An energy and area efficient, all digital entropy source compatible with modern standards based on jitter pipelining 2022 Conference on Cryptographic Hardware and Embedded Systems

Adriaan Peetermans Ingrid Verbauwhede

imec-COSIC, KU Leuven, Leuven, Belgium

September 21, 2022

Established by the European Commission

Random numbers

How are they used?

Cryptography

Statistical simulations

Random numbers

How are they generated?

 Pseudo Random Number Generator (PRNG)

 True Random Number Generator (TRNG)

RNG verification

TRNG architecture

Delay Chain (DC)

- Propagate start edge through two independent paths
- Timing jitter accumulation
- Time to Digital Converter (TDC)
 - Resolve timing difference created by DCs
 - Timing jitter accumulation
- Digitisation
 - Convert resolved timing difference into digital format
 - Notifies controller output is valid

TRNG architecture

- Throughput optimisation:
 - Reduced TDC resolution requires less jitter accumulation time
 - TDC frequency matching
 - Concurrent jitter accumulation both in DC and TDC
 - Jitter pipelining

Jitter pipeline

Jitter pipeline with two stages

- DC-stage
- TDC-stage

First bit is resolved while second one is already started

Pipeline timing balance should be maintained

On-chip jitter measurement

- Experimentally determine platform dependent jitter parameter
- Conservative estimation method avoids overestimation
 - Overestