\lfloor\mathbf{c} \mathbf{B}^{-1}\right\rceil \mathbf{B}$ with \mathbf{B} the private basis
$\Longrightarrow \mathbf{s}$ - \mathbf{c} belongs to the fundamental parallelepiped $\mathcal{P}(\mathbf{B})$.

Hidden Parallelepiped Problem

NTRUSign/GGH:

- Message m is hashed to a point $\mathbf{c}:=H(m) \in \mathbb{Z}^{n}$
- Use round-off algorithm to solve CVP:

Signature: $\mathbf{s}=\left\lfloor\mathbf{c} \mathbf{B}^{-1}\right\rceil \mathbf{B}$ with \mathbf{B} the private basis
$\Longrightarrow \mathbf{s}$ - \mathbf{c} belongs to the fundamental parallelepiped $\mathcal{P}(\mathbf{B})$.

> Hidden Parallelepiped Problem: Recover B from independent samples drawn uniformly in $\mathcal{P}(\mathbf{B})$ [NR06].

NTRUSign/GGH:

- Message m is hashed to a point $\mathbf{c}:=H(m) \in \mathbb{Z}^{n}$
- Use round-off algorithm to solve CVP:

Signature: $\mathbf{s}=\left\lfloor\mathbf{c} \mathbf{B}^{-1}\right\rceil \mathbf{B}$ with \mathbf{B} the private basis
$\Longrightarrow \mathbf{s}$ - \mathbf{c} belongs to the fundamental parallelepiped $\mathcal{P}(\mathbf{B})$.

> Hidden Parallelepiped Problem: Recover B from independent samples drawn uniformly in $\mathcal{P}(\mathbf{B})$ [NR06].

Deformed Parallelepiped Problem: Same as HPP when a partial perturbation is applied during round-off algorithm [DN12].

NTRUSign/GGH:

- Message m is hashed to a point $\mathbf{c}:=H(m) \in \mathbb{Z}^{n}$
- Use round-off algorithm to solve CVP:

Signature: $\mathbf{s}=\left\lfloor\mathbf{c B}^{-1}\right\rceil \mathbf{B}$ with \mathbf{B} the private basis
$\Longrightarrow \mathbf{s}-\mathbf{c}$ belongs to the fundamental parallelepiped $\mathcal{P}(\mathbf{B})$.

$$
\begin{aligned}
& \text { Hidden Parallelepiped Problem: Recover } \\
& \text { B from independent samples drawn uni- } \\
& \text { formly in } \mathcal{P}(B) \text { [NR06]. }
\end{aligned}
$$

Deformed Parallelepiped Problem: Same as HPP when a partial perturbation is applied during round-off algorithm [DN12].

GPV Framework: Replace the round-off algorithm by a trapdoor sampler: \mathbf{s} is not always the closest vector [GPV08].

NTRUSign/GGH:

- Message m is hashed to a point $\mathbf{c}:=H(m) \in \mathbb{Z}^{n}$
- Use round-off algorithm to solve CVP:

Signature: $\mathbf{s}=\left\lfloor\mathbf{c B}^{-1}\right\rceil \mathbf{B}$ with \mathbf{B} the private basis
$\Longrightarrow \mathbf{s}-\mathbf{c}$ belongs to the fundamental parallelepiped $\mathcal{P}(\mathbf{B})$.

> Hidden Parallelepiped Problem: Recover B from independent samples drawn uniformly in $\mathcal{P}(\mathbf{B})$ [NR06].

Deformed Parallelepiped Problem: Same as HPP when a partial perturbation is applied during round-off algorithm [DN12].

GPV Framework: Replace the round-off algorithm by a trapdoor sampler: \mathbf{s} is not always the closest vector [GPV08].

