Know Time to Die – Integrity Checking for Zero Trust Chiplet-based Systems Using Between-Die Delay PUFs

Aleksa Deric, Daniel E. Holcomb University of Massachusetts Amherst

CHES'22

University of Massachusetts Amherst

Portions of this technical data were produced for the U. S. Government under Contract No. FA8702-19-C-0001 and W56KGU-18-D-0004, and is subject to the Rights in Technical Data-Noncommercial Items Clause DFARS 252.227-7013 (FEB 2014). ©2022 The MITRE Corporation. Approved for Public Release; Distribution Unlimited. 22-2892 All rights reserved.

Introduction

Industry trends toward chiplets as a replacement for monolithic fabrication

The modularity of chiplets brings new and interesting security threats

This work: inter-die delay PUF as a security primitive for chiplets

Chiplets - Overview

- Each chiplet is a separately-produced silicon die
- SoC created by packaging chiplets together on a silicon interposer or bridge
 - Heterogeneous integration and IP reuse
 - Able to leverage cost-appropriate process nodes
 - Increased yield
- Recent examples
 - AMD Ryzen

Know Time To Die

- Intel Meteor Lake, Arrow Lake
- Xilinx Virtex Ultrascale+

Interposer wires:

- 500-1k wires/mm shoreline
- 25-50 μm microbump pitch
- 0.5 pJ/bit
- 1 Gbps/wire

Silicon interpose

Package substrate

Chinle

Chiplets – Motivation & Related Work

- Different threats possible with chiplets vs monolithic fabrication
 - Which are critical and how to defend?

- . Trojans in co-packaged chiplets
- 2. Probing exposed interposer wires
- 3. Die-swapping
 - 4. Side-channels from within package
- 5. Man-in-the-middle

- Zero trust: chiplets cannot blindly assume they are operating in a friendly environment
 - Root of trust needed
 - Using cryptography and PUFs [1]
 - Trusted security-enforcing interposer with active traffic policing [2]
 - Secure-by-construction interposer Networks-on-Chip with message checking [3]
- This work: inter-chiplet delay fingerprints through interposer for physical security

[1] CEVA. Fortrix: Self-contained IP platform for Root-of-Trust and cybersecurity in chiplets and SoCs. Product note. 2022
[2] Nabeel et al. 2.5d root of trust: Secure system-level integration of untrusted chiplets. IEEE T-Comp, 2020
[3] Chacon et al. Coherence attacks and countermeasures in interposer-based systems, 2021

Chiplets – Motivation & Related Work

- Different threats possible with chiplets vs monolithic fabrication
 - Which are critical and how to defend?
- Zero trust: chiplets cannot blindly assume they are operating in a friendly environment
 - Root of trust needed
 - Using cryptography and PUFs [1]
 - Trusted security-enforcing interposer with active traffic policing [2]
 - Secure-by-construction interposer Networks-on-Chip with message checking [3]
- This work: inter-chiplet delay fingerprints through interposer for physical security

[1] CEVA. Fortrix: Self-contained IP platform for Root-of-Trust and cybersecurity in chiplets and SoCs. Product note. 2022
[2] Nabeel et al. 2.5d root of trust: Secure system-level integration of untrusted chiplets. IEEE T-Comp, 2020
[3] Chacon et al. Coherence attacks and countermeasures in interposer-based systems, 2021

Know Time To Die

aderic@umass.edu

- . Trojans in co-packaged chiplets
- 2. Probing exposed interposer wires
- 3. Die-swapping
- 4. Side-channels from within package
- 5. Man-in-the-middle

Overview

Communication Between Chiplets

- Typically source synchronous clocking
 - Data and clock forwarded from TX
 - Wires crossing through interposer
 - Registered I/O
 - Tunable delay on RX deskews sampling clock
- Emerging standards
 - Intel AIB [1]
 - TSMC LIPINCON [2]
 - UCle [3]
 - Bunch-of-Wires [4]

[1] David Kehlet. Accelerating innovation through a standard chiplet interface: The advanced interface bus (AIB). Intel White Paper, 2017

