Side-Channel Masking with Common Shares

Weijia Wang Chun Guo Yu Yu Fanjie Ji Yang Su

Shandong University, China Shanghai Jiao Tong University, China

September. 20th, 2022

- Backgrounds
- Theoretical Contributions
 - Masked Multiplications with Common Shares
 - Precomputation-based Design Paradigm
 - New Security Notion: From Parallel to General Compositions.
- Application: Masked AES
- Conclusion

- Backgrounds
- Theoretical Contributions
 - Masked Multiplications with Common Shares
 - Precomputation-based Design Paradigm
 - New Security Notion: From Parallel to General Compositions.
- Application: Masked AES
- Conclusion

Masking

- Randomize the secret (Enc)
 - Secret variable $x \xrightarrow{\mathsf{rand}} \mathsf{shares} \; \hat{\mathbf{x}}[1], \dots, \hat{\mathbf{x}}[d]$
 - Boolean masking: $x = \hat{\mathbf{x}}[0] \oplus \ldots \oplus \hat{\mathbf{x}}[d]$
 - Any d shares are independent of x
- Private computations (various gadgets, especially multiplication gadgets).
 - Any d intermediates are independent of the input secrets: d-privacy, d-probing security

Masking

- Randomize the secret (Enc)
 - Secret variable $x \stackrel{\mathsf{rand}}{\longrightarrow} \mathsf{shares} \; \hat{\mathbf{x}}[1], \dots, \hat{\mathbf{x}}[d]$
 - Boolean masking: $x = \hat{\mathbf{x}}[0] \oplus \ldots \oplus \hat{\mathbf{x}}[d]$
 - Any d shares are independent of x
- Private computations (various gadgets, especially multiplication gadgets).
 - Any d intermediates are independent of the input secrets: d-privacy, d-probing security

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03.
- Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3],$ Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$

• It requires $\frac{d(d+1)}{2}$ random variables and runs in complexity $\mathcal{O}(d^2)$.

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03.
- Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3],$ Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$

$\hat{\mathbf{x}}[1]\hat{\mathbf{y}}[1]$	x [1] ŷ [2]	x [1] ŷ [3]
x [2] ŷ [1]	x [2] ŷ [2]	x [2] ŷ [3]
x [3] y [1]	x [3] y [2]	x [3] ŷ [3]

• It requires $\frac{d(d+1)}{2}$ random variables and runs in complexity $\mathcal{O}(d^2)$.

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03.
- Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3],$ Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$

$\hat{x}[1]\hat{y}[1]$	$\hat{\mathbf{x}}[1]\hat{\mathbf{y}}[2] + r_1$	$\hat{\mathbf{x}}[1]\hat{\mathbf{y}}[3] + r_2$
$\hat{\mathbf{x}}[2]\hat{\mathbf{y}}[1] + r_1$	x [2] ŷ [2]	$\hat{\mathbf{x}}[2]\hat{\mathbf{y}}[3] + r_3$
$\hat{\mathbf{x}}[3]\hat{\mathbf{y}}[1] + r_2$	$\hat{\mathbf{x}}[3]\hat{\mathbf{y}}[2] + r_3$	ӿ̂[3]ŷ[3]

• It requires $\frac{d(d+1)}{2}$ random variables and runs in complexity $\mathcal{O}(d^2)$.

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03.
- Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3],$ Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$

• It requires $\frac{d(d+1)}{2}$ random variables and runs in complexity $\mathcal{O}(d^2)$.

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03.
- Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3]$, Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$

• It requires $\frac{d(d+1)}{2}$ random variables and runs in complexity $\mathcal{O}(d^2)$.

A Summary of Contributions

Goal: reducing the overheads

- Theoretical contributions
 - Masked multiplication with common shares
 - Precomputation-based design paradigm.
 - New security notion: from parallel to general compositions.
- Application to the masked AES

- Backgrounds
- Theoretical Contributions
 - Masked Multiplications with Common Shares
 - Precomputation-based Design Paradigm
 - New Security Notion: From Parallel to General Compositions.
- Application: Masked AES
- Conclusion

- Backgrounds
- Theoretical Contributions
 - Masked Multiplications with Common Shares
 - Precomputation-based Design Paradigm
 - New Security Notion: From Parallel to General Compositions.
- Application: Masked AES
- Conclusion

Cost amortization

- A part of shares of different variables is the same.
- Randomness and intermediate variables can be reused among different operations.