Falcon

> Instantiation of GPV framework with NTRU lattices

Falcon

\geqslant Instantiation of GPV framework with NTRU lattices
$>$ Let $\mathcal{R}:=\mathbb{Z}[x] /\left(x^{n}+1\right)$.
Private key: $f, g, F, G \in \mathcal{R}$ with $f G-g F=q \bmod x^{n}+1$

Falcon

\geqslant Instantiation of GPV framework with NTRU lattices
$>$ Let $\mathcal{R}:=\mathbb{Z}[x] /\left(x^{n}+1\right)$.
Private key: $f, g, F, G \in \mathcal{R}$ with $f G-g F=q \bmod x^{n}+1$
Private basis: $\mathbf{B}:=\left[\begin{array}{ll}g & -f \\ G & -F\end{array}\right] \Longrightarrow \mathbf{b}_{\mathbf{0}}=\left(g_{0}, \ldots, g_{n-1},-f_{0}, \ldots,-f_{n-1}\right)$

Falcon

\geqslant Instantiation of GPV framework with NTRU lattices
$>$ Let $\mathcal{R}:=\mathbb{Z}[x] /\left(x^{n}+1\right)$.
Private key: $f, g, F, G \in \mathcal{R}$ with $f G-g F=q \bmod x^{n}+1$
Private basis: $\mathbf{B}:=\left[\begin{array}{ll}g & -f \\ G & -F\end{array}\right] \Longrightarrow \mathbf{b}_{\mathbf{0}}=\left(g_{0}, \ldots, g_{n-1},-f_{0}, \ldots,-f_{n-1}\right)$

$\operatorname{Sign}(m, B):$

1. $r \leftarrow$ random salt
2. $\mathbf{c} \leftarrow$ HashToPoint $(r \| m)$
3. $\mathbf{t} \leftarrow \mathbf{c} \cdot \mathbf{B}^{-1}$
4. $\mathbf{v} \leftarrow f f \operatorname{Sampling}(\mathbf{t}, \mathbf{B})$

- preimage computation

5. $\mathbf{s} \leftarrow(\mathbf{t}-\mathbf{v}) \cdot \mathbf{B}$
6. return (r, s)

Falcon

\geqslant Instantiation of GPV framework with NTRU lattices
$>$ Let $\mathcal{R}:=\mathbb{Z}[x] /\left(x^{n}+1\right)$.
Private key: $f, g, F, G \in \mathcal{R}$ with $f G-g F=q \bmod x^{n}+1$
Private basis: $\mathbf{B}:=\left[\begin{array}{ll}g & -f \\ G & -F\end{array}\right] \Longrightarrow \mathbf{b}_{\mathbf{0}}=\left(g_{0}, \ldots, g_{n-1},-f_{0}, \ldots,-f_{n-1}\right)$

Sign(m, B):

1. $r \leftarrow$ random salt
2. $\mathbf{c} \leftarrow$ HashToPoint $(r \| m)$
3. $\mathbf{t} \leftarrow \mathbf{c} \cdot \mathbf{B}^{-1}$
4. $\mathbf{v} \leftarrow f f \operatorname{Sampling}(\mathbf{t}, \mathbf{B})$

- preimage computation

5. $\mathbf{s} \leftarrow(\mathbf{t}-\mathbf{v}) \cdot \mathbf{B}$
6. return (r, s)

Power Analysis on the preimage computation

Sign(m, B):
2. $\mathbf{C} \leftarrow$ HashToPoint $(r \| m)$
3. $\mathbf{t} \leftarrow \mathbf{c} \cdot \mathbf{B}^{-1}$
4. $\mathbf{v} \leftarrow$ ffSampling (\mathbf{t}, \mathbf{B})
5. $\mathbf{s} \leftarrow(\mathbf{t}-\mathbf{v}) \cdot \mathbf{B}$

- preimage computation
- trapdoor sampler

Differential Power Analysis on the preimage attack

Original attack: DPA on a polynomial multiplication in FFT between a public digest \mathbf{c} and a private polynomial $\mathbf{f}[\mathrm{KA} 21]$.

Differential Power Analysis on the preimage attack

Original attack: DPA on a polynomial multiplication in FFT between a public digest \mathbf{c} and a private polynomial \mathbf{f} [KA21]. Three improvements:
> Lowering the complexity of exhaustive search: double precision is unnecessary to recover the key.

Differential Power Analysis on the preimage attack

Original attack: DPA on a polynomial multiplication in FFT between a public digest \mathbf{c} and a private polynomial \mathbf{f} [KA21].