[2] Lin et al. A 7nm 4GHz Armcore-based CoWoS chiplet design for high performance computing. In 2019 Symp on VLSI Circuits, 2019

[3] D. Das Sharma, "Universal Chiplet Interconnect express (UCIe)[®]: Building an open chiplet ecosystem", UCIe Consortium White paper, 2022

[4] R. Farjadrad et al., "A Bunch-of-Wires (BoW) Interface for Interchiplet Communication," IEEE Micro, 2020

Know Time To Die

aderic@umass.edu

- Use phase compensation to measure propagation delay of signal from neighboring chiplet
 - Transmit repeatedly
 - Sweep receiver phase
 - Find phase with 50% failure
- Delay defined as the skew between TX and RX clock that causes rising transition to be received as 0 and 1 with equal probability

- Use phase compensation to measure propagation delay of signal from neighboring chiplet
 - Transmit repeatedly
 - Sweep receiver phase
 - Find phase with 50% failure
- Delay defined as the skew between TX and RX clock that causes rising transition to be received as 0 and 1 with equal probability

- Use phase compensation to measure propagation delay of signal from neighboring chiplet
 - Transmit repeatedly
 - Sweep receiver phase
 - Find phase with 50% failure
- Delay defined as the skew between TX and RX clock that causes rising transition to be received as 0 and 1 with equal probability

- Use phase compensation to measure propagation delay of signal from neighboring chiplet
 - Transmit repeatedly
 - Sweep receiver phase
 - Find phase with 50% failure
- Delay defined as the skew between TX and RX clock that causes rising transition to be received as 0 and 1 with equal probability

- Use phase compensation to measure propagation delay of signal from neighboring chiplet
 - Transmit repeatedly
 - Sweep receiver phase
 - Find phase with 50% failure
- Delay defined as the skew between TX and RX clock that causes rising transition to be received as 0 and 1 with equal probability

- Use phase compensation to measure propagation delay of signal from neighboring chiplet
 - Transmit repeatedly
 - Sweep receiver phase
 - Find phase with 50% failure
- Delay defined as the skew between TX and RX clock that causes rising transition to be received as 0 and 1 with equal probability

- Use phase compensation to measure propagation delay of signal from neighboring chiplet
 - Transmit repeatedly
 - Sweep receiver phase
 - Find phase with 50% failure
- Delay defined as the skew between TX and RX clock that causes rising transition to be received as 0 and 1 with equal probability

Experimentation Platforms

- FPGA as prototype and test platform
 - Provides control over clocking
 - Logic programming enables transmitting arbitrary patterns between chiplets
- Xilinx Virtex Ultrascale+ FPGAs
 - part# xcvu9p-flgb2104-2-i
 - Chiplets organized in Super Logic Regions (SLR)
 - Interposer wires called Super Long Lines (SLL)
- In-lab testing using VCU118 kit
- AWS EC2 F1 instances in cloud to test on larger population

Know Time To Die

aderic@umass.edu

Overview

- Column-based design with 48 SLLs per column
- Instantiated on multiple columns
- Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

- Column-based design with 48 SLLs per column
- Instantiated on multiple columns
- Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

- Column-based design with 48 SLLs per column
- Instantiated on multiple columns
- Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

- Column-based design with 48 SLLs per column
- Instantiated on multiple columns
- Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

- Column-based design with 48 SLLs per column
- Instantiated on multiple columns

- Column-based design with 48 SLLs per column
- Instantiated on multiple columns

- Column-based design with 48 SLLs per column
- Instantiated on multiple columns
- Xilinx Mixed Mode Clock Manager (MMCM) to adjust sampling clock skew

Chiplet PUF - Implementation

- 6 columns instantiated (288 SLLs)
- Using <2% of the 17,280 SLLs between the chiplets
- 0.27% LUT and 0.34% FF utilization

Chiplet PUF - Implementation

- 6 columns instantiated (288 SLLs)
- Using <2% of the 17,280 SLLs between the chiplets
- 0.27% LUT and 0.34% FF utilization