Two Types of Sharings

- Boolean sharing:
 - Secret variable $x \stackrel{\mathsf{rand}}{\longrightarrow} \mathsf{shares} \; \hat{\mathbf{x}}[0], \dots, \hat{\mathbf{x}}[d] \; \mathsf{such} \; \mathsf{that} \; x = \hat{\mathbf{x}}[0] \oplus \dots \oplus \hat{\mathbf{x}}[d]$
 - Common shares are insecure.
 - Sharing of a: \hat{a} , $\hat{s}[1]$, ..., $\hat{s}[d]$
 - Sharing of b: \hat{b} , $\hat{s}[1]$, ..., $\hat{s}[d]$
 - $\hat{a} \oplus \hat{b} = a \oplus b$
- Inner product sharing:

Two Types of Sharings

- Boolean sharing:
 - Secret variable $x \xrightarrow{\mathsf{rand}} \mathsf{shares} \; \hat{\mathbf{x}}[0], \dots, \hat{\mathbf{x}}[d] \; \mathsf{such} \; \mathsf{that} \; x = \hat{\mathbf{x}}[0] \oplus \dots \oplus \hat{\mathbf{x}}[d]$
 - Common shares are insecure.
 - Sharing of a: $\hat{a}, \hat{s}[1], \dots, \hat{s}[d]$
 - Sharing of b: \hat{b} , $\hat{\mathbf{s}}[1]$, ..., $\hat{\mathbf{s}}[d]$
 - $\hat{a} \oplus \hat{b} = a \oplus b$
- Inner product sharing:
 - Secret variable $x \xrightarrow{\mathsf{rand}} \mathsf{shares} \; \hat{\mathbf{x}}[0], \dots, \hat{\mathbf{x}}[d] \; \mathsf{such} \; \mathsf{that} \; x = \hat{\mathbf{x}}[0] \oplus \alpha[1] \hat{\mathbf{x}}[1] \oplus \dots, \alpha[d] \hat{\mathbf{x}}[d]$
 - Common shares can be secure!
 - Sharing of a: $\hat{a}, \hat{s}[1], \ldots, \hat{s}[d]$ such that $a = \hat{a} \oplus \alpha_a[1]\hat{s}[1] \oplus \ldots \oplus \alpha_a[d]\hat{s}[d]$
 - Sharing of b: \hat{b} , $\hat{\mathbf{s}}[1]$, ..., $\hat{\mathbf{s}}[d]$ such that $b = \hat{b} \oplus \alpha_b[1]\hat{\mathbf{s}}[1] \oplus \ldots \oplus \alpha_b[d]\hat{\mathbf{s}}[d]$
 - Still *d*-probing secure if $(1, \alpha_a)$ and $(1, \alpha_b)$ are linearly independent.

10 / 26

Masked Multiplications with Common Shares

- Input of Refresh: Boolean sharings.
- Output of Refresh: inner product sharings, allowing:
 - common shares;
 - randomness & computation amortization.
- Output of Multiplicaiton:
 - Boolean shares.

- Backgrounds
- Theoretical Contributions
 - Masked Multiplications with Common Shares
 - Precomputation-based Design Paradigm
 - New Security Notion: From Parallel to General Compositions.
- Application: Masked AES
- Conclusion

Precomputation-based Design Paradigm

A promising feature: most of the intermediate variables can be precomputed

Precomputation-based Design Paradigm

A masked implementation of a crytographic function f can be divided into:

- Precomputation phase:
 - ullet Precompute a set of vairbles \mathcal{V} .
 - Runs in $O(\ell d^2)$ and requires $O(\ell d^2)$ random bits
 - Not one-time effort: it runs for each calls of f.
 - But (important!): the precomputation does not requires the input of f.
- Online-computation phase:
 - Very efficient: runs in $O(\ell d)$ without any random bits.