Three improvements:

> Lowering the complexity of exhaustive search: double precision is unnecessary to recover the key. \geqslant Halving the number of required traces by combinating patterns: complex multiplications involve a lot of operations.

Differential Power Analysis on the preimage attack

Original attack: DPA on a polynomial multiplication in FFT between a public digest \mathbf{c} and a private polynomial \mathbf{f} [KA21].

Three improvements:

>Lowering the complexity of exhaustive search: double precision is unnecessary to recover the key.
$>$ Halving the number of required traces by combinating patterns: complex multiplications involve a lot of operations.
> Mitigating the noise by grouping similar challenges:
we average power traces if challenges are the same (less precision).

Differential Power Analysis on the preimage attack

Original attack: DPA on a polynomial multiplication in FFT between a public digest \mathbf{c} and a private polynomial $\mathbf{f}[\mathrm{KA} 21]$.

Three improvements:

>Lowering the complexity of exhaustive search: double precision is unnecessary to recover the key.
\geqslant Halving the number of required traces by combinating patterns: complex multiplications involve a lot of operations.
> Mitigating the noise by grouping similar challenges:
we average power traces if challenges are the same (less precision).

Hidden Parallelepiped attack on the trapdoor sampler

$\operatorname{Sign}(m, B)$:
2. $\mathbf{c} \leftarrow \operatorname{HashToPoint}(r \| m)$
3. $\mathbf{t} \leftarrow \mathbf{c} \cdot \mathbf{B}^{-1}$
4. $\mathbf{v} \leftarrow \mathrm{ffSampling}(\mathbf{t}, \mathbf{B})$
5. $\mathbf{s} \leftarrow(\mathbf{t}-\mathbf{v}) \cdot \mathbf{B}$

- preimage computation
- trapdoor sampler

Hidden Parallelepiped attack on the trapdoor sampler

1. Side-channel analysis on the BaseSampler to recover samples
2. Utilisation of the samples to disclose a deformed parallelepiped
3. Application of HPP solver on filtered signatures
4. Private key recovering (possibly with lattice magic)

1. Side-channel analysis on the BaseSampler

BaseSampler():

1. $u \leftarrow$ UniformBits(72)
2. $z^{+} \leftarrow 0$
3. for $i=0 \ldots 16$ do
4. $z^{+} \leftarrow z^{+}+\llbracket u<\operatorname{RCDT}[i] \rrbracket$
5. end
6. return z^{+}

1. Side-channel analysis on the BaseSampler

BaseSampler():

1. $u \leftarrow$ UniformBits(72)
2. $z^{+} \leftarrow 0$
3. for $i=0 \ldots 16$ do
4. $z^{+} \leftarrow z^{+}+\llbracket u<\operatorname{RCDT}[i] \rrbracket$
5. end
6. return z^{+}

Comparison on line 4 is in fact three successive substractions of 24 bits values, exploiting register underflow.

1. Side-channel analysis on the BaseSampler

BaseSampler():

1. $u \leftarrow$ UniformBits(72)
2. $z^{+} \leftarrow 0$
3. for $i=0 \ldots 16$ do
4. $z^{+} \leftarrow z^{+}+\llbracket u<\operatorname{RCDT}[i] \rrbracket$
5. end
6. return z^{+}

Comparison on line 4 is in fact three successive substractions of 24 bits values, exploiting register underflow.
\Longrightarrow High difference in Hamming weight [KH18]

1. Side-channel analysis on the BaseSampler

BaseSampler():

1. $u \leftarrow$ UniformBits(72)
2. $z^{+} \leftarrow 0$
3. for $i=0 \ldots 16$ do
4. $z^{+} \leftarrow z^{+}+\llbracket u<\operatorname{RCDT}[i] \rrbracket$
5. end
6. return z^{+}

Comparison on line 4 is in fact three successive substractions of 24 bits values, exploiting register underflow.
\Longrightarrow High difference in Hamming weight [KH18]
We are able to retrieve the value of z^{+}through STA.