Know Time To Die

Measured SLL Delays

- SLL delay measurements in 630-720 ps range
- Reliable and instance-specific

679

677

680

- 0.5 ps difference across trials
- 29.4 ps difference across chips
- 5.8 ps difference after removing biases

delay (ps)

720

- 700

- 680

- 660

- 640

Feature weight [ps]

50

25

-25

FPGA Instance

Know Time To Die

x21

x30

Column

x40

x49

x12

669

667

v342

y336

y330

y324 , Site

y318

y312

y306

y300

x4

668

aderic@umass.edu

Column

Regression feature

Site

Robust Delay Measurement

- Differential delays between SLL pairs outperform single-ended SLL delays
- Delay measurement becomes independent of clock path
 - Less delay drift because clock changes become common mode
 - Clock path reused across SLLs → Avoid miscounting skew variation as uniqueness

Robust Delay Measurement

- Differential delays between SLL pairs outperform single-ended SLL delays
- Delay measurement becomes independent of clock path
 - Less delay drift because clock changes become common mode
 - Clock path reused across SLLs → Avoid miscounting skew variation as uniqueness

Within and Between-Class Distances

- Data from 20 AWS EC2 F1 instances
 - Same VU9P part used for local testing
- Cumulative distributions
 - PUF cell difference = $|D_{t,s} D_{t',s}|$
 - Instance difference = $\sum_{s=1}^{144} |D_{t,s} D_{t',s}|$
- Separation of within-class and between-class distances is consistent with the PUF being a reliable and unique fingerprint

Type I and II errors

- Empirical data approximately normally distributed
- Fitted normal distributions used to estimate false positive and false negative rates in a larger population
- Equal error point occurs at threshold = 150.3 ps
- Type I and II error rates are 2.3e-24

Overview

Characterization – Using different clock trees

- Testing whether differential PUF output is insensitive to clock
 - Crucial for minimizing impact of environmental fluctuations and of variation on clock tree
- Compare PUFs between two variants:
 - Same interposer wires, same drivers
 - **Different** clock distribution path
- Highly correlated outputs (r = 0.869) in experiments on 20 cloud instances x 144 cells
- <u>Conclusion</u>: PUF insensitive to clock, as intended

Characterization – Using different clock trees

- Testing whether differential PUF output is insensitive to clock
 - Crucial for minimizing impact of environmental fluctuations and of variation on clock tree
- Compare PUFs between two variants:
 - Same interposer wires, same drivers
 - **Different** clock distribution path
- Highly correlated outputs (r = 0.869) in experiments on 20 cloud instances x 144 cells
- <u>Conclusion</u>: PUF insensitive to clock, as intended

Characterization – Rising vs Falling transition

- Testing whether drivers or interposer wires dominate variability
- Compare PUF variants using rising or falling transition to measure delays:
 - **Same** interposer wires in both cases
 - **Different** transistors driving wires
 - **Different** transistors in sampling flops
- Weaker correlation (r=0.054) implies that variation of interposer wires is not dominant factor
- <u>Conclusion</u>: Transistor variation is a significant source of entropy

Characterization – Rising vs Falling transition

- Testing whether drivers or interposer wires dominate variability
- Compare PUF variants using rising or falling transition to measure delays:
 - **Same** interposer wires in both cases
 - **Different** transistors driving wires
 - **Different** transistors in sampling flops
- Weaker correlation (r=0.054) implies that variation of interposer wires is not dominant factor
- <u>Conclusion</u>: Transistor variation is a significant source of entropy

Characterization – Swapping TX and RX

- Testing impact of driving same wire from each end
 - Possible in Xilinx architecture because SLLs are bidirectional
- Comparing two variants with:
 - Same interposer wires
 - Different transistor instances
 - **Different** environment for TX and RX
- Weak correlation (r=0.045) again implies that variation of interposer wires is not dominant factor
- <u>Conclusion</u>: Transistor variation is a significant source of entropy

