Don't Reject This: Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

Qian Guo³, Clemens Hlauschek^{1,5}, Thomas Johansson³, Norman Lahr², Alexander Nilsson^{3,4}, and **Robin Leander Schröder**¹ September 19, 2022

¹Technische Universität Wien, Austria
²Fraunhofer SIT, Darmstadt, Germany
³Lund University, Lund, Sweden
⁴Advenica AB, Malmö, Sweden
⁵RISE GmbH, Wien, Austria

Rejection sampling with a seed derived from the message leaks the secret key.

Fundamentals

Attack

Countermeasures

Hamming-Quasi-Cyclic (HQC)

Code-based round 3 contender

Based on hard problems related to quasi-cyclic codes.

Key Encapsulation Mechanism (KEM) \mathcal{E}_{kem} with security parameter λ

Tuple of algorithms: (KeyGen, Encaps, Decaps)

```
(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{KeyGen}(1^{\lambda})
(k_0,c) \leftarrow \mathsf{Encaps}(\mathsf{pk},1^{\lambda})
k_1 \leftarrow \mathsf{Decaps}(\mathsf{sk},c)
```

Correctness: $k_0 = k_1$ with overwhelming probability

Game Based Security:

IND-CPA: given encaps oracle, can't distinguish real key from random key IND-CCA: given additional decaps oracle

$$\mathcal{R} := \mathbb{F}_2[X] / \langle X^n - 1 \rangle$$

KeyGen(param)

 $\mathbf{h}, \mathbf{x}, \mathbf{y} \leftarrow \mathcal{R}$ with $\omega(\mathbf{x}) = \omega(\mathbf{y}) = \omega$ $\mathbf{sk} = (\mathbf{x}, \mathbf{y})$ $\mathbf{pk} = (\mathbf{h}, \mathbf{s} = \mathbf{x} + \mathbf{h} \cdot \mathbf{y})$ 4 return $(\mathbf{pk}, \mathbf{sk})$ Encrypt(pk, m)

 $\mathbf{e}, \mathbf{r_1}, \mathbf{r_2} \leftarrow \ \mathcal{R}$ with $\omega(\mathbf{e}) = \omega_e$ and $\omega(\mathbf{r_1}) = \omega(\mathbf{r_2}) = \omega_r$ $\mathbf{u} = \mathbf{r_1} + \mathbf{h} \cdot \mathbf{r_2}$ $\mathbf{v} = \mathbf{mG} + \mathbf{s} \cdot \mathbf{r_2} + \mathbf{e}$ 4 return $c = (\mathbf{u}, \mathbf{v})$

 $\mathsf{Decrypt}(\mathsf{sk} = (\mathbf{x}, \mathbf{y}), c = (\mathbf{u}, \mathbf{v}))$

1 return C. Decode $(\mathbf{v} - \mathbf{u} \cdot \mathbf{y})$

Decoding is successful when $\mathbf{v} - \mathbf{u} \cdot \mathbf{y}$ has $\leq \delta$ errors:

$$\begin{aligned} \mathbf{v} &- \mathbf{u} \cdot \mathbf{y} \\ = \mathbf{m} \mathbf{G} + \mathbf{s} \cdot \mathbf{r_2} + \mathbf{e} - (\mathbf{r_1} + \mathbf{h} \cdot \mathbf{r_2}) \cdot \mathbf{y} \\ = \mathbf{m} \mathbf{G} + (\mathbf{x} + \mathbf{h} \cdot \mathbf{y}) \cdot \mathbf{r_2} + \mathbf{e} - (\mathbf{r_1} + \mathbf{h} \cdot \mathbf{r_2}) \cdot \mathbf{y} \\ = \mathbf{m} \mathbf{G} + \underbrace{\mathbf{x} \cdot \mathbf{r_2} + \mathbf{e} - \mathbf{r_1} \cdot \mathbf{y}}_{\text{sparse}} \end{aligned}$$

KeyGen(param)

1 return PKE.KeyGen(param)

Encaps(pk)

- 1 $\mathbf{m} \leftarrow \mathbb{F}_2^k$
- 2 $\theta = \mathcal{G}(\mathbf{m})$
- $\mathbf{3} \ c = \mathsf{PKE}.\mathsf{Encrypt}(\mathsf{pk},\mathbf{m};\theta)$
- 4 $K = \mathcal{K}(\mathbf{m}, c)$
- 5 $d = \mathcal{H}(\mathbf{m})$
- 6 return (K, (c, d))

d

d

Discovery of a Timing-Variation

Algorithm 6: Collecting timing measurements

Detecting timing differences

Figure 1: P-values of Welch's t-test:

Statistically significant difference & No statistically significant difference. Detected differences: 8260 cycles ($\approx 4.13 \mu s$ @ 2 GHz).