2. Disclosure of the HPP

"Shifted" Babai's nearest-plane algorithm: A Gaussian translation vector \vec{z} is applied to \mathbf{t} before solving CVP.

2. Disclosure of the HPP

"Shifted" Babai's nearest-plane algorithm: A Gaussian translation vector \vec{z} is applied to \mathbf{t} before solving CVP.

What happens when $\vec{z}:=\left(z_{0}^{+}, \ldots, z_{n-1}^{+}\right)=(0, \ldots, 0)$?

2. Disclosure of the HPP

"Shifted" Babai's nearest-plane algorithm: A Gaussian translation vector \vec{z} is applied to \mathbf{t} before solving CVP.

What happens when $\vec{z}:=\left(z_{0}^{+}, \ldots, z_{n-1}^{+}\right)=(0, \ldots, 0)$?

Filtering with all $z_{i}^{+}=0$

2. Disclosure of the HPP

"Shifted" Babai's nearest-plane algorithm: A Gaussian translation vector \vec{z} is applied to \mathbf{t} before solving CVP.

What happens when $\vec{z}:=\left(z_{0}^{+}, \ldots, z_{n-1}^{+}\right)=(0, \ldots, 0)$?

Filtering with all $z_{i}^{+}=0$

Filtering with only $z_{0}^{+}=0$
$\mathbb{P}\left[z_{i}^{+}=0\right] \approx \operatorname{erf}\left(\frac{\sqrt{2}}{2 \sigma_{i}}\right) \in[0.4111,0.5613]$ for all $i \in[0, n-1]$ (because of rejection sampling, not all z_{i}^{+}are kept)
$\mathbb{P}\left[z_{i}^{+}=0\right] \approx \operatorname{erf}\left(\frac{\sqrt{2}}{2 \sigma_{i}}\right) \in[0.4111,0.5613]$ for all $i \in[0, n-1]$ (because of rejection sampling, not all z_{i}^{+}are kept)
\Longrightarrow we apply HPP solver from [DN12] on 40 to 55% of the signatures
$\mathbb{P}\left[z_{i}^{+}=0\right] \approx \operatorname{erf}\left(\frac{\sqrt{2}}{2 \sigma_{i}}\right) \in[0.4111,0.5613]$ for all $i \in[0, n-1]$ (because of rejection sampling, not all z_{i}^{+}are kept)
\Longrightarrow we apply HPP solver from [DN12] on 40 to 55% of the signatures
Baibai's nearest-plane algorithm: uses $\tilde{\mathbf{B}}:=\mathrm{GSO}(\mathbf{B})$ instead of \mathbf{B} to solve CVP.
$\mathbb{P}\left[z_{i}^{+}=0\right] \approx \operatorname{erf}\left(\frac{\sqrt{2}}{2 \sigma_{i}}\right) \in[0.4111,0.5613]$ for all $i \in[0, n-1]$ (because of rejection sampling, not all z_{i}^{+}are kept)
\Longrightarrow we apply HPP solver from [DN12] on 40 to 55% of the signatures
Baibai's nearest-plane algorithm: uses $\tilde{\mathbf{B}}:=\mathrm{GSO}(\mathbf{B})$ instead of \mathbf{B} to solve CVP.
\Longrightarrow signatures belong to $\mathcal{P}(\tilde{\mathbf{B}})$, not $\mathcal{P}(\mathbf{B})$.
$\mathbb{P}\left[z_{i}^{+}=0\right] \approx \operatorname{erf}\left(\frac{\sqrt{2}}{2 \sigma_{i}}\right) \in[0.4111,0.5613]$ for all $i \in[0, n-1]$ (because of rejection sampling, not all z_{i}^{+}are kept)
\Longrightarrow we apply HPP solver from [DN12] on 40 to 55% of the signatures
Baibai's nearest-plane algorithm: uses $\tilde{\mathbf{B}}:=\mathrm{GSO}(\mathbf{B})$ instead of \mathbf{B} to solve CVP.
\Longrightarrow signatures belong to $\mathcal{P}(\tilde{\mathbf{B}})$, not $\mathcal{P}(\mathbf{B})$.
\Longrightarrow we can only retrieve rows of $\tilde{\mathbf{B}}$ with HPP solver.
$\mathbb{P}\left[z_{i}^{+}=0\right] \approx \operatorname{erf}\left(\frac{\sqrt{2}}{2 \sigma_{i}}\right) \in[0.4111,0.5613]$ for all $i \in[0, n-1]$
(because of rejection sampling, not all z_{i}^{+}are kept)
\Longrightarrow we apply HPP solver from [DN12] on 40 to 55% of the signatures
Baibai's nearest-plane algorithm: uses $\tilde{\mathbf{B}}:=\mathrm{GSO}(\mathbf{B})$ instead of \mathbf{B} to solve CVP.
\Longrightarrow signatures belong to $\mathcal{P}(\tilde{\mathbf{B}})$, not $\mathcal{P}(\mathbf{B})$.
\Longrightarrow we can only retrieve rows of $\tilde{\mathbf{B}}$ with HPP solver.
Useful observation: Because of the algorithm used in Falcon to compute the GSO (ffLDL algorithm), we have the following:
$\tilde{\mathbf{b}}_{\mathbf{0}}, \ldots, \tilde{\mathbf{b}}_{\mathbf{3}} \approx \mathbf{b}_{0}, \ldots, \mathbf{b}_{3}$ and $\tilde{\mathbf{b}}_{\mathbf{n}}, \ldots, \tilde{\mathbf{b}}_{\mathbf{n}+\mathbf{3}} \approx \mathbf{b}_{n}, \ldots, \mathbf{b}_{n+3}$

