
Know Time to Die – Integrity Checking
for Zero Trust Chiplet-based Systems

Using Between-Die Delay PUFs
Aleksa Deric, Daniel E. Holcomb

University of Massachusetts Amherst
CHES’22

Portions of this technical data were produced for the U. S. Government under Contract No. FA8702-19-C-0001 and W56KGU-18-D-0004,
and is subject to the Rights in Technical Data-Noncommercial Items Clause DFARS
252.227-7013 (FEB 2014). ©2022 The MITRE Corporation. Approved for Public Release; Distribution Unlimited. 22-2892 All rights reserved.

aderic@umass.eduKnow Time To Die

Introduction

2

Industry trends toward chiplets as a
replacement for monolithic fabrication

This work: inter-die delay PUF as a
security primitive for chiplets

The modularity of chiplets brings new
and interesting security threats

aderic@umass.eduKnow Time To Die

Chiplets - Overview
• Each chiplet is a separately-produced silicon die
• SoC created by packaging chiplets together on

a silicon interposer or bridge
• Heterogeneous integration and IP reuse

• Able to leverage cost-appropriate process nodes

• Increased yield

• Recent examples
• AMD Ryzen
• Intel Meteor Lake, Arrow Lake
• Xilinx Virtex Ultrascale+

3

Chiplet
Package substrate

Silicon interposer

Interposer wires:
• 500-1k wires/mm shoreline
• 25-50 μm microbump pitch
• 0.5 pJ/bit
• 1 Gbps/wire

Know Time To Die aderic@umass.edu

Chiplets – Motivation & Related Work
• Different threats possible with chiplets vs

monolithic fabrication
• Which are critical and how to defend?

• Zero trust: chiplets cannot blindly assume they
are operating in a friendly environment
• Root of trust needed
• Using cryptography and PUFs [1]
• Trusted security-enforcing interposer with active traffic

policing [2]
• Secure-by-construction interposer Networks-on-Chip

with message checking [3]

• This work: inter-chiplet delay fingerprints through
interposer for physical security

4

[1] CEVA. Fortrix: Self-contained IP platform for Root-of-Trust and cybersecurity in chiplets and SoCs. Product note. 2022
[2] Nabeel et al. 2.5d root of trust: Secure system-level integration of untrusted chiplets. IEEE T-Comp, 2020
[3] Chacon et al. Coherence attacks and countermeasures in interposer-based systems, 2021

1. Trojans in co-packaged chiplets
2. Probing exposed interposer wires
3. Die-swapping
4. Side-channels from within package
5. Man-in-the-middle

1. 2.
3.

4.5.

Know Time To Die aderic@umass.edu

Chiplets – Motivation & Related Work
• Different threats possible with chiplets vs

monolithic fabrication
• Which are critical and how to defend?

• Zero trust: chiplets cannot blindly assume they
are operating in a friendly environment
• Root of trust needed
• Using cryptography and PUFs [1]
• Trusted security-enforcing interposer with active traffic

policing [2]
• Secure-by-construction interposer Networks-on-Chip

with message checking [3]

• This work: inter-chiplet delay fingerprints through
interposer for physical security

4

[1] CEVA. Fortrix: Self-contained IP platform for Root-of-Trust and cybersecurity in chiplets and SoCs. Product note. 2022
[2] Nabeel et al. 2.5d root of trust: Secure system-level integration of untrusted chiplets. IEEE T-Comp, 2020
[3] Chacon et al. Coherence attacks and countermeasures in interposer-based systems, 2021

1. Trojans in co-packaged chiplets
2. Probing exposed interposer wires
3. Die-swapping
4. Side-channels from within package
5. Man-in-the-middle

1. 2.
3.

4.5.

