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Introduction

2

Industry trends toward chiplets as a 
replacement for monolithic fabrication

This work: inter-die delay PUF as a 
security primitive for chiplets

The modularity of chiplets brings new 
and interesting security threats
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Chiplets - Overview
• Each chiplet is a separately-produced silicon die
• SoC created by packaging chiplets together on 

a silicon interposer or bridge
• Heterogeneous integration and IP reuse

• Able to leverage cost-appropriate process nodes

• Increased yield

• Recent examples
• AMD Ryzen
• Intel Meteor Lake, Arrow Lake
• Xilinx Virtex Ultrascale+

3

Chiplet
Package substrate

Silicon interposer

Interposer wires:
• 500-1k wires/mm shoreline
• 25-50 μm microbump pitch
• 0.5 pJ/bit
• 1 Gbps/wire
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Chiplets – Motivation & Related Work
• Different threats possible with chiplets vs 

monolithic fabrication
• Which are critical and how to defend?

• Zero trust: chiplets cannot blindly assume they 
are operating in a friendly environment
• Root of trust needed
• Using cryptography and PUFs [1]
• Trusted security-enforcing interposer with active traffic 

policing [2]
• Secure-by-construction interposer Networks-on-Chip 

with message checking [3]

• This work: inter-chiplet delay fingerprints through 
interposer for physical security

4

[1] CEVA. Fortrix: Self-contained IP platform for Root-of-Trust and cybersecurity in chiplets and SoCs. Product note. 2022 
[2] Nabeel et al. 2.5d root of trust: Secure system-level integration of untrusted chiplets. IEEE T-Comp, 2020
[3] Chacon et al. Coherence attacks and countermeasures in interposer-based systems, 2021

1. Trojans in co-packaged chiplets
2. Probing exposed interposer wires
3. Die-swapping
4. Side-channels from within package
5. Man-in-the-middle

1. 2.
3.

4.5.
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Communication Between Chiplets
• Typically source synchronous clocking
• Data and clock forwarded from TX
• Wires crossing through interposer
• Registered I/O
• Tunable delay on RX deskews sampling clock

• Emerging standards
• Intel AIB [1]
• TSMC LIPINCON [2]
• UCIe [3]
• Bunch-of-Wires [4]

6

[1] David Kehlet. Accelerating innovation through a standard chiplet interface: The advanced interface bus (AIB). Intel White Paper, 2017
[2] Lin et al. A 7nm 4GHz Armcore-based CoWoS chiplet design for high performance computing. In 2019 Symp on VLSI Circuits, 2019
[3] D. Das Sharma, “Universal Chiplet Interconnect express (UCIe)® : Building an open chiplet ecosystem”, UCIe Consortium White paper, 2022
[4] R. Farjadrad et al., "A Bunch-of-Wires (BoW) Interface for Interchiplet Communication," IEEE Micro, 2020

[Farjadrad et al.]
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Measuring Delay
• Use phase compensation 

to measure propagation delay 
of signal from neighboring chiplet
• Transmit repeatedly
• Sweep receiver phase
• Find phase with 50% failure

• Delay defined as the skew between 
TX and RX clock that causes rising 
transition to be received as 0 and 1 
with equal probability

7

698684 7126706566426286140
time (ps)
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Q D QD
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Experimentation Platforms
• FPGA as prototype and test platform

• Provides control over clocking
• Logic programming enables transmitting 

arbitrary patterns between chiplets

• Xilinx Virtex Ultrascale+ FPGAs
• part# xcvu9p-flgb2104-2-i
• Chiplets organized in Super Logic Regions (SLR)
• Interposer wires called Super Long Lines (SLL)

• In-lab testing using VCU118 kit
• AWS EC2 F1 instances in cloud to test on 

larger population

8

VCU118
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Chiplet PUF - Schematic

10

• Column-based design with 48 SLLs per column
• Instantiated on multiple columns
• Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew
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Chiplet PUF - Schematic
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• Column-based design with 48 SLLs per column
• Instantiated on multiple columns
• Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

Measuring delays of SLLs 
through interposer 

Clock management (MMCM) adjusts 
sample phase during sweep



Know Time To Die aderic@umass.edu

Chiplet PUF - Schematic

10

• Column-based design with 48 SLLs per column
• Instantiated on multiple columns
• Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew



Know Time To Die aderic@umass.edu

Chiplet PUF - Schematic

10

• Column-based design with 48 SLLs per column
• Instantiated on multiple columns
• Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

Synchronized LFSRs generate pattern 
that is transmitted and checked



Know Time To Die aderic@umass.edu

Chiplet PUF - Schematic

10

• Column-based design with 48 SLLs per column
• Instantiated on multiple columns
• Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

Compare patterns to count 
rising edge timing faults

Synchronized LFSRs generate pattern 
that is transmitted and checked
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Chiplet PUF - Schematic

10

• Column-based design with 48 SLLs per column
• Instantiated on multiple columns
• Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew
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• 6 columns instantiated (288 SLLs)
• Using <2% of the 17,280 SLLs between the chiplets
• 0.27% LUT and 0.34% FF utilization

Chiplet PUF - Implementation

11
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Measured SLL Delays
• SLL delay measurements in 630-720 ps range 
• Reliable and instance-specific
•
•
•

12

x4 x12 x21 x30 x40 x49

Across trials

Across chips

With bias
subtracted

0.5 ps difference across trials
29.4 ps difference across chips

5.8 ps difference after removing biases
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Robust Delay Measurement
• Differential delays between SLL pairs outperform single-ended SLL delays
• Delay measurement becomes independent of clock path
• Less delay drift because clock changes become common mode
• Clock path reused across SLLs ➜ Avoid miscounting skew variation as uniqueness

13

Single ended delay change Differential delay change

Delay = SLL0 – clk
Paths impacted 
differently by env.

Delay = (SLL0 - clk) 
– (SLL1 - clk)

= SLL0 - SLL1
Impacted similarly 
by env. changes
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Within and Between-Class Distances
• Data from 20 AWS EC2 F1 instances
• Same VU9P part used for local testing

• Cumulative distributions
• PUF cell difference = 𝐷!,# − 𝐷!!,#
• Instance difference = ∑#$%%&& 𝐷!,# − 𝐷!!,#

• Separation of within-class and 
between-class distances is consistent 
with the PUF being a reliable and 
unique fingerprint

14

µ: 847.71ps

µ: 0.47ps             

µ: 5.92ps

µ: 68.33ps

Cell

Instance
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Type I and II errors
• Empirical data approximately 

normally distributed

• Fitted normal distributions used to 
estimate false positive and false 
negative rates in a larger population

• Equal error point occurs
at threshold = 150.3 ps

• Type I and II error rates 
are 2.3e-24

15

150.3

2.3e-24
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Characterization – Using different clock trees
• Testing whether differential PUF output is 

insensitive to clock
• Crucial for minimizing impact of environmental 

fluctuations and of variation on clock tree

• Compare PUFs between two variants:
• Same interposer wires, same drivers
• Different clock distribution path

• Highly correlated outputs (r = 0.869) in 
experiments on 20 cloud instances x 144 cells

• Conclusion: PUF insensitive to clock, as intended

17

vs
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Characterization – Rising vs Falling transition
• Testing whether drivers or interposer 

wires dominate variability
• Compare PUF variants using rising or 

falling transition to measure delays:
• Same interposer wires in both cases
• Different transistors driving wires
• Different transistors in sampling flops

• Weaker correlation (r=0.054) implies 
that variation of interposer wires is 
not dominant factor 
• Conclusion: Transistor variation is a 

significant source of entropy

18
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Characterization – Swapping TX and RX
• Testing impact of driving same wire 

from each end
• Possible in Xilinx architecture because 

SLLs are bidirectional

• Comparing two variants with:
• Same interposer wires
• Different transistor instances
• Different environment for TX and RX

• Weak correlation (r=0.045) again 
implies that variation of interposer 
wires is not dominant factor
• Conclusion: Transistor variation is a 

significant source of entropy
19
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Heating & Compensation
• 38.4k power wasting ring oscillators 

(ROs) added to each SLR
• Controlled in groups of 4.8k

• SLL delays increase proportional to 
die temperature
• Sensitivity is non-uniform
• Causes error in output of differential 

PUF cells

• Compensate delay by learning and 
applying per-SLL delay coefficient
• Does not use temperature sensor

20
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Testing for Impact of Aging
• Aging can change circuit delay 
• Potentially detrimental to PUF 

response stability

• Test: randomly assign SLLs to two 
groups, which are aged in opposite 
directions
• Pull-high vs pull-low when idling between 

measurements

• Conclusion: groups do not diverge, 
implying that aging has little to no effect

21
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Threats Addressed by Chiplet PUF
• PUF responses stable at picosecond level
• Provides evidence of package integrity

22

1. Trojans in co-packaged chiplets
2. Probing exposed interposer wires
3. Die-swapping
4. Side-channels from within package
5. Man-in-the-middle

2.

5.

3.
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2. Probing exposed interposer wires
3. Die-swapping
4. Side-channels from within package
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• Physical probes and MITM detectable if 
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• Die swapping detectable because 
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measurements exist only on RX die
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Conclusion
• Presented a security primitive to extract delay 

fingerprints from connections between chiplets

• Prototyped using Xilinx Ultrascale+ FPGAs locally 
and across a population on AWS EC2 F1

• Performed analysis across a variety of design 
manipulations to identify the specific sources of 
entropy in the system 1. 2.

3.

4.5.
23
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Thank you! Questions?
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