

Beware of Insufficient Redundancy

An Experimental Evaluation of Code-based FI Countermeasures

Timo Bartkewitz, Sven Bettendorf, Thorben Moos, Amir Moradi, Falk Schellenberg TÜViT, UCLouvain, University of Cologne, MPI for Security and Privacy

TÜV[®] | TÜV NORD GROUP

What's that all about?

- Internet Of Things
 - Access to cheap hardware
 - Optimized for low area and fast execution times
 - Lightweight Ciphers (SKINNY)
- Fault injection pose a serious threat (DFA, SIFA)
- Any unprotected cryptographic implementation is vulnerable
- Standard countermeasures are :
 - Shields, Sensors
 - Redundancy in various forms

What's new?

- Impeccable Circuits¹
 - Protection against DFA
 - Follow-Up work offers protection against SIFA^{2, 3}
 - Concurrent-Error-Detection (CED) based on Error-Correction-Code (ECC)
 - Focused on Fault Propagation
 - Security is reliant to the underlying adversary model

"[...] guarantees the detection of any fault in a hardware circuit that is covered by the underlying EDC¹."

- How hard is it to inject fault that are not covered by the underlying EDC ?

19.09.2022

¹ Aghaie, et. al., Impeccable Circuits. *IEEE Trans. Computers*, 69(3):361–376, 2020.

² Rezaei Shahmirzadi, et. al., Impeccable Circuits II. In DAC 2020, pages 1–6. IEEE, 2020.

³ Rasoolzadeh, et. al., Impeccable Circuits III. In ITC 2021, pages 163–169. IEEE, 2021.

Impeccable Circuits – Variants

RED1 [5,4,2]:

- Parity bit (1 bit redundancy/nibble)
- Guaranteed 1 bit fault detection over entire encryption

RED3 [7,4,3]:

- Hamming code (3 bits redundancy/nibble)
- Guaranteed 2 bits fault detection over entire encryption

RED4 [8,4,4]:

- Extended Hamming code (4 bits redundancy/nibble)
- Guaranteed 3 bits fault detection over entire encryption

Multivariate Adversary Model:

- Extension to detect faults injected over multiple clock cycles
- Example: RED4: Guaranteed 3 bits fault detection at every clock cycle

Impeccable Circuits – No Full Redundancy

CHES 2022

19.09.2022

Impeccable Circuits – Full Redundancy

CHES 2022

19.09.2022

Impeccable Circuits – Post Layout Implementation Details

SKINNY core	Area $[GE]$	Crit. Path [ns]	Power $[\mu W]$
unprotected	2670.00	3.95	154.75
duplication	4997.25	4.82	279.26
RED 1	4130.00	4.30	206.15
RED 1 multivariate	4405.75	6.73	213.63
RED 3	5738.75	4.32	290.38
RED 3 multivariate	6849.75	6.99	315.94
RED 4	6878.75	4.52	334.37
RED 4 multivariate	8305.75	7.95	366.92

Impeccable Circuits – Post Layout Implementation Details

Experimental Proof

- ASIC in a 40nm low power CMOS technology
- LFI on backside
- Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG)
- Spot-Size: 5.6 x 5.6 μm

19.09.2022

 $28\ x\ 28\ \mu m$

- Detect-and-suppress principle

Preparation

- Package opening 1.
- Thin the silicon on the backside 2.
- Polishing the ASIC 3.
- Laser Fault Attack 4.

Experimental Results

Unprotected implementation:

- Possible to receive faulty output
- Successful DFA
- Success in ~60% of the attempts

Duplication:

- Not possible to receive faulty output
- Unsuccessful DFA
- Only suppressed responses (0x0)

Experimental Results

Unprotected implementation:

- Possible to receive faulty output
- Successful DFA
- Success in ~60% of the attempts

Duplication:

- Not possible to receive faulty output
- Unsuccessful DFA
- Only suppressed responses (0x0)

Everything as expected

Experimental Results

RED1:

- Possible to receive faulty output
- Successful DFA
- Success in 0.3% 0.9% of the attempts

RED3:

- Possible to receive faulty output
- Successful DFA
- Success in 0.02% 0.09% of the attempts

RED4:

- Not possible to receive faulty output
- Unsuccessful DFA
- Only suppressed responses (0x0)

CHES 2022

Overview

SKINNY Core	Laser Spot Size	Inform. Faults/Attempt	Key Extraction
unprotected	$28.0\mu{ m m}$	57.5758%	1
	$5.6\mathrm{\mu m}$	8.0994%	1
duplication	$28.0\mu{ m m}$	0.0000%	×
	$5.6\mathrm{\mu m}$	0.0000%	×
RED 1	$28.0\mathrm{\mu m}$	0.3141%	1
	$5.6\mathrm{\mu m}$	0.4123%	1
RED 1 multivariate	$28.0\mu{ m m}$	0.9110%	1
	$5.6\mathrm{\mu m}$	0.5030%	1
RED 3	$28.0\mathrm{\mu m}$	0.0298%	1
	$5.6\mathrm{\mu m}$	0.0817%	✓
RED 3 multivariate	$28.0\mathrm{\mu m}$	0.0570%	1
	$5.6\mathrm{\mu m}$	0.0586%	✓
RED 4	$28.0\mathrm{\mu m}$	0.0000%	×
	$5.6\mu{ m m}$	0.0000%	×
${\tt RED4\ multivariate}$	$28.0\mathrm{\mu m}$	0.0000%	×
	$5.6\mathrm{\mu m}$	0.0000%	×

Overview

Threats to Simple Duplication

- Double Laser Attack
- Attacks against detect-and-suppress principle exist
 - Statistic Ineffective Fault Attack

Conclusions

- 1-bit and 3-bit redundancy is not sufficient per nibble
- Simple redundancy can offer better results as complex codes
- It is easier to inject multiple bit faults than single bit faults
- The adversary assumptions are only realistic for RED4
 - Offers more security than simple redundancy
 - Expensive in area

"We would like to stress the importance of verifying the assumptions and hypotheses [...] in real-world experiments."

CHES 2022

Conclusions – No Full Redundancy

CHES 2022

19.09.2022

Conclusions

- 1 bit and 3 bit redundancy is not sufficient per nibble _
- Simple redundancy can offer better results as complex codes _
- It is easier to inject multiple bit faults than single bit faults _
- The adversary assumptions are only realistic for RED4 -
 - Offers more security than simple redundancy
 - Expensive in area

"We would like to stress the importance of verifying the assumptions and hypotheses [...] in real-world experiments."

Questions ?!

TÜV[®] | TÜV NORD GROUP