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Lattice-based cryptography

Closest Vector Problem: Given a
lattice Λ and a vector c in Rn,
find a vector v in Λ such that
∥v − c∥ is minimal.

CVP is easy to solve with a good basis, but hard with a bad basis.

Basic signature scheme:

Convert the message to sign to a vector c in Rn

Use the good basis (secret key) to solve CVP

Anyone can verify the signature v with a bad basis (public key)

Note: It is hard to derivate the good basis from the bad basis.
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Hidden Parallelepiped Problem

NTRUSign/GGH:

Message m is hashed to a point c := H(m) ∈ Zn

Use round-off algorithm to solve CVP:

Signature: s = ⌊cB−1⌉B with B the private basis
=⇒ s− c belongs to the fundamental parallelepiped P(B).

Hidden Parallelepiped Problem: Recover
B from independent samples drawn uni-
formly in P(B) [NR06].

Deformed Parallelepiped Problem: Same as HPP when a partial
perturbation is applied during round-off algorithm [DN12].

GPV Framework: Replace the round-off algo-
rithm by a trapdoor sampler: s is not always
the closest vector [GPV08].
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Falcon

Instantiation of GPV framework with NTRU lattices

Let R := Z[x ]/(xn + 1).
Private key: f , g ,F ,G ∈ R with fG − gF = q mod xn + 1

Private basis: B :=

[
g −f
G −F

]
=⇒b0 = (g0, . . . , gn−1,−f0, . . . ,−fn−1)

Sign(m, B):

1. r ← random salt
2. c← HashToPoint(r ||m)
3. t← c · B−1 • preimage computation
4. v← ffSampling(t,B) • trapdoor sampler
5. s← (t− v) · B
6. return (r , s)

Falcon.Sign ffSampling SamplerZ BaseSampler

z+ ∼ DZ+,σmax,0z ∼ DZ,σ′,µv ∼ D(t,0)+Λ(B),σ,0
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Power Analysis on the preimage computation

Sign(m, B):

2. c← HashToPoint(r ||m)
3. t← c · B−1 • preimage computation
4. v← ffSampling(t,B) • trapdoor sampler
5. s← (t− v) · B
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Differential Power Analysis on the preimage attack

Original attack: DPA on a polynomial multiplication in FFT
between a public digest c and a private polynomial f [KA21].

Three improvements:
Lowering the complexity of exhaustive search:

double precision is unnecessary to recover the key.
Halving the number of required traces by combinating patterns:

complex multiplications involve a lot of operations.
Mitigating the noise by grouping similar challenges:

we average power traces if challenges are the same (less precision).
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Hidden Parallelepiped attack on the trapdoor sampler

Sign(m, B):

2. c← HashToPoint(r ||m)
3. t← c · B−1 • preimage computation
4. v← ffSampling(t,B) • trapdoor sampler
5. s← (t− v) · B
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Hidden Parallelepiped attack on the trapdoor sampler

1. Side-channel analysis on the BaseSampler to recover samples

2. Utilisation of the samples to disclose a deformed parallelepiped

3. Application of HPP solver on filtered signatures

4. Private key recovering (possibly with lattice magic)
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1. Side-channel analysis on the BaseSampler

Falcon.Sign ffSampling SamplerZ BaseSampler

z+ ∼ DZ+,σmax,0
z ∼ DZ,σ′,µv ∼ D(t,0)+Λ(B),σ,0

BaseSampler():

1. u ← UniformBits(72)
2. z+ ← 0
3. for i = 0 . . . 16 do
4. z+ ← z+ + Ju < RCDT[i ]K
5. end
6. return z+

Comparison on line 4 is in fact three successive substractions of 24
bits values, exploiting register underflow.
=⇒ High difference in Hamming weight [KH18]

We are able to retrieve the value of z+ through STA.
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2. Disclosure of the HPP

“Shifted” Babai’s nearest-plane
algorithm: A Gaussian translation
vector z⃗ is applied to t before solv-
ing CVP.

t

t’
z⃗

What happens when z⃗ := (z+0 , . . . , z+n−1) = (0, . . . , 0) ?

Filtering with all z+i = 0 Filtering with only z+0 = 0
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3. Application of HPP solver

P[z+i = 0] ≈ erf(
√
2

2σi
) ∈ [0.4111, 0.5613] for all i ∈ [0, n − 1]

(because of rejection sampling, not all z+i are kept)

=⇒ we apply HPP solver from [DN12] on 40 to 55% of the
signatures

Baibai’s nearest-plane algorithm: uses B̃ := GSO(B) instead of B
to solve CVP.

=⇒ signatures belong to P(B̃), not P(B).
=⇒ we can only retrieve rows of B̃ with HPP solver.

Useful observation: Because of the algorithm used in Falcon to
compute the GSO (ffLDL algorithm), we have the following:

b̃0, . . . , b̃3 ≈ b0, . . . ,b3 and b̃n, . . . , b̃n+3 ≈ bn, . . . ,bn+3
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4. Recovering the private key: Falcon-512

We combine several rows bi to attenuate the noise on f , g .
Note: ulterior iterations of HPP solver are much less costly.

Then, two possible ways to recover the exact private key (f , g):
Mere rounding when σ(f ′,g ′)−(f ,g) is small enough
Solve DBDD instance with Leaky LWE/NTRU tool [Dac+20]
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Conclusion

Sign(m, B):

2. c← HashToPoint(r ||m)
3. t← c · B−1 • preimage computation
4. v← ffSampling(t,B) • trapdoor sampler
5. s← (t− v) · B

Preimage computation: Improvement of State-of-the-Art attack.
Trapdoor sampler: Novel attack combining SCA and HPP.

Future works:

Template attack on the SamplerZ

Combination with [Fou+20] (replacing timing attack by STA)

Questions ?
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Partial countermeasure for BaseSampler

Main idea: invert the sign of the operands to replace the
(hardware) underflow by a (logical) overflow.

Replace the last substraction by the following:

1. b ← 0xffffff

2. b := b − u + RCDT[i ] + c
3. return b ≫ 24
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