4. Recovering the private key: Falcon-512

\geqslant We combine several rows $\mathbf{b}_{\mathbf{i}}$ to attenuate the noise on f, g. Note: ulterior iterations of HPP solver are much less costly.

4. Recovering the private key: Falcon-512

$>$ We combine several rows $\mathbf{b}_{\mathbf{i}}$ to attenuate the noise on f, g. Note: ulterior iterations of HPP solver are much less costly.

Then, two possible ways to recover the exact private key (f, g) :
\geqslant Mere rounding when $\sigma_{\left(f^{\prime}, g^{\prime}\right)-(f, g)}$ is small enough

4. Recovering the private key: Falcon-512

$>$ We combine several rows $\mathbf{b}_{\mathbf{i}}$ to attenuate the noise on f, g. Note: ulterior iterations of HPP solver are much less costly.

Then, two possible ways to recover the exact private key (f, g) :
\geqslant Mere rounding when $\sigma_{\left(f^{\prime}, g^{\prime}\right)-(f, g)}$ is small enough
> Solve DBDD instance with Leaky LWE/NTRU tool [Dac+20]

4. Recovering the private key: Falcon-512

$>$ We combine several rows $\mathbf{b}_{\mathbf{i}}$ to attenuate the noise on f, g. Note: ulterior iterations of HPP solver are much less costly.

Then, two possible ways to recover the exact private key (f, g) :
\geqslant Mere rounding when $\sigma_{\left(f^{\prime}, g^{\prime}\right)-(f, g)}$ is small enough
>Solve DBDD instance with Leaky LWE/NTRU tool [Dac+20]

Number of measured signatures

Conclusion

Sign(m, B):
2. $\mathbf{c} \leftarrow$ HashToPoint $(r \| m)$
3. $\mathbf{t} \leftarrow \mathbf{c} \cdot \mathbf{B}^{-1}$
4. $\mathbf{v} \leftarrow f f \operatorname{Sampling}(\mathbf{t}, \mathbf{B})$
5. $\mathbf{s} \leftarrow(\mathbf{t}-\mathbf{v}) \cdot \mathbf{B}$

- preimage computation
- trapdoor sampler

Preimage computation: Improvement of State-of-the-Art attack. Trapdoor sampler: Novel attack combining SCA and HPP.

