

On Efficient and Secure Code-based Masking: A Pragmatic Evaluation

Qianmei Wu¹, <u>Wei Cheng</u>^{2,3}, Sylvain Guilley^{3,2}, Fan Zhang¹, and Wei Fu⁴

- ¹ Zhejiang University, China
- ² LTCI, Télécom Paris, Institut Polytechnique de Paris, France
- ³ Secure-IC S.A.S., France ⁴Ant Group, China

wei.cheng@telecom-paris.fr IACR Cryptographic Hardware and Embedded Systems Sep 20, 2022

Side-Channel Attacks

Figure 1: Observable leakages from the manipulation of intermediate variable

Wei Cheng

CHES 2022

Masking against SCA

Masking

- Security: provable security [Ishai et al. Crypto'03], [Rivain et al. CHES'10]
- Costs: quadratically or cubically in security orders [Grosso et al. CHES'13]
- Others: algorithmic level

Boolean masking [Chari et al. Crypto'99]

Let $\mathbb{K} = \mathbb{F}_{2^l}$ be a finite field, for a Boolean masking with n shares:

$$Z = (Z_1, \cdots, Z_n) = (X + \sum_{i=1}^{n-1} Y_i, Y_1, Y_2, \cdots, Y_{n-1})$$

- $X \in \mathbb{K}$: sensitive variable
- $Y \in \mathbb{K}^{n-1}$: random masks
- $Z \in \mathbb{K}^n$: masked variables

Code-base Masking

Uniform representation

The encoding of code-based masking [Wang et al. CHES'20], [Cheng et al. CHES'21]:

 $Z = X\mathbf{G} + Y\mathbf{H}$

- $X \in \mathbb{K}^k$: sensitive variables
- $Y \in \mathbb{K}^m$: random masks
- **\blacksquare** $Z \in \mathbb{K}^n$: masked variables
- $\mathbf{G} \in \mathbb{K}^{k \times n}$ and $\mathbf{H} \in \mathbb{K}^{m \times n}$: generator matrices of C and D, resp.

Constraints and redundancy

- Condition for decoding: $C \cap D = \{0\}$
- Without redundancy: n = k + m; with redundancy: n > k + m

Code-base Masking: Examples

Boolean masking [Chari et al. Crypto'99]

$$Z = (Z_1, \dots, Z_n)$$

= $\left(X + \sum_{i=1}^{n-1} Y_i, Y_1, Y_2, \dots, Y_{n-1} \right)$
= $X \mathbf{G} + Y \mathbf{H}.$

where ${\bf G}$ and ${\bf H}$ are:

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \end{pmatrix} \in \mathbb{K}^{1 \times n}$$
$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & 1 \end{pmatrix} \in \mathbb{K}^{t \times n}.$$

Code-base Masking: Examples

Boolean masking [Chari et al. Crypto'99]

$$Z = (Z_1, \dots, Z_n)$$
$$= \left(X + \sum_{i=1}^{n-1} Y_i, Y_1, Y_2, \dots, Y_{n-1}\right)$$
$$= X\mathbf{G} + Y\mathbf{H},$$

where ${\bf G}$ and ${\bf H}$ are:

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \end{pmatrix} \in \mathbb{K}^{1 \times n}$$
$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & 1 \end{pmatrix} \in \mathbb{K}^{t \times n}.$$

Télécom Paris

Inner Product masking [Balasch et al. EC'15]

$$Z = (Z_1, \dots, Z_n)$$
$$= \left(X + \sum_{i=1}^{n-1} a_i Y_i, Y_1, Y_2, \dots, Y_{n-1}\right)$$
$$= X\mathbf{G} + Y\mathbf{H},$$

where ${\bf G}$ and ${\bf H}$ are:

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \end{pmatrix} \in \mathbb{K}^{1 \times n}$$
$$\mathbf{H} = \begin{pmatrix} a_1 & 1 & 0 & \dots & 0 \\ a_2 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_t & 0 & 0 & \dots & 1 \end{pmatrix} \in \mathbb{K}^{t \times n}.$$

Code-based Masking: two issues

High computational overhead

- Improved IPM: ≈ 1.5 times to Boolean one [Balasch et al. EC'15 & AC'17]
- Cost amortization works better for large n, e.g., $n \ge 5$ [Wang et al. CHES'20]

Code-based Masking: two issues

High computational overhead

- Improved IPM: ≈ 1.5 times to Boolean one [Balasch et al. EC'15 & AC'17]
- Cost amortization works better for large n, e.g., $n \ge 5$ [Wang et al. CHES'20]

Lack of real-world attack-based evaluations

- Most of works are based on theoretical analysis and/or simulations
- A few works are with *t-test* for leakage detection

Practical Encoder

where

$$\mathbf{G} = [\mathbf{I}_k, \mathbf{O}^{k \times (n-k)}]$$

• $\mathbf{H} = [\mathbf{R}, \mathbf{I}_m]$ in which \mathbf{R} is an $m \times (n - m)$ matrix with $a_{ij} \in \mathbb{F}_q$ for designers

Télécom Paris

Practical Encoder

where

$$\blacksquare \mathbf{G} = [\mathbf{I}_k, \mathbf{O}^{k \times (n-k)}]$$

- $\mathbf{H} = [\mathbf{R}, \mathbf{I}_m]$ in which \mathbf{R} is an $m \times (n m)$ matrix with $a_{ij} \in \mathbb{F}_q$ for designers
- Validity: G and H are both full-rank and $C_G \cap C_H = \{0\}$.
- Generality: generic encoder A_{gene} in [Wang et al. CHES'20] shall be set as A.

Sparsity: more computationally friendly as multiplications can be omitted if as many as a_{i,j} are 0 or 1.

Multiplication Gadget of [Wang et al. CHES'20]

Our improvements:

- Simplifying refresh variables $\hat{\mathbf{R}}_1$ and $\hat{\mathbf{R}}_2$: $\hat{\mathbf{R}}_1 = ([\mathbf{O}^{n \times k}, \mathbf{R}_1]\mathbf{A})^T \longrightarrow \hat{\mathbf{R}}_1 = (\mathbf{R}_1 \times \mathbf{H})^T$ $\hat{\mathbf{R}}_2 = [\mathbf{O}^{n \times k}, \mathbf{R}_2]\mathbf{A} \longrightarrow \hat{\mathbf{R}}_2 = \mathbf{R}_2 \times \mathbf{H}$
- Reducing Internal Computation: $\mathbf{M}_i = \mathbf{M}_i^*[*, 1:k]$
- Removing Re-encoding: $\mathbf{W} = \mathbf{T}^{n \times (k+m)} \mathbf{A}_{\text{gene}} \longrightarrow \mathbf{W} = [\mathbf{T}^{n \times k}, \mathbf{O}^{n \times (n-k)}]$

Improved Multiplication Gadget

Our improvements:

- Simplifying refresh variables $\hat{\mathbf{R}}_1$ and $\hat{\mathbf{R}}_2$: $\hat{\mathbf{R}}_1 = ([\mathbf{O}^{n \times k}, \mathbf{R}_1]\mathbf{A})^T \longrightarrow \hat{\mathbf{R}}_1 = (\mathbf{R}_1 \times \mathbf{H})^T$ $\hat{\mathbf{R}}_2 = [\mathbf{O}^{n \times k}, \mathbf{R}_2]\mathbf{A} \longrightarrow \hat{\mathbf{R}}_2 = \mathbf{R}_2 \times \mathbf{H}$
- Reducing Internal Computation: $\mathbf{M}_i = \mathbf{M}_i^*[*, 1:k]$
- Removing Re-encoding: $\mathbf{W} = \mathbf{T}^{n \times (k+m)} \mathbf{A}_{\text{gene}} \longrightarrow \mathbf{W} = [\mathbf{T}^{n \times k}, \mathbf{O}^{n \times (n-k)}]$

Computational Complexity and Comparisons

Table 1: Comparison of the number of field multiplications in different components.

