Don’t Reject This: Key-Recovery Timing Attacks
Due to Rejection-Sampling in HQC and BIKE

Qian Guo³, Clemens Hlauschek¹,⁵, Thomas Johansson³,
Norman Lahr², Alexander Nilsson³,⁴, and Robin Leander Schröder¹
September 19, 2022

¹Technische Universität Wien, Austria
²Fraunhofer SIT, Darmstadt, Germany
³Lund University, Lund, Sweden
⁴Advenica AB, Malmö, Sweden
⁵RISE GmbH, Wien, Austria
Elevator Pitch

Rejection sampling with a seed derived from the message leaks the secret key.

Fundamentals
Attack
Countermeasures
Hamming-Quasi-Cyclic (HQC)
Code-based round 3 contender

Based on hard problems related to quasi-cyclic codes.
Key Encapsulation Mechanism (KEM) E_{kem} with security parameter λ

Tuple of algorithms: $(\text{KeyGen}, \text{Encaps}, \text{Decaps})$

$(pk, sk) \leftarrow$ KeyGen(1^λ)

$(k_0, c) \leftarrow$ Encaps($pk, 1^\lambda$)

$k_1 \leftarrow$ Decaps(sk, c)

Correctness: $k_0 = k_1$ with overwhelming probability

Game Based Security:

IND-CPA: given encaps oracle, can’t distinguish real key from random key

IND-CCA: given additional decaps oracle
Hamming Quasi-Cyclic (HQC) PKE: Key Generation [Agu+16; Car+20]

\[\mathcal{R} := \mathbb{F}_2[X]/\langle X^n - 1 \rangle \]

KeyGen(param)

1. \(h, x, y \leftarrow \mathcal{R} \) with \(\omega(x) = \omega(y) = \omega \)
2. \(sk = (x, y) \)
3. \(pk = (h, s = x + h \cdot y) \)
4. \textbf{return} \((pk, sk)\)
HQC PKE: Encryption and Decryption

Encrypt(pk, m)
1 $e, r_1, r_2 \leftarrow \mathcal{R}$ with $\omega(e) = \omega_e$ and $\omega(r_1) = \omega(r_2) = \omega_r$
2 $u = r_1 + h \cdot r_2$
3 $v = mG + s \cdot r_2 + e$
4 \textbf{return } c = (u, v)

Decrypt(sk = (x, y), c = (u, v))
1 \textbf{return } C. \text{Decode}(v - u \cdot y)$
Decryption Failures

Decoding is successful when \(\mathbf{v} - \mathbf{u} \cdot \mathbf{y} \) has \(\leq \delta \) errors:

\[
\mathbf{v} - \mathbf{u} \cdot \mathbf{y} = mG + \mathbf{s} \cdot \mathbf{r}_2 + e - (r_1 + h \cdot \mathbf{r}_2) \cdot \mathbf{y} \\
= mG + (x + h \cdot \mathbf{y}) \cdot \mathbf{r}_2 + e - (r_1 + h \cdot \mathbf{r}_2) \cdot \mathbf{y} \\
= mG + x \cdot \mathbf{r}_2 + e - r_1 \cdot \mathbf{y} \\
\underbrace{\text{sparse}}_{}
\]
HQC KEM: Key Generation and Encapsulation

KeyGen(param)

1 \textbf{return} \ PKE.\textit{KeyGen}(param)

Encaps(pk)

1 \(m \leftarrow \mathbb{F}_2^k \)
2 \(\theta = G(m) \)
3 \(c = \text{PKE.\textit{Encrypt}}(pk, m; \theta) \)
4 \(K = \mathcal{K}(m, c) \)
5 \(d = \mathcal{H}(m) \)
6 \textbf{return} \ (K, (c, d))
HQC KEM: Decaps

\[c \rightarrow \text{Decrypt}^1 \rightarrow m' \rightarrow K \]

\[d \]