Measuring
Delay

Design &
Implementation

Statistics Characterization
Experiments

Summary

Overview

Know Time To Die aderic@umass.edu

Communication Between Chiplets
• Typically source synchronous clocking
• Data and clock forwarded from TX
• Wires crossing through interposer
• Registered I/O
• Tunable delay on RX deskews sampling clock

• Emerging standards
• Intel AIB [1]
• TSMC LIPINCON [2]
• UCIe [3]
• Bunch-of-Wires [4]

6

[1] David Kehlet. Accelerating innovation through a standard chiplet interface: The advanced interface bus (AIB). Intel White Paper, 2017
[2] Lin et al. A 7nm 4GHz Armcore-based CoWoS chiplet design for high performance computing. In 2019 Symp on VLSI Circuits, 2019
[3] D. Das Sharma, “Universal Chiplet Interconnect express (UCIe)® : Building an open chiplet ecosystem”, UCIe Consortium White paper, 2022
[4] R. Farjadrad et al., "A Bunch-of-Wires (BoW) Interface for Interchiplet Communication," IEEE Micro, 2020

[Farjadrad et al.]

D
A

T
A

Know Time To Die aderic@umass.edu

Measuring Delay
• Use phase compensation

to measure propagation delay
of signal from neighboring chiplet
• Transmit repeatedly
• Sweep receiver phase
• Find phase with 50% failure

• Delay defined as the skew between
TX and RX clock that causes rising
transition to be received as 0 and 1
with equal probability

7

698684 7126706566426286140
time (ps)

TX RX
Q D QD

?
?

Know Time To Die aderic@umass.edu

Measuring Delay
• Use phase compensation

to measure propagation delay
of signal from neighboring chiplet
• Transmit repeatedly
• Sweep receiver phase
• Find phase with 50% failure

• Delay defined as the skew between
TX and RX clock that causes rising
transition to be received as 0 and 1
with equal probability

7

698684 7126706566426286140

RXD

time (ps)

TX RX
Q D QD

Mean delay of wire: 668ps
?
?

Know Time To Die aderic@umass.edu

Measuring Delay
• Use phase compensation

to measure propagation delay
of signal from neighboring chiplet
• Transmit repeatedly
• Sweep receiver phase
• Find phase with 50% failure

• Delay defined as the skew between
TX and RX clock that causes rising
transition to be received as 0 and 1
with equal probability

7

698684 7126706566426286140

RXD

time (ps)

TX RX
Q D QD

Mean delay of wire: 668ps

Pfail: 1.00

?
?

Know Time To Die aderic@umass.edu

Measuring Delay
• Use phase compensation

to measure propagation delay
of signal from neighboring chiplet
• Transmit repeatedly
• Sweep receiver phase
• Find phase with 50% failure

• Delay defined as the skew between
TX and RX clock that causes rising
transition to be received as 0 and 1
with equal probability

7

698684 7126706566426286140

RXD

time (ps)

TX RX
Q D QD

Mean delay of wire: 668ps

Pfail: 1.00

Pfail: 0.87

?
?

Know Time To Die aderic@umass.edu

Measuring Delay
• Use phase compensation

to measure propagation delay
of signal from neighboring chiplet
• Transmit repeatedly
• Sweep receiver phase
• Find phase with 50% failure

• Delay defined as the skew between
TX and RX clock that causes rising
transition to be received as 0 and 1
with equal probability

7

698684 7126706566426286140

RXD

time (ps)

TX RX
Q D QD

Mean delay of wire: 668ps

Pfail: 1.00

Pfail: 0.87

Pfail: 0.48

?
?

Know Time To Die aderic@umass.edu

Measuring Delay
• Use phase compensation

to measure propagation delay
of signal from neighboring chiplet
• Transmit repeatedly
• Sweep receiver phase
• Find phase with 50% failure

• Delay defined as the skew between
TX and RX clock that causes rising
transition to be received as 0 and 1
with equal probability

7

698684 7126706566426286140

RXD

time (ps)

TX RX
Q D QD

Mean delay of wire: 668ps

Pfail: 1.00

Pfail: 0.87

Pfail: 0.48

Pfail: 0.12

?
?

Know Time To Die aderic@umass.edu

Measuring Delay
• Use phase compensation

to measure propagation delay
of signal from neighboring chiplet
• Transmit repeatedly
• Sweep receiver phase
• Find phase with 50% failure

• Delay defined as the skew between
TX and RX clock that causes rising
transition to be received as 0 and 1
with equal probability

7

698684 7126706566426286140

RXD

time (ps)

TX RX
Q D QD

Mean delay of wire: 668ps

Pfail: 1.00

Pfail: 0.87

Pfail: 0.48

Pfail: 0.12

Pfail: 0.00

?
?