Precomputation-based Design Paradigm

September, 20th, 2022

· Call online masked encryption:

· Check if answer = answer'

· Generate the randomness

· Perform the precompution

- Backgrounds
- Theoretical Contributions
 - Masked Multiplications with Common Shares
 - Precomputation-based Design Paradigm
 - New Security Notion: From Parallel to General Compositions.
- Application: Masked AES
- Conclusion

Problem Statement

- Composable security notions: one can concentrate on analyzing every single gadget, and leave the rest to the probe propagation.
 - Non-Inference/Strong Non-Inference (NI/SNI)
 - Probe-Isolating Non-Inference (PINI)
- The randomness used in different gadget should be independent.
 - It is not complied to our case (and other masking schemes with randomness reuse).

New Security Notion

Randomness Reusable Non-Inference: RNI

- ·----: implication if any *d* input shares are independent of the secret
 - ★: Supporting compositions even if randomness/variables are reused
 - ♦: Supporting trivial composition if random bits are independent
 - *: Supporting compositions (with SNI refreshing) if random bits are independent

Relations of different security notions

Composability of RNI

An arbitrary composition (on the right) that can be described a bipartite graph is RNI, as long as the parallel compositions (on the left) of gadgets in each partition is RNI.

19 / 26

- Backgrounds
- Theoretical Contributions
 - Masked Multiplications with Common Shares
 - Precomputation-based Design Paradigm
 - New Security Notion: From Parallel to General Compositions.
- Application: Masked AES
- Conclusion

Summary of Masked AES Implementations

d	KCycles for Precomp.	RAM size	KCycles/penalty	
	u	regeles for Frecomp.	TATIVI SIZE	factor for online
Unprotected	-	-	-	9.33 / 1
BS method	2	2880 (random gen.)	1.92 KB	62 / 6.65
LUT method	2	15 360 (random gen.)	10.24 KB	435 / 46.62
Our work	2	$144(random\ gen.) + 705$	5.63 KB	60 / 6.43
BS method	8	34 560 (random gen.)	23.04 KB	330 / 35.36
LUT method	8	245 760 (random gen.)	164 KB	unreported
Our work	8	2304(random gen.) $+366$	11 KB	137 / 14.68

T-test results, security order d = 1

• In the implementation, we do not attempt to eliminate all the transitional leakage that may damage the independent leakage assumption.

Discussion on the results

- This (good) result for the case of d=1 is a bit surprising, since:
 - there is transitional leakage, but it is still secure
- The new scheme is more robust to some lapses (e.g., transitional leakage) in implementation.
 - We contribute this advantage to the relatively more complex algebraic structure than the Boolean masking.

- Backgrounds
- Theoretical Contributions
 - Masked Multiplications with Common Shares
 - Precomputation-based Design Paradigm
 - New Security Notion: From Parallel to General Compositions.
- Application: Masked AES
- Conclusion

Conclusion

- Theoretical contributions:
 - Cost amortized multiplication gadget with common shares
 - The computational decreases: $\tilde{\mathcal{O}}(\ell d^2)$
 - The randomness decreases: $\tilde{\mathcal{O}}(d^2)$
 - Precomputation-based design paradigm for masking
 - Pre-computation phase: $\tilde{\mathcal{O}}(\ell d^2)$ (computational), $\tilde{\mathcal{O}}(d^2)$ (randomness).
 - Online phase: $\tilde{\mathcal{O}}(\ell d)$ (computational), without any randomness.
 - New security notion for proofs: from parallel to general compositions
 - Intrinsically supports randomness/variables reusing.
- Application to AES.
 - A speed-up for the online phase.
 - More robust to some lapses (e.g., transitional leakage) in implementation.

Conclusion

- Theoretical contributions:
 - Cost amortized multiplication gadget with common shares
 - The computational decreases: $\tilde{\mathcal{O}}(\ell d^2)$
 - The randomness decreases: $\tilde{\mathcal{O}}(d^2)$
 - Precomputation-based design paradigm for masking
 - Pre-computation phase: $\tilde{\mathcal{O}}(\ell d^2)$ (computational), $\tilde{\mathcal{O}}(d^2)$ (randomness).
 - Online phase: $\tilde{\mathcal{O}}(\ell d)$ (computational), without any randomness.
 - New security notion for proofs: from parallel to general compositions
 - Intrinsically supports randomness/variables reusing.
- Application to AES.
 - A speed-up for the online phase.
 - More robust to some lapses (e.g., transitional leakage) in implementation.

Also

But Concerts the randomists

Concerts the randomists

Problem the perconnected system

Proble

New construction

New paradigm

New proof method

Thank You!