\(^1\text{WT+19; PT19.} \]
\(^2\text{GJN20.} \]
HQC KEM: Decaps

\[\begin{align*}
d & \quad \text{Decrypt}^1 \quad m' \quad G \quad \theta' \quad \text{Encrypt} \quad c' \\
& \quad \text{sk} \quad \text{pk} \\
& \quad \text{Abort}^2 \\
& \quad K \\
& \quad \mathcal{K}
\end{align*} \]

\[^1\text{WT+19; PT19.}\]
\[^2\text{GJN20.}\]
HQC KEM: Decaps

\[\text{Decrypt}^1 \quad m' \quad G \quad \theta' \quad \text{Encrypt} \quad \neq^2 \quad \mathcal{V} \quad \text{abort} \]

\[c \quad \text{sk} \quad \mathcal{K} \quad K \]

\[d \]

\(^1\text{WT+19; PT19.} \)

\(^2\text{GJN20.} \)
HQC KEM: Decaps

\[c \xrightarrow{\text{sk}} \text{Decrypt}^1 \xrightarrow{m'} G \xrightarrow{\theta'} \text{Encrypt} \xrightarrow{\neq^2} \mathcal{K} \xrightarrow{K} \]

\[d \xrightarrow{} \mathcal{H} \xrightarrow{\neq} \] abort

\(^1\text{WT+19; PT19.}\)

\(^2\text{GJN20.}\)
HQC KEM: Decaps

\[c \xrightarrow{\text{Decrypt}} \theta' \xrightarrow{\text{Encrypt}} c' \xrightarrow{\neq} \mathcal{V} \xrightarrow{\text{abort}} \]

\[d \]

\[^1\text{WT+19; PT19.} \]

\[^2\text{GJN20.} \]
HQC KEM: Decaps

1WT+19; PT19.
2GJN20.
HQC KEM: Decaps

\[\text{Decrypt}^1 \quad m' \quad G \quad \theta' \quad \text{Encrypt} \quad \neq^2 \quad \mathcal{V} \quad \text{abort} \]

\[d \quad \mathcal{H} \quad \neq \quad c' \]

\[c \quad \text{sk} \quad K \quad \mathcal{K} \]

\[1^{\text{WT+19; PT19.}} \]
\[2^{\text{GJN20.}} \]
Discovery of a Timing-Variation
Algorithm 6: Collecting timing measurements

1. \((pk, sk) \leftarrow \text{KeyGen}(1^n)\)
2. \(\text{for } i \in \{1, \ldots, \text{num_ciphertexts}\} \text{ do}\)
3. \(\quad (c, k) \leftarrow \text{Encaps}(pk)\)
4. \(\quad \text{for } j \in \{1, \ldots, \text{num_measurements}\} \text{ do}\)
5. \(\quad \quad \text{measure_cycles(Decaps(sk, c))}\)
6. \(\quad \text{end}\)
7. \(\text{end}\)
Detecting timing differences

Figure 1: P-values of Welch’s t-test:
Statistically significant difference & No statistically significant difference.
Detected differences: 8260 cycles (≈ 4.13 μs @ 2 GHz).
Recursing into Decaps

(a) Key loading
205 cycles

(b) Decryption
462 cycles

(c) Re-encryption
7736 cycles

(d) Shared secret
92 cycles

Figure 2: P-values of Welch’s t-test
Recursing into Re-encryption

Figure 3: P-values of Welch’s t-test
Vector sampling

How to sample $e, r_1, r_2 \leftarrow \mathcal{R}$ in Encrypt:

Rejection sampling of a vector of length n with Hamming weight $= w$.
Algorithm 7: vect_set_random_fixed_weight

Input: weight \(w \), length \(n \leq 2^{24} \)

Result: vector \(v \) of length \(n \) with weight \(\|v\| = w \)

1. \(v = 0^n \)
2. \(\omega = 0 \)
3. repeat
 4. repeat
 5. \(i \leftarrow [0, 2^{24}) \)
 6. until \(i < \left\lfloor \frac{2^{24}}{n} \right\rfloor n \)
 7. \(i = i \mod n \)
 8. if \(v_i \neq 1 \) then
 9. \(v_i = 1 \)
 10. \(\omega = \omega + 1 \)
 end
 11. until \(\omega = w \)
4. return \(v \)
seedexpander(ctx, rand_bytes, random_bytes_size);
for (uint32_t i = 0 ; i < weight ; ++i) {
 do {
 if (j == random_bytes_size) {
 seedexpander(ctx, rand_bytes, random_bytes_size);
 \[only performed when randomess is exhausted\]
 j = 0;
 }
 random_data = ((uint32_t) rand_bytes[j++]) << 16;
 random_data |= ((uint32_t) rand_bytes[j++]) << 8;
 random_data |= rand_bytes[j++];
 } while (random_data >= UTILS_REJECTION_THRESHOLD);
 random_data = random_data % PARAM_N;
 // [...]
Figure 4: Data flow in HQC.
The message m determines the timing of the ciphertext!

Figure 4: Data flow in HQC.
Figure 5: Timing distribution of decapsulation
Figure 6: Timing distribution of decapsulation
Attack
The message m that a ciphertext decrypts to determines the timing of the message. The ciphertext does not have to be valid.
Prerequisites

The message m that a ciphertext decrypts to determines the timing of the message.
The ciphertext does not have to be valid.

→ We can distinguish whether a modified ciphertext decrypts to a message m or m'!
Recall: HQC encryption/decryption

Encrypt(pk, m)

1. $e, r_1, r_2 \leftarrow \mathcal{R}$ with $\omega(e) = \omega_e$ and $\omega(r_1) = \omega(r_2) = \omega_r$
2. $u = r_1 + h \cdot r_2$
3. $v = mG + s \cdot r_2 + e$
4. return $c = (u, v)$

Decrypt($sk = (x, y), c = (u, v)$)

1. return $C. \text{Decode}(v - u \cdot y)$

Set r_1 to 1 and r_2 and e to 0 error is secret key!

Recover the error of the ciphertext to 🌟🌟win🌟🌟.

Additionally: we can add any extra error e' we want, for a combined error of $e' - y$. 20
Using the distinguisher

Recall: ciphertexts do not have to be valid

Assume $\text{timing}(c_1) \neq \text{timing}(c_2)$

Figure 7: Random walk in ambient space \mathbb{F}_2^n (symbolic image)
Flip bits until timing changes
Flip bits back to determine if they are an error
Repeat, take a majority vote
Evaluation

6096 attacks performed

Success rate: 87%

Among failed attacks: 86% terminated with less than 20 incorrect bits

866,143 idealized oracle calls (median)
BIKE Side-Channel and Attack
Algorithm 10:

BIKE.KeyGen

Input: ·

Output: $sk = (h_0, h_1, \sigma)$

$$pk = h \in \mathcal{R}$$

1. $(h_0, h_1) = \text{Sample}(\mathcal{H}_w)$
2. $h = h_1 h_0^{-1}$
3. $\sigma = \text{Sample}(\mathcal{M})$
4. $sk = (h_0, h_1, \sigma)$
5. $pk = h$
Algorithm 11: BIKE.Encaps

Input: \(pk = h \)
Output: \(K, c \)

1. \(m = \text{Sample}(\mathcal{M}) \)
2. \((e_0, e_1) = H(m) \)
3. \(c = (e_0 + e_1, m \oplus L(e_0, e_1)) \)
4. \(K = K(m, c) \)

Algorithm 12: BIKE.Decaps

Input: \(sk = (h_0, h_1, \sigma) \)
\(c = (c_0, c_1) \)
Output: \(K \)

1. \(e' = \text{Decode}(c_0h_0, h_0, h_1) \)
2. \(m' = c_1 \oplus L(e') \)
3. if \(e' = H(m') \) then
 4. \(K = K(m', c) \)
4. else
 5. \(K = K(\sigma, c) \)
7. end
BIKE Side-Channel

![Graph showing the relationship between Num. PRNG Samplings and Num. Seedexpansions with clock cycles on the y-axis and Num. PRNG Samplings θ on the x-axis. The graph includes a legend for different seed expansions colors and a logarithmic scale for the x-axis.]
<table>
<thead>
<tr>
<th>Num. PRNG Samplings θ</th>
<th>Num. Plaintexts</th>
<th>Num. Seedexpansions</th>
</tr>
</thead>
<tbody>
<tr>
<td>141</td>
<td>145</td>
<td>149</td>
</tr>
<tr>
<td>153</td>
<td>157</td>
<td>161</td>
</tr>
<tr>
<td>163</td>
<td>165</td>
<td>169</td>
</tr>
<tr>
<td>173</td>
<td>177</td>
<td>181</td>
</tr>
<tr>
<td>183</td>
<td>185</td>
<td>189</td>
</tr>
<tr>
<td>193</td>
<td>197</td>
<td>201</td>
</tr>
<tr>
<td>203</td>
<td>205</td>
<td>209</td>
</tr>
<tr>
<td>213</td>
<td>217</td>
<td>221</td>
</tr>
<tr>
<td>225</td>
<td>229</td>
<td>233</td>
</tr>
<tr>
<td>237</td>
<td>241</td>
<td></td>
</tr>
</tbody>
</table>
BIKE Attack

Reuse [GJS16] attack and [NJW18]

Observation: if the distance of an error occurs in the secret key, it lowers the decryption failure rate

Recover distance spectrum of the secret key with side-channel

Recover the secret key from the distance spectrum using a recursive-backtracking algorithm
Simplest version:

Ciphertext with rare timing behavior + added noise

Send ciphertext to timing oracle, check whether decoding failure occurred.

Derive whether a cyclic distance d occurs in the secret key based on the decoding failure rate.
Countermeasures
Remove inner rejection sampling:

Sample a large number in steps, reduce modulo n
Determine a sufficient number of outer rejection sampling iterations.

“Sufficient”: will not require more iterations with overwhelming probability.

Perform fixed number of iterations.
Figure 8: Fixed version

But: heavy performance hit: +29% in cycle count.

Interesting alternative approaches: Constant-time and time-efficient Fisher-Yates

References

Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

Qian Guo3, Clemens Hlauschek1,5, Thomas Johansson3, Norman Lahr2, Alexander Nilsson3,4, and Robin Leander Schröder1

September 19, 2022

1Technische Universität Wien, Austria
2Fraunhofer SIT, Darmstadt, Germany
3Lund University, Lund, Sweden
4Advenica AB, Malmö, Sweden
5RISE GmbH, Wien, Austria
Bonus Slides
Attack against RS/RM version

Figure 9: RS/RM Concatenated Code
Optimized Attack
Exploit the structure of the code generated by G.

The public code C is either:

- a Bose-Chaudhuri-Hocquenghem (BCH) code tensored with a repetition code
- a Reed-Solomon (RS) code concatenated with a Reed-Muller (RM) code
We exploit the BCH/Repetition code version.

Figure 10: BCH/Repetition Tensor Code

Idea: corrupt δ BCH code blocks s.t. 1 more corruption will cause decoding failure. Then determine out the error in the repetition code block.
<table>
<thead>
<tr>
<th>Candidate</th>
<th>Action 1</th>
<th>Decode</th>
<th>Candidate</th>
<th>Action 2</th>
<th>Decode</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010</td>
<td>⊕ 11011</td>
<td>= 11001 → 1 ✗</td>
<td>00010</td>
<td>⊕ 01000</td>
<td>= 01010 → 0 ✓</td>
</tr>
<tr>
<td>11000</td>
<td>⊕ 11011</td>
<td>= 00011 → 0 ✓</td>
<td>11000</td>
<td>⊕ 01000</td>
<td>= 10000 → 0 ✓</td>
</tr>
<tr>
<td>00100</td>
<td>⊕ 11011</td>
<td>= 11111 → 1 ✗</td>
<td>00100</td>
<td>⊕ 01000</td>
<td>= 01100 → 0 ✓</td>
</tr>
<tr>
<td>10001</td>
<td>⊕ 11011</td>
<td>= 01010 → 0 ✓</td>
<td>10001</td>
<td>⊕ 01000</td>
<td>= 11001 → 1 ✗</td>
</tr>
</tbody>
</table>

\[
\min(2\checkmark, 2\checkmark) = 2
\]

\[
\max(2, 1) = 2
\]

Select Action 1

\[
\min(3\checkmark, 1\checkmark) = 1
\]

\[
\max(2, 1) = 2
\]

Repetition Code Block \(\in \mathbb{F}_2^n \)

\(\delta \) Corrupted Blocks

Oracle \(\mathcal{O} \)

Remaining Candidates

\[
\begin{align*}
00010 & \times \\
11000 & \checkmark \\
00100 & \times \\
10001 & \checkmark \\
\end{align*}
\]
163 attacks performed
Success rate: 96.7%
Among failed attacks: less than 4 bits incorrect
19,942 idealized oracle calls (median)
Recover Distance Spectrum using the Side-Channel

Simplest version:

Construct a ciphertext with a message that has a rare timing-behavior and add an error to get close to the decoding limit\(^4\).

Send ciphertext to timing oracle, check whether decoding failure occurred.

Derive whether a cyclic distance \(d\) occurs in the secret key based on the decoding failure rate.

For each cyclic distance \(d\) in the error:

- If decoding success: increment \(\text{observed}_d\).
- If decoding failure: increment \(\text{failed}_d\).

For each distance \(d\), compute the empirical decoding failure rate, and estimate the multiplicity of the distance based on that.

\(^4\)Ciphertext does not have to be valid!
Distance Spectrum of a Vector

Vector v, length r.\(^5\)

Multi-set of cyclic distances between set bits in vector v.

$$v = 100001001$$

$$D(v) = \{\}$$

\(^5\)Graphics heavily inspired by https://youtu.be/Gm--Sm_wJ2w
Vector \(v \), length \(r \).\(^5\)

Multi-set of cyclic distances between set bits in vector \(v \).

\[
v = \begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\end{array}
\]

\[D(v) = \{1\}\]

\(^5\)Graphics heavily inspired by https://youtu.be/Gm--Sm_wJ2w
Distance Spectrum of a Vector

Vector v, length r.\(^5\)

Multi-set of cyclic distances between set bits in vector v.

$$v = 100001001$$

$$D(v) = \{1, 4\}$$

\(^5\)Graphics heavily inspired by https://youtu.be/Gm--Sm_wJ2w
Distance Spectrum of a Vector

Vector \mathbf{v}, length r.\(^5\)

Multi-set of cyclic distances between set bits in vector \mathbf{v}.

\[\mathbf{v} = 100001001 \]

\[D(\mathbf{v}) = \{1, 3, 4\} \]

\(^5\)Graphics heavily inspired by https://youtu.be/Gm--Sm_wJ2w
Distances in the error affect the decoding failure rate

Satisfied parity checks during decoding\(^6\):

\[
\begin{align*}
\mathbf{h} &= \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\end{bmatrix}, \\
\mathbf{s} &= \begin{bmatrix}
1 \\
0 \\
1 \\
0 \\
1 \\
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}, \\
\mathbf{e} &= \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\end{align*}
\]

\(^6\)Graphics heavily inspired by https://youtu.be/Gm--Sm_wJ2w
Recover Secret Key from Distance Spectrum

Greedy recursive-backtracking algorithm:

Start with empty vector $\mathbf{h} = 0^r$

Check if already done (w bits already set, and \mathbf{h} is the secret key)

For each bit position i

if all distances to i exist in the distance spectrum

set bit i, and recurse