Cryptographic Hardware and Embedded Systems

SIKE Channels Zero-Value Side-Channel Attacks on SIKE

Élise Tasso (CEA), elise.tasso2@cea.fr joint work with Luca De Feo (IBM Research), Nadia El Mrabet (EMSE), Aymeric Genêt (EPFL/Nagra), Novak Kaluđerović (EPFL), Natacha Linard de Guertechin (CYSEC SA), and Simon Pontié (CEA)

September 21st, 2022

LSCO, SAS joint research team at the Centre of Microelectronics in Provence, Gardanne, France

Context: SIKE and hardware attacks

SIKE was one of the NIST round 4 alternate candidates for encryption and key encapsulation.

- The only one based on isogenies between elliptic curves
- Relatively slow
- Smallest public key size
- Efficient cryptanalysis in polynomial time
- Our work is useful to study the hardware security of CSIDH: *Patient Zero and Patient Six*, Campos et al., 2022
- Portability of our attacks on variants of SIDH with masked degree (Morita) or masked torsion point images (Fouotsa) ?

SIKE: SIDH and Fujisaki-Okamoto transform

Hardware attacks on SIKE : state of the art

- Regularity of SIKE
- Attacks taking advantage of ECC or of the isogeny computation

	Fault injection	Side-channel analysis	
Theoretical	Yan Bo Ti, 2017	Koziel et al., 2017	
Simulated	Gélin et al., 2017	Campos et al., 2022	
	Adj et al., 2022		
Experimentally	Tasso et al., 2021	Koppermann et al., 2018	
verified	Campos et al., 2021	Zhang et al., 2020	
		Genêt et al., 2021	
		De Feo et al., 2022	
		Genêt et al., 2022	
		Wang et al., 2022	

- Koppermann et al., Zhang et al. and Genêt et al. perform DPAs/CPAs on ECC.
- Masking countermeasure: projective coordinate randomization

$$(X : Z) = (\lambda X : \lambda Z) \text{ for } \lambda \neq 0, \qquad \qquad \frac{X}{Z} = \frac{\lambda X}{\lambda Z}$$
$$(3 : 1) = (-39 : -13) \quad \lambda = -13, \qquad \qquad \frac{3}{1} = \frac{-39}{-13}$$

There are $p^2 - 1$ possible values for λ , p being a "big" prime.

- **Before:** $P = (x_P : 1), X_P = x_P, Z_P = 1$
- After: λ_P random, $P = (\lambda_P X_P : \lambda_P)$

• No influence of the randomization on zero:

$$(X:Z) \xrightarrow{\lambda} (\lambda X:\lambda Z)$$

 $(X:0) \xrightarrow{\lambda} (\lambda X:0)$

- Idea: Force computation of zero-value points (Goubin).
 - O = (1:0)
 - T = (0:1)
- Koziel et al.: their ZPAs on SIDH cannot be applied to SIKE.

- Is there a theoretical side-channel attack on SIKE that bypasses coordinate randomization?
- Is this attack exploitable in practice?
 - Yes, with electromagnetic emissions/power consumption (our work).
 - Yes, as a remote timing attack (Hertzbleed, Wang et al., 2022).
- What are fitting countermeasures ?

Theoretical three-point ladder attack

Where and how do we attack?

Goal 1: recover the secret key bit by bit.

Assume that secret bits $sk_0, ..., sk_{k-1}$ are known. We choose a point triplet such that

- zero values appear in the computations if $sk_k = 0$ and
- arbitrary values appear if $sk_k = 1$.

	Our 3-point ladder attack	Our isogeny attack	Hertzbleed	
Reason for appearance	incomplete	isogeny evaluated	incomplete	
of first zero-point	addition formula	on its kernel	addition formula	
Observation	computation of (0 : 0) and avalanche effect			
Side-channel	electromagnetic emissions	power consumption	timing	
Countermeasure	scalar randomisation	?	scalar randomisation	

Goal 2: design an efficient countermeasure for both attacks.

Attack method: find a bit $sk_k = 0$

The three-point ladder is a method to compute P + skQ, where P, Q are elliptic curve points and sk is a scalar. Below is a toy ladder to compute P + 50Q.

Let us assume we want to find bit 3, i.e. make a zero-value point T with $x_T = 0$ appear when $sk_k = 0$. We want then an input P such that 14Q - P = T.

Let us plug in P such that 14Q - P = T.

We made the correct hypothesis, ${\cal T}$ appears when bit 3 is processed.

Let us plug in P such that 14Q - P = T when bit 3 is not 0.

We made the wrong hypothesis, au does not appear.

Side-channel attack in a laboratory on a three-point ladder implementation

- Software implementation of the "three-point ladder" part of SIKE of the NIST PQC Standardization Process round 3 submission with added projective coordinate randomization.
- Target choice: attack in a laboratory of a STM32F407VGT6 microcontroller featuring an ARM Cortex-M4 (recommended by the NIST) at 168MHz.

Set up of an attack campaign

Set up for the realization of a side-channel attack campaign

- Fixed probe.
- Goal: recover a bit sk_k of the secret knowing the previous bits sk₀,..., sk_{k-1}.

We record multiple traces of the electromagnetic emissions of the board performing the ladder computations with three types of input:

- A random, correct triplet of points,
- A malicious triplet $c_{k,0}^T$ (T appears when $sk_k = 0$) and
- A malicious triplet $c_{k,1}^T$ (*T* appears when $sk_k = 1$).

Experimental results: traces

(a) Trace for random inputs.

(b) Trace for the wrong hypothesis.

(c) Trace for the correct hypothesis.

We compare two *t*-tests T0 and T1.

No need for a threshold.

Experimental results: *t*-test

(a) *t*-test for the wrong hypothesis.

(b) t-test for the correct hypothesis.

We found the value of sk_k . Knowing the bits sk_0 to sk_k , we can find sk_{k+1} , and so on...

Countermeasure

Both attacks use malformed input points of order

- $2 \cdot 3^n$ for the three-point ladder attack and
- 2ⁿ for the isogeny computation attack,

instead of 3^{e3} for legitimate inputs.

We check that

- P and Q are both of order 3^{e_3} and
- they generate the 3^{e3}-torsion.

This is done by verifying that $3^{e_3-1}P \neq \pm 3^{e_3-1}Q \neq O$ and that $3^{e_3}P = 3^{e_3}Q = O$.

It protects SIKE against **both** our attacks.

- This countermeasure has a 12.9% overhead (measured on a Cortex-M4).
- It has been integrated in two implementations of SIKE, PQCrypto-SIDH (submission, Microsoft) and CIRCL (Cloudflare).

- Both zero-point attacks,
 - the three-point ladder attack and
 - the isogeny computation attack,

enable a bit-by-bit recovery of the secret key.

- We verified them both experimentally using respectively the electromagnetic emissions and the power consumption of a Cortex-M4 core.
- The point check is sufficient to stop both attacks.

Wang, Yingchen, Paccagnella, Riccardo, He, Elizabeth Tang, Shacham, Hovav, Fletcher, Christopher W and Kohlbrenner, David. *Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86*. In : Proceedings of the USENIX Security Symposium, 2022.

- Same three-point ladder attack (but no isogeny computation attack)
- Remote timing attack
- x86 with Turbo-boost and DVFS (Dynamic Voltage and Frequency Scaling)
- Relationship between power consumption and frequency
- Relationship between power consumption and Hamming weight/distance

 \nearrow Hamming weight \implies \nearrow power \implies \nearrow temperature $\xrightarrow{\text{DVFS}}$ frequency \implies \nearrow runtime

The same countermeasure can be used.