Recursing into Decaps

Figure 2: P-values of Welch's t-test

Recursing into Re-encryption

Figure 3: P-values of Welch's t-test

How to sample $\mathbf{e},\mathbf{r_1},\mathbf{r_2} \leftarrow \$ \mathcal{R}$ in Encrypt:

Rejection sampling of a vector of length n with Hamming weight = w.

Algorithm 7: vect_set_random_fixed_weight

Input: weight w, length $n \leq 2^{24}$

Result: vector v of length n with weight $\|v\| = w$

1 $v = 0^n$

- 2 $\omega = 0$
- 3 repeat
- repeat 4 $i \leftarrow (0, 2^{24})$ 5 6 until $i < \left| \frac{2^{24}}{n} \right| n$ $i = i \mod n$ 7 if $v_i \neq 1$ then 8 9 $v_i = 1$ $\omega = \omega + 1$ 10 end 11 12 until $\omega = w$
- 13 return v

```
seedexpander(ctx, rand_bytes, random_bytes_size);
for (uint32 t i = 0 ; i < weight ; ++i) {</pre>
  do {
    if (j == random bytes size) {
      seedexpander(ctx, rand_bytes, random_bytes_size);
                 Only performed when randomess is exhausted
      j = 0;
    }
    random data = ((uint32 t) rand bytes[j++]) << 16;</pre>
    random data |= ((uint32_t) rand_bytes[j++]) << 8;</pre>
    random data |= rand bytes[j++];
  } while (random data >= UTILS REJECTION THRESHOLD);
  random data = random data % PARAM N:
  // Γ...7
```


Figure 4: Data flow in HQC.

Figure 4: Data flow in HQC.

Figure 5: Timing distribution of decapsulation

Figure 6: Timing distribution of decapsulation

Attack

The message \mathbf{m} that a ciphertext decrypts to determines the timing of the message The ciphertext does not have to be valid

- The message \mathbf{m} that a ciphertext decrypts to determines the timing of the message The ciphertext does not have to be valid
- \rightarrow We can distinguish whether a modified ciphertext decrypts to a message ${\bf m}$ or ${\bf m'}!$

Recall: HQC encryption/decryption

Encrypt(pk, m)

- 1 $e, r_1, r_2 \leftarrow \mathcal{R}$ with $\omega(e) = \omega_e$ and $\omega(r_1) = \omega(r_2) = \omega_r$
- $\mathbf{2} \ \mathbf{u} = \mathbf{r_1} + \mathbf{h} \cdot \mathbf{r_2}$
- $\mathbf{3} \ \mathbf{v} = \mathbf{mG} + \mathbf{s} \cdot \mathbf{r_2} + \mathbf{e}$
- 4 return $c = (\mathbf{u}, \mathbf{v})$

$$\mathsf{Decrypt}(\mathsf{sk} = (\mathbf{x}, \mathbf{y}), c = (\mathbf{u}, \mathbf{v}))$$

1 return C. Decode $(\underbrace{\mathbf{v} - \mathbf{u} \cdot \mathbf{y}}_{\mathbf{mG}-\mathbf{v}})$

Set r_1 to 1 and r_2 and e to 0 error is secret key!

Recover the error of the ciphertext to $\cancel{3}$ is $\cancel{3}$ win $\cancel{3}$ is $\cancel{3}$.

Additionally: we can add any extra error \mathbf{e}' we want, for a combined error of $\mathbf{e}'-\mathbf{y}.$

Using the distinguisher

Recall: ciphertexts do not have to be valid

Assume $\operatorname{timing}(c_1) \neq \operatorname{timing}(c_2)$

Figure 7: Random walk in ambient space \mathbb{F}_2^n (symbolic image)

Flip bits until timing changes

Flip bits back to determine if they are an error

Repeat, take a majority vote

6096 attacks performed

Success rate: 87%

Among failed attacks: 86% terminated with less than 20 incorrect bits

866,143 idealized oracle calls (median)

BIKE Side-Channel and Attack

Bit Flipping Key Encapsulation (BIKE)

Algorithm 10:

BIKE.KeyGen

Input: • **Output:** $sk = (h_0, h_1, \sigma)$ $\mathsf{pk} = \mathbf{h} \in \mathcal{R}$ 1 $(\mathbf{h_0}, \mathbf{h_1}) = \mathsf{Sample}(\mathcal{H}_w)$ 2 $h = h_1 h_0^{-1}$ 3 $\sigma = \mathsf{Sample}(\mathcal{M})$ **4** sk = (h_0, h_1, σ) 5 pk = h

Algorithm 11: BIKE.Encaps

Input: pk = hOutput: K, c

- 1 $m = \mathsf{Sample}(\mathcal{M})$
- 2 $(\mathbf{e_0}, \mathbf{e_1}) = \mathsf{H}(m)$
- 3 $c = (\mathbf{e_0} + \mathbf{e_1}, m \oplus \mathsf{L}(\mathbf{e_0}, \mathbf{e_1}))$

4 $K = \mathsf{K}(m,c)$

Algorithm 12: BIKE.Decaps

Input: $sk = (h_0, h_1, \sigma)$ $c = (c_0, c_1)$ **Output:** K 1 $\mathbf{e}' = \mathsf{Decode}(\mathbf{c}_0\mathbf{h}_0, \mathbf{h}_0, \mathbf{h}_1)$ 2 $m' = c_1 \oplus \mathsf{L}(\mathbf{e}')$ 3 if e' = H(m') then $K = \mathsf{K}(m', c)$ 4 5 else $K = \mathsf{K}(\sigma, c)$ 6 7 end

BIKE Side-Channel

26

BIKE Rare Messages

27

Reuse [GJS16] attack and [NJW18]

Observation: if the distance of an error ocurrs in the secret key, it lowers the decryption failure rate

Recover distance spectrum of the secret key with side-channel

Recover the secret key from the distance spectrum using a recursive-backtracking algorithm

Simplest version:

Ciphertext with rare timing behavior + added noise

Send ciphertext to timing oracle, check whether decoding failure occurred.

Derive whether a cyclic distance d occurs in the secret key based on the decoding failure rate.

Countermeasures

Remove inner rejection sampling:

Sample a large number in steps, reduce modulo n

Determine a sufficient number of outer rejection sampling iterations.

"Sufficient": will not require more iterations with overwhelming probability. Perform fixed number of iterations.

End Result

Figure 8: Fixed version

But: heavy performance hit: +29% in cycle count.

Interesting alternative approaches: Constant-time and time-efficient Fisher-Yates³

³Nicolas Sendrier. "Secure Sampling of Constant-Weight Words -Application to BIKE". In: *eprint Archive* (2021). URL: https://eprint.iacr.org/2021/1631.

References

- [Agu+16] Carlos Aguilar, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor. Efficient Encryption from Random Quasi-Cyclic Codes. Cryptology ePrint Archive, Report 2016/1194. https://eprint.iacr.org/2016/1194. 2016.
- [Car+20] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jurjen Bos, Jean-Christophe Deneuville, Jérôme Lacan, Edoardo Persichetti, Jean-Marc Robert, Pascal Véron, Philippe Gaborit, Arnaud Dion, and Gilles Zémor. "Hamming Quasi-Cyclic (HQC) Third Round Version Updated Version 10/01/2020". In: (2020-10-01), p. 47. URL: https://pqc-hqc.org/doc/hqc-reference-implementation_2020-10-01.zip (visited on 2020-11-10).
- [GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing attack on post-quantum primitives using the Fujisaki-Okamoto

transformation and its application on FrodoKEM. Cryptology ePrint Archive, Report 2020/743. https://eprint.iacr.org/2020/743. 2020.

- [GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors. 858. 2016. URL: https://eprint.iacr.org/2016/858 (visited on 2020-11-04).
- [HGS99] Chris Hall, Ian Goldberg, and Bruce Schneier. "Reaction Attacks against several Public-Key Cryptosystems". In: ICICS 99: 2nd International Conference on Information and Communication Security. Ed. by Vijay Varadharajan and Yi Mu. Vol. 1726. Lecture Notes in Computer Science. Sydney, Australia: Springer, Heidelberg, Germany, 1999, pp. 2–12.
- [NJW18] Alexander Nilsson, Thomas Johansson, and Paul Stankovski Wagner. "Error Amplification in Code-based Cryptography". In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2019.1 (2018). https://tches.iacr.org/index.php/TCHES/article/view/7340,

pp. 238-258. ISSN: 2569-2925. DOI: 10.13154/tches.v2019.i1.238-258.

- [PT19] Thales Bandiera Paiva and Routo Terada. "A Timing Attack on the HQC Encryption Scheme". In: SAC 2019: 26th Annual International Workshop on Selected Areas in Cryptography. Ed. by Kenneth G. Paterson and Douglas Stebila. Vol. 11959. Lecture Notes in Computer Science. Waterloo, ON, Canada: Springer, Heidelberg, Germany, 2019, pp. 551–573. DOI: 10.1007/978-3-030-38471-5_22.
- [Sen21] Nicolas Sendrier. "Secure Sampling of Constant-Weight Words -Application to BIKE". In: eprint Archive (2021). URL: https://eprint.iacr.org/2021/1631.
- [WT+19] Guillaume Wafo-Tapa, Slim Bettaieb, Loic Bidoux, Philippe Gaborit, and Etienne Marcatel. A Practicable Timing Attack Against HQC and its

Countermeasure. Cryptology ePrint Archive, Report 2019/909. https://eprint.iacr.org/2019/909. 2019.

Don't Reject This: Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

Qian Guo³, Clemens Hlauschek^{1,5}, Thomas Johansson³, Norman Lahr², Alexander Nilsson^{3,4}, and **Robin Leander Schröder**¹ September 19, 2022

¹Technische Universität Wien, Austria
²Fraunhofer SIT, Darmstadt, Germany
³Lund University, Lund, Sweden
⁴Advenica AB, Malmö, Sweden
⁵RISE GmbH, Wien, Austria

Bonus Slides

Attack against RS/RM version

Figure 9: RS/RM Concatenated Code

Optimized Attack

Exploit the structure of the code generated by \mathbf{G} .

The public code $\ensuremath{\mathcal{C}}$ is either:

a Bose-Chaudhuri-Hocquenghem (BCH) code tensored with a repetition code a Reed-Solomon (RS) code concatenated with a Reed-Muller (RM) code We exploit the BCH/Repetition code version.

Figure 10: BCH/Repetition Tensor Code

Idea: corrupt δ BCH code blocks s.t. 1 more corruption will cause decoding failure Then determine out the error in the repetition code block.

163 attacks performed

Success rate: 96.7%

Among failed attacks: less than 4 bits incorrect

19,942 idealized oracle calls (median)

Simplest version:

Construct a ciphertext with a message that has a rare timing-behavior and add an error to get close to the decoding limit⁴.

Send ciphertext to timing oracle, check whether decoding failure occurred.

Derive whether a cyclic distance d occurs in the secret key based on the decoding failure rate.

For each cyclic distance d in the error:

If decoding success: increment $observed_d$.

If decoding failure: increment failed $_d$.

For each distance d, compute the empirical decoding failure rate, and estimate the multiplicity of the distance based on that. ⁴Ciphertext does not have to be valid!

Multi-set of cyclic distances between set bits in vector $\ensuremath{\mathbf{v}}.$

 $\mathbf{v}=100001001$

$$D(\mathbf{v}) = \{\}$$

⁵Graphics heavily inspired by https://youtu.be/Gm--Sm_wJ2w

Multi-set of cyclic distances between set bits in vector $\ensuremath{\mathbf{v}}.$

 $\mathbf{v} = \underset{\uparrow}{100001001}$

 $D(\mathbf{v}) = \{1\}$

⁵Graphics heavily inspired by https://youtu.be/Gm--Sm_wJ2w

Multi-set of cyclic distances between set bits in vector $\ensuremath{\mathbf{v}}.$

 $\mathbf{v} = \underset{\uparrow}{100001001}$

$$D(\mathbf{v}) = \{1, 4\}$$

⁵Graphics heavily inspired by https://youtu.be/Gm--Sm_wJ2w

Multi-set of cyclic distances between set bits in vector $\ensuremath{\mathbf{v}}.$

 $\mathbf{v} = 100001001_{\uparrow}$

 $D(\mathbf{v}) = \{1, 3, 4\}$

⁵Graphics heavily inspired by https://youtu.be/Gm--Sm_wJ2w

Satisfied parity checks during decoding⁶:

⁶Graphics heavily inspired by https://youtu.be/Gm--Sm_wJ2w

Greedy recursive-backtracking algorithm:

Start with empty vector $\mathbf{h} = \mathbf{0}^r$

Check if already done (w bits already set, and \mathbf{h} is the secret key) For each bit position i

if all distances to i exist in the distance spectrum set bit $i,\, {\rm and}$ recurse