Figure 2: Comparison of the number of multiplications with increasing m

CHES 2022

Wei Chena

Télécom Paris

Cost Amortization and Comparisons

Figure 3: Comparison of the number of multiplications with increasing k for the cost amortized operation (A) and k repeated computations (B).

Observations:

- when m is small, cost amortized operation shows a negative effect
- If m increases (e.g., $m \ge 5$), the cost amortization could be effective
- In our case, the potential advantage of the cost amortized operation vanishes

Implementation Results

Table 2: Implementation platforms.

	Target board	Operating frequency	Number of registers	Barrel shift
[Balasch et al. AC'17]	AVR ATMega163	8MHz	32	No
This work	ARM STM32F407	168MHz	16	Yes

Table 3: Performance comparison by clock cycles for implementations.

	BM in	IPM in		Our BM	Our IPM
	[Balasch et al. AC'17]	[Balasch et al. AC'17]			
2-share	110569	157196	812314	155062	193765
3-share	230221	372225	1730163	285025	334983

Evaluation Objects

Three types

- Non-redundant type: n = k + m and k = 1, we take $m \in \{1, 2\}$
- Amortized type: n = k + m and k > 1, we take m = 1 and $k \in \{1, 2, 4\}$
- **Redundant type:** n > k + m, we take k = m = 1 and $n \in \{2, 3, 4\}$

Targets

A masking scheme is composed of *encoding function* and *private computation*.

- Encoding: the output of the first SubBytes transformation in the first AES round
- **Computation**: the matrix **T** of L Gadget (the weakest part in theory)

Weakest Part of Computation

A back-and-forth Transformation

- **1** \rightarrow **2**: Code-based masking to Boolean masking
- **2** \rightarrow **3**: Boolean masking to Code-based masking

Matrix T: the weakest part

- Matrix **T** is the additive sharing of the *k* unmasked input sensitive variables: $x_j = \sum_{i=1}^{n} \mathbf{T}[*, j], 1 \le j \le k.$
- \blacksquare There is no refreshing operation (like $\oplus \hat{\mathbf{R}}_1$ in multiplication gadget) in L Gadget

Evaluation Strategy and Experimental Setup

Evaluation strategy

- Leakage assessment: TVLA (*t-test*) as in [Balasch et al. AC'17]
- Attacks: 2nd-order CPA and template attacks (TA)
- Metrics: Success Rate (SR) and Guessing Entropy (GE)

Experimental setup

- **Target**: Legacy STM32F407
- Acquisition: Electromagnetic (EM) measurements sampled by a Keysight InfiniiVision DSOX3034T oscilloscope.

Security Evaluation on Non-Redundant Type

Table 4: Various choices of A for IPM instances with n = k + m, k = 1.

Experimental group	BM1 baseline	IPM2	BM2 baseline	IPM3	IPM14	IPM23
Practical encoder A	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 14 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 23 & 1 \end{pmatrix}$

Predictions by [Cheng et al. CHES'21]

- Security level: BM1 < IPM2 < BM2 < IPM3 < IPM14 < IPM23
- IPM23 is one of the optimal encoders for 2-share IPM.

Non-Redundant Type: Leakage Assessment

Figure 4: T-test results with TRNG activated and sampling rate at 156 MHz, and EM covers the first 2.5 AES rounds.

Non-Redundant Type: Attack-based Evaluation

Observations:

Security order amplification: three 2-share IPM instances are secure against 2nd-order CPA

Non-Redundant Type: Attack-based Evaluation

Observations:

- Practical verification of [Cheng et al. CHES'21]: the security levels of IPM instances are consistent with the predictions
- Security order amplification: even a 2-share IPM can have better resistance against template attacks than the 3-share BM

Non-Redundant Type: Targeting Matrix ${\bf T}$

Observations:

- All IPM instances can be easily attacked by 2nd-order CPA
- All IPM instances have a similar security level to BM1, losing the feature of "security order amplification"
- We identify a *security bottleneck*: the back-and-forth transformation

Security Evaluation on Amortized Type

Table 5: Various choices of generator matrices A over $\mathbb{F}_{2^8}^{(k+m) \times n}$ for BM instances in packed code-based masking with n = k + m and m = 1.

Experimental group	BM ^{$k=1$} : $k = 1, m = 1$	BM ^{$k=2$} : $k = 2, m = 1$	BM ^{$k=4$} : $k = 4, m = 1$
Practical encoder A	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$
Security order	1	1	1

- k sensitive variables with one common mask
- Reusing the same random number might leak more information
- Predicted by [Cheng et al. CHES'21]: BM^{k=1} > BM^{k=2} > BM^{k=4}

Wei Cheng

Amortized Type: Leakage Assessment

Figure 5: T-test results for $BM^{k=1}$ (top), $BM^{k=2}$ (middle) and $BM^{k=4}$ (bottom) with a sampling rate of 100 MHz. EM covers the first 2.5 AES rounds.

Amortized Type: Attack-based Evaluation

Observations:

- The side-channel resistance is as expected
- The value of k also implies the number of subkeys adversaries can rebuild by knowing only one mask

Security Evaluation on Redundant Type

Table 6: Various choices of A over $\mathbb{F}_{2^8}^{(k+m) \times n}$ in redundant cases with k = 1 and m = 1.

Exporimontal group	RE1 : $n = 2$	RE2: $n = 3$	RE3: <i>n</i> = 4		
Experimental group	Non-redundant	Redundant	Redundant		
Practical encoder A	$\begin{pmatrix} 1 & 0 \\ 23 & 1 \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 & 0 \\ 23 & 29 & 1 \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 23 & 29 & 51 & 1 \end{pmatrix} $		
Security order	1	1	1		

- Taking L₂ ∈ {23, 29, 51} leads to 2-share IPM instances with the maximized dual distance d[⊥]_D = 4
- The dual distances of the corresponding codes in RE1, RE2 and RE3 are decreasing that $d_{\mathcal{D}}^{\perp} \in \{4, 3, 2\}$
- Security level predicted by [Cheng et al. CHES'21]: RE1 > RE2 > RE3

Redundant Type: Attack-based Evaluation

Observations:

- The redundancy indeed leads to a practical security decrease as expected
- More redundancies have more leakage that shall be exploited

Conclusions and Perspectives

Conclusions

Efficient implementation and practical security evaluation for code-based masking

- Improved constructions for computationally-friendly gadgets and implementations
- Security evaluations on three representative types of code-based masking (non-redundant, amortized, redundant)
- Identified a security bottleneck

Conclusions and Perspectives

Conclusions

Efficient implementation and practical security evaluation for code-based masking

- Improved constructions for computationally-friendly gadgets and implementations
- Security evaluations on three representative types of code-based masking (non-redundant, amortized, redundant)
- Identified a security bottleneck

Future work

- Construction of fully encoded computational framework for code-based masking by addressing the back-and-forth transformation
- Application to lightweight crypto or post-quantum crypto implementations

On Efficient and Secure Code-based Masking: A Pragmatic Evaluation *Thanks for your attention!*

Qianmei Wu¹, <u>Wei Cheng</u>^{2,3}, Sylvain Guilley^{3,2}, Fan Zhang¹, and Wei Fu⁴

- ¹ Zhejiang University, China
- ² LTCI, Télécom Paris, Institut Polytechnique de Paris, France
- ³ Secure-IC S.A.S., France ⁴Ant Group, China

wei.cheng@telecom-paris.fr IACR Cryptographic Hardware and Embedded Systems Sep 20, 2022