Characterization – Swapping TX and RX

- Testing impact of driving same wire from each end
 - Possible in Xilinx architecture because SLLs are bidirectional
- Comparing two variants with:
 - Same interposer wires
 - Different transistor instances
 - **Different** environment for TX and RX
- Weak correlation (r=0.045) again implies that variation of interposer wires is not dominant factor
- <u>Conclusion</u>: Transistor variation is a significant source of entropy

- 38.4k power wasting ring oscillators (ROs) added to each SLR
 - Controlled in groups of 4.8k
- SLL delays increase proportional to die temperature
 - Sensitivity is non-uniform
 - Causes error in output of differential PUF cells
- Compensate delay by learning and applying per-SLL delay coefficient
 - Does not use temperature sensor

- 38.4k power wasting ring oscillators (ROs) added to each SLR
 - Controlled in groups of 4.8k
- SLL delays increase proportional to die temperature
 - Sensitivity is non-uniform
 - Causes error in output of differential PUF cells
- Compensate delay by learning and applying per-SLL delay coefficient
 - Does not use temperature sensor

Temperature (C)

- 38.4k power wasting ring oscillators (ROs) added to each SLR
 - Controlled in groups of 4.8k
- SLL delays increase proportional to die temperature
 - Sensitivity is non-uniform
 - Causes error in output of differential PUF cells
- Compensate delay by learning and applying per-SLL delay coefficient
 - Does not use temperature sensor

- 38.4k power wasting ring oscillators (ROs) added to each SLR
 - Controlled in groups of 4.8k
- SLL delays increase proportional to die temperature
 - Sensitivity is non-uniform
 - Causes error in output of differential PUF cells
- Compensate delay by learning and applying per-SLL delay coefficient
 - Does not use temperature sensor

- 38.4k power wasting ring oscillators (ROs) added to each SLR
 - Controlled in groups of 4.8k
- SLL delays increase proportional to die temperature
 - Sensitivity is non-uniform
 - Causes error in output of differential PUF cells
- Compensate delay by learning and applying per-SLL delay coefficient
 - Does not use temperature sensor

Testing for Impact of Aging

- Aging can change circuit delay
- Potentially detrimental to PUF response stability

- Test: randomly assign SLLs to two groups, which are aged in opposite directions
 - Pull-high vs pull-low when idling between measurements
- Conclusion: groups do not diverge, implying that aging has little to no effect

- PUF responses stable at picosecond level
 - Provides evidence of package integrity

2. Probing exposed interposer wires
3. Die-swapping

- . Side-channels from within package
- 5. Man-in-the-middle

- PUF responses stable at picosecond level
 - Provides evidence of package integrity

2. 3. 4.

- Trojans in co-packaged chiplets
- Probing exposed interposer wires
- 3. Die-swapping
 - . Side-channels from within package
- 5. Man-in-the-middle

- PUF responses stable at picosecond level
 - Provides evidence of package integrity

 Physical probes and MITM detectable if causing delay changes that exceed within-class distances

- Trojans in co-packaged chiplets
- 2. Probing exposed interposer wires
- 3. Die-swapping
 - . Side-channels from within package
- 5. Man-in-the-middle

- PUF responses stable at picosecond level
 - Provides evidence of package integrity

 Physical probes and MITM detectable if causing delay changes that exceed within-class distances

• Die swapping detectable because drivers contribute to entropy and delay measurements exist only on RX die

- Trojans in co-packaged chiplets
- 2. Probing exposed interposer wires
- 3. Die-swapping
 - . Side-channels from within package
- 5. Man-in-the-middle

Conclusion

- Presented a security primitive to extract delay fingerprints from connections between chiplets
- Prototyped using Xilinx Ultrascale+ FPGAs locally and across a population on AWS EC2 F1
- Performed analysis across a variety of design manipulations to identify the specific sources of entropy in the system

Conclusion

- Presented a security primitive to extract delay fingerprints from connections between chiplets
- Prototyped using Xilinx Ultrascale+ FPGAs locally and across a population on AWS EC2 F1
- Performed analysis across a variety of design manipulations to identify the specific sources of entropy in the system