Conclusion

Sign(m, B):
2. $\mathbf{c} \leftarrow \operatorname{HashToPoint}(r \| m)$
3. $\mathbf{t} \leftarrow \mathbf{c} \cdot \mathbf{B}^{-1}$

- preimage computation

4. $\mathbf{v} \leftarrow f f \operatorname{Sampling}(\mathbf{t}, \mathbf{B})$
5. $\mathbf{s} \leftarrow(\mathbf{t}-\mathbf{v}) \cdot \mathbf{B}$

Preimage computation: Improvement of State-of-the-Art attack. Trapdoor sampler: Novel attack combining SCA and HPP.

Future works:

- Template attack on the SamplerZ
- Combination with [Fou+20] (replacing timing attack by STA)

Conclusion

Sign(m, B):
2. $\mathbf{c} \leftarrow$ HashToPoint $(r \| m)$
3. $\mathbf{t} \leftarrow \mathbf{c} \cdot \mathbf{B}^{-1}$

- preimage computation

4. $\mathbf{v} \leftarrow f f \operatorname{Sampling}(\mathbf{t}, \mathbf{B})$
5. $\mathbf{s} \leftarrow(\mathbf{t}-\mathbf{v}) \cdot \mathbf{B}$

Preimage computation: Improvement of State-of-the-Art attack. Trapdoor sampler: Novel attack combining SCA and HPP.

Future works:

- Template attack on the SamplerZ
- Combination with [Fou+20] (replacing timing attack by STA)

Questions ?

References I

$$
\begin{array}{ll}
{[\text { Alb }+19]} & \text { Martin R. Albrecht et al. "The General Sieve Kernel } \\
& \text { and New Records in Lattice Reduction". In: } \\
& \text { EUROCRYPT 2019, Part II. Ed. by Yuval Ishai and } \\
& \text { Vincent Rijmen. Vol. 11477. LNCS. Springer, } \\
& \text { Heidelberg, May 2019, pp. 717-746. } \\
{[\text { Dac+20] }} & \text { Dana Dachman-Soled et al. "LWE with Side } \\
& \text { Information: Attacks and Concrete Security } \\
& \text { Estimation". In: CRYPTO 2020, Part II. Ed. by } \\
& \text { Daniele Micciancio and Thomas Ristenpart. } \\
& \text { Vol. 12171. LNCS. Springer, Heidelberg, Aug. 2020, } \\
\text { pp. 329-358. }
\end{array}
$$

References II

[DN12] Léo Ducas and Phong Q. Nguyen. "Learning a Zonotope and More: Cryptanalysis of NTRUSign Countermeasures". In: ASIACRYPT 2012. Ed. by Xiaoyun Wang and Kazue Sako. Vol. 7658. LNCS. Springer, Heidelberg, Dec. 2012, pp. 433-450.
[Fou+20] Pierre-Alain Fouque et al. "Key Recovery from
Gram-Schmidt Norm Leakage in Hash-and-Sign Signatures over NTRU Lattices". In:
EUROCRYPT 2020, Part III. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12107. LNCS. Springer, Heidelberg, May 2020, pp. 34-63.
[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. "Trapdoors for hard lattices and new cryptographic constructions". In: ACM STOC 40 (2008), pp. 197-206.

References III

[KA21] Emre Karabulut and Aydin Aysu. "FALCON Down: Breaking FALCON Post-Quantum Signature Scheme through Side-Channel Attacks". In: 2021 58th ACM/IEEE Design Automation Conference (DAC). 2021, pp. 691-696.
[KH18] Suhri Kim and Seokhie Hong. "Single Trace Analysis on Constant Time CDT Sampler and Its Countermeasure". In: Applied Sciences 8 (Oct. 2018), p. 1809.
[NR06] Phong Q. Nguyen and Oded Regev. "Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures". In: EUROCRYPT 20064004 (2006), pp. 271-288.

Partial countermeasure for BaseSampler

Main idea: invert the sign of the operands to replace the (hardware) underflow by a (logical) overflow.

Replace the last substraction by the following:

1. $b \leftarrow 0 \mathrm{xffffff}$
2. $b:=b-\bar{u}+\overline{\operatorname{RCDT}[i]}+c$
3. return $b \gg 24$

State of the register before the last operation:

State of the register after the last operation (original implementation):

State of the register after the last operation (with countermeasure):