Know Time To Die aderic@umass.edu

Experimentation Platforms
• FPGA as prototype and test platform

• Provides control over clocking
• Logic programming enables transmitting

arbitrary patterns between chiplets

• Xilinx Virtex Ultrascale+ FPGAs
• part# xcvu9p-flgb2104-2-i
• Chiplets organized in Super Logic Regions (SLR)
• Interposer wires called Super Long Lines (SLL)

• In-lab testing using VCU118 kit
• AWS EC2 F1 instances in cloud to test on

larger population

8

VCU118

Measuring
Delay

Design &
Implementation

Statistics Characterization
Experiments

Summary

Overview

Know Time To Die aderic@umass.edu

Chiplet PUF - Schematic

10

• Column-based design with 48 SLLs per column
• Instantiated on multiple columns
• Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

Know Time To Die aderic@umass.edu

Chiplet PUF - Schematic

10

• Column-based design with 48 SLLs per column
• Instantiated on multiple columns
• Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

Measuring delays of SLLs
through interposer

Know Time To Die aderic@umass.edu

Chiplet PUF - Schematic

10

• Column-based design with 48 SLLs per column
• Instantiated on multiple columns
• Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

Measuring delays of SLLs
through interposer

Clock management (MMCM) adjusts
sample phase during sweep

Know Time To Die aderic@umass.edu

Chiplet PUF - Schematic

10

• Column-based design with 48 SLLs per column
• Instantiated on multiple columns
• Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

Know Time To Die aderic@umass.edu

Chiplet PUF - Schematic

10

• Column-based design with 48 SLLs per column
• Instantiated on multiple columns
• Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

Synchronized LFSRs generate pattern
that is transmitted and checked

Know Time To Die aderic@umass.edu

Chiplet PUF - Schematic

10

• Column-based design with 48 SLLs per column
• Instantiated on multiple columns
• Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

Compare patterns to count
rising edge timing faults

Synchronized LFSRs generate pattern
that is transmitted and checked

Know Time To Die aderic@umass.edu

Chiplet PUF - Schematic

10

• Column-based design with 48 SLLs per column
• Instantiated on multiple columns
• Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

Know Time To Die aderic@umass.edu

• 6 columns instantiated (288 SLLs)
• Using <2% of the 17,280 SLLs between the chiplets
• 0.27% LUT and 0.34% FF utilization

Chiplet PUF - Implementation

11

x4 x12 x21 x30 x40 x49

Know Time To Die aderic@umass.edu

• 6 columns instantiated (288 SLLs)
• Using <2% of the 17,280 SLLs between the chiplets
• 0.27% LUT and 0.34% FF utilization

Chiplet PUF - Implementation

11

x4 x12 x21 x30 x40 x49

aderic@umass.eduKnow Time To Die

Measured SLL Delays
• SLL delay measurements in 630-720 ps range
• Reliable and instance-specific
•
•
•

12

x4 x12 x21 x30 x40 x49

Across trials

Across chips

With bias
subtracted

0.5 ps difference across trials
29.4 ps difference across chips

5.8 ps difference after removing biases

Know Time To Die aderic@umass.edu

Robust Delay Measurement
• Differential delays between SLL pairs outperform single-ended SLL delays
• Delay measurement becomes independent of clock path
• Less delay drift because clock changes become common mode
• Clock path reused across SLLs ➜ Avoid miscounting skew variation as uniqueness

13

Single ended delay change Differential delay change

Delay = SLL0 – clk
Paths impacted
differently by env.

Delay = (SLL0 - clk)
– (SLL1 - clk)

= SLL0 - SLL1
Impacted similarly
by env. changes

Know Time To Die aderic@umass.edu

Robust Delay Measurement
• Differential delays between SLL pairs outperform single-ended SLL delays
• Delay measurement becomes independent of clock path
• Less delay drift because clock changes become common mode
• Clock path reused across SLLs ➜ Avoid miscounting skew variation as uniqueness

13

Single ended delay change Differential delay change

Delay = SLL0 – clk
Paths impacted
differently by env.

