When Bad News Become Good News
Towards Usable Instances of Learning with Physical Errors

Davide Bellizia1 Clé\text{\'e}ment Hoffmann1 Dina Kamel1 Pierrick Méaux2 François-Xavier Standaert1

1 UCLouvain, ICTEAM, Crypto Group, Louvain-la-Neuve, Belgium
firstname.lastname@uclouvain.be

2 Luxembourg University, SnT, Luxembourg
pierrick.meaux@uni.lu

Monday 19th September, 2022
Learning problems

Learning problems have proven to be interesting computationally hard problems.

- LPN
- LWE
- LWR
- MLWE

⇒

- One-way function
- Secret-key encryption scheme
- Post-quantum PKE
- Identity-based encryption
- Secure MPC
- Indistinguishability obfuscation

...
Learning problems - Presentation

\[k \sim \mathbb{F}_2^n \]

\[a \sim \mathbb{F}_2^n \rightarrow \langle a, k \rangle + e \]

LPN samples
Learning problems - Implementation

\[a \leftarrow \mathbb{F}_2^n \quad \langle a, k \rangle + e \]

RNG$_1$ → LPN samples → RNG$_2$
Learning problems - Implementation

$ a \leftarrow \mathbb{F}_2^n \quad \langle a, k \rangle + e\]

side-channel weakness

LPN samples
Physical learning problems - Presentation

Side-channel weakness

\[a \leftarrow \mathbb{F}_2^n \rightarrow \langle a, k \rangle + e \]

LPN samples
Physical learning problems - Presentation

\[a \leftarrow \mathbb{F}_2^n \]

LPPN samples

e.g. clock or voltage manipulation

\[\text{RNG}_1 \]

[Image of a diagram showing a process involving random number generation and mapping to a sample set.]
Physical learning problems - Data dependencies

Output data dependencies:

- Error probability depending on the correct output value
- Not negligible
- Reduction for LPPN

Input data dependencies:

- Computationally hard to exploit
- Can be made small by design

Error probability depending on the correct output value
Physical learning problems - Data dependencies

OUTPUT DATA DEPENDENCIES:

- Error probability depending on the correct output value
 - Not negligible
 - Reduction for LPPN

Error probability depending on the correct output value
Physical learning problems - Data dependencies

Output data dependencies:

- Error probability depending on the correct output value
 - Not negligible
 - Reduction for LPPN

Input data dependencies:

- Computationally hard to exploit
- Can be made small by design
Can this extend to LWE?

Goal:

- From \mathbb{GF}_2 to larger rings/fields
- Error distribution approximating a CBD_2 or 3 (used in Kyber)
Inner product structure

\[\langle a, k \rangle \]
Natural solution - Presentation

\[\langle a, k \rangle \]
Inexact computation occurs at the final adder stage.
Natural solution - Results

LWPE\textsubscript{A}: Error distribution approximating CBD_3.
Bad news - Mathematical data dependencies (1/2)

Toy Example:
- $\langle a, k \rangle = 0$
- modulo 4
Toy example:

- $\langle a, k \rangle = 0$
- modulo 4

$\langle a, k \rangle = 00$
Bad news - Mathematical data dependencies

Regular LWE

\begin{align*}
\text{Value of last 2 LSBs of } & \langle a, k \rangle \\
\text{error} & \\
& 0 \quad 1 \quad 2 \quad 3
\end{align*}

LWPE\textsubscript{A}

\begin{align*}
\text{Value of last 2 LSBs of } & \langle a, k \rangle \\
\text{error} & \\
& 0 \quad 1 \quad 2 \quad 3
\end{align*}
Bad news - Mathematical data dependencies

Regular LWE

LWPE_A
Inexact computation occurs at the intermediate adder stage.
- Inexact computation occurs at the intermediate adder stage
- Inexact computation occurs on LSBs
Results

LWPE

Learning With Physical Error

Monday 19th September, 2022
Good news - physical data dependencies

\[a \times \langle a, k \rangle \]

Adding independent uniform diffuses mathematical data dependencies

Coupling could still cause output dependencies
Good news - physical data dependencies

- Adding independent uniform diffuses mathematical data dependencies

- Coupling could still cause output dependencies
FPGA prototype and data dependencies

LWPE FPGA prototype (dashed lines are only for configuration and testing).

Empirical verification that **data dependencies** cannot be observed
Conclusion - What did we gain?

Interesting potential against leakage
Conclusion - What did we gain?

Interesting potential against leakage

- **Linear** overhead in the shares number
Conclusion - What did we gain?

Interesting potential against leakage

- **Linear** overhead in the shares number
- Trivial composition (key-homomorphic)

\[\langle a, k \rangle = \langle a, k_0 \rangle + \langle a, k_1 \rangle + \cdots + \langle a, k_{d-1} \rangle \]
Conclusion - What did we gain?

Interesting potential against leakage

- **Linear** overhead in the shares number
- Trivial composition (key-homomorphic)
- Inherently good against glitches

\[\langle a, k \rangle = \langle a, k_0 \rangle + \langle a, k_1 \rangle + \cdots + \langle a, k_{d-1} \rangle \]
Conclusion - Next steps (1/2)

Find an application of this **design space** (e.g. CPE encryption, signature)
Theoretical work:

- Understanding the impact of physical data dependencies
- **Reduction** towards standard learning problems
Figure 6: LPPN processor calibration: error probability (top) and control signal (bottom).