Delay = (SLL0 - clk)
– (SLL1 - clk)

= SLL0 - SLL1
Impacted similarly
by env. changes

Know Time To Die aderic@umass.edu

Within and Between-Class Distances
• Data from 20 AWS EC2 F1 instances
• Same VU9P part used for local testing

• Cumulative distributions
• PUF cell difference = 𝐷!,# − 𝐷!!,#
• Instance difference = ∑#$%%&& 𝐷!,# − 𝐷!!,#

• Separation of within-class and
between-class distances is consistent
with the PUF being a reliable and
unique fingerprint

14

µ: 847.71ps

µ: 0.47ps

µ: 5.92ps

µ: 68.33ps

Cell

Instance

aderic@umass.eduKnow Time To Die

Type I and II errors
• Empirical data approximately

normally distributed

• Fitted normal distributions used to
estimate false positive and false
negative rates in a larger population

• Equal error point occurs
at threshold = 150.3 ps

• Type I and II error rates
are 2.3e-24

15

150.3

2.3e-24

Measuring
Delay

Design &
Implementation

Statistics Characterization
Experiments

Summary

Overview

aderic@umass.eduKnow Time To Die

Characterization – Using different clock trees
• Testing whether differential PUF output is

insensitive to clock
• Crucial for minimizing impact of environmental

fluctuations and of variation on clock tree

• Compare PUFs between two variants:
• Same interposer wires, same drivers
• Different clock distribution path

• Highly correlated outputs (r = 0.869) in
experiments on 20 cloud instances x 144 cells

• Conclusion: PUF insensitive to clock, as intended

17

vs

aderic@umass.eduKnow Time To Die

Characterization – Using different clock trees
• Testing whether differential PUF output is

insensitive to clock
• Crucial for minimizing impact of environmental

fluctuations and of variation on clock tree

• Compare PUFs between two variants:
• Same interposer wires, same drivers
• Different clock distribution path

• Highly correlated outputs (r = 0.869) in
experiments on 20 cloud instances x 144 cells

• Conclusion: PUF insensitive to clock, as intended

17

vs

aderic@umass.eduKnow Time To Die

Characterization – Rising vs Falling transition
• Testing whether drivers or interposer

wires dominate variability
• Compare PUF variants using rising or

falling transition to measure delays:
• Same interposer wires in both cases
• Different transistors driving wires
• Different transistors in sampling flops

• Weaker correlation (r=0.054) implies
that variation of interposer wires is
not dominant factor
• Conclusion: Transistor variation is a

significant source of entropy

18

vs

aderic@umass.eduKnow Time To Die

Characterization – Rising vs Falling transition
• Testing whether drivers or interposer

wires dominate variability
• Compare PUF variants using rising or

falling transition to measure delays:
• Same interposer wires in both cases
• Different transistors driving wires
• Different transistors in sampling flops

• Weaker correlation (r=0.054) implies
that variation of interposer wires is
not dominant factor
• Conclusion: Transistor variation is a

significant source of entropy

18

vs

aderic@umass.eduKnow Time To Die

Characterization – Swapping TX and RX
• Testing impact of driving same wire

from each end
• Possible in Xilinx architecture because

SLLs are bidirectional

• Comparing two variants with:
• Same interposer wires
• Different transistor instances
• Different environment for TX and RX

• Weak correlation (r=0.045) again
implies that variation of interposer
wires is not dominant factor
• Conclusion: Transistor variation is a

significant source of entropy
19

vs

aderic@umass.eduKnow Time To Die

Characterization – Swapping TX and RX
• Testing impact of driving same wire

from each end
• Possible in Xilinx architecture because

SLLs are bidirectional

• Comparing two variants with:
• Same interposer wires
• Different transistor instances
• Different environment for TX and RX

• Weak correlation (r=0.045) again
implies that variation of interposer
wires is not dominant factor
• Conclusion: Transistor variation is a

significant source of entropy
19

vs

aderic@umass.eduKnow Time To Die

Heating & Compensation
• 38.4k power wasting ring oscillators

(ROs) added to each SLR
• Controlled in groups of 4.8k

• SLL delays increase proportional to
die temperature
• Sensitivity is non-uniform
• Causes error in output of differential

PUF cells

• Compensate delay by learning and
applying per-SLL delay coefficient
• Does not use temperature sensor

20

aderic@umass.eduKnow Time To Die

Heating & Compensation
• 38.4k power wasting ring oscillators

(ROs) added to each SLR
• Controlled in groups of 4.8k

• SLL delays increase proportional to
die temperature
• Sensitivity is non-uniform
• Causes error in output of differential

PUF cells

• Compensate delay by learning and
applying per-SLL delay coefficient
• Does not use temperature sensor

20

aderic@umass.eduKnow Time To Die

Heating & Compensation
• 38.4k power wasting ring oscillators

(ROs) added to each SLR
• Controlled in groups of 4.8k

• SLL delays increase proportional to
die temperature
• Sensitivity is non-uniform
• Causes error in output of differential

PUF cells

• Compensate delay by learning and
applying per-SLL delay coefficient
• Does not use temperature sensor

20

aderic@umass.eduKnow Time To Die

Heating & Compensation
• 38.4k power wasting ring oscillators

(ROs) added to each SLR
• Controlled in groups of 4.8k

• SLL delays increase proportional to
die temperature
• Sensitivity is non-uniform
• Causes error in output of differential

PUF cells

• Compensate delay by learning and
applying per-SLL delay coefficient
• Does not use temperature sensor

20

aderic@umass.eduKnow Time To Die

Heating & Compensation
• 38.4k power wasting ring oscillators

(ROs) added to each SLR
• Controlled in groups of 4.8k

• SLL delays increase proportional to
die temperature
• Sensitivity is non-uniform
• Causes error in output of differential

PUF cells

• Compensate delay by learning and
applying per-SLL delay coefficient
• Does not use temperature sensor

20

Know Time To Die aderic@umass.edu

Testing for Impact of Aging
• Aging can change circuit delay
• Potentially detrimental to PUF

response stability

• Test: randomly assign SLLs to two
groups, which are aged in opposite
directions
• Pull-high vs pull-low when idling between

measurements

• Conclusion: groups do not diverge,
implying that aging has little to no effect

21

■25°C ■50°C

Know Time To Die aderic@umass.edu

Threats Addressed by Chiplet PUF
• PUF responses stable at picosecond level
• Provides evidence of package integrity

22

1. Trojans in co-packaged chiplets
2. Probing exposed interposer wires
3. Die-swapping
4. Side-channels from within package
5. Man-in-the-middle

2.

5.

3.

Know Time To Die aderic@umass.edu

Threats Addressed by Chiplet PUF
• PUF responses stable at picosecond level
• Provides evidence of package integrity

22

1. Trojans in co-packaged chiplets
2. Probing exposed interposer wires
3. Die-swapping
4. Side-channels from within package
5. Man-in-the-middle

2.

5.

3.

Know Time To Die aderic@umass.edu

Threats Addressed by Chiplet PUF
• PUF responses stable at picosecond level
• Provides evidence of package integrity

22

1. Trojans in co-packaged chiplets
2. Probing exposed interposer wires
3. Die-swapping
4. Side-channels from within package
5. Man-in-the-middle

• Physical probes and MITM detectable if
causing delay changes that exceed
within-class distances 2.

5.

3.

Know Time To Die aderic@umass.edu

Threats Addressed by Chiplet PUF
• PUF responses stable at picosecond level
• Provides evidence of package integrity

22

1. Trojans in co-packaged chiplets
2. Probing exposed interposer wires
3. Die-swapping
4. Side-channels from within package
5. Man-in-the-middle

• Physical probes and MITM detectable if
causing delay changes that exceed
within-class distances

• Die swapping detectable because
drivers contribute to entropy and delay
measurements exist only on RX die

2.

5.

3.

Know Time To Die aderic@umass.edu

Conclusion
• Presented a security primitive to extract delay

fingerprints from connections between chiplets

• Prototyped using Xilinx Ultrascale+ FPGAs locally
and across a population on AWS EC2 F1

• Performed analysis across a variety of design
manipulations to identify the specific sources of
entropy in the system 1. 2.

3.

4.5.
23

Instance

µ: 847.71ps
µ: 68.33ps

Know Time To Die aderic@umass.edu

Conclusion
• Presented a security primitive to extract delay

fingerprints from connections between chiplets

• Prototyped using Xilinx Ultrascale+ FPGAs locally
and across a population on AWS EC2 F1

• Performed analysis across a variety of design
manipulations to identify the specific sources of
entropy in the system 1. 2.

3.

4.5.
23

Thank you! Questions?

Instance

µ: 847.71ps
µ: 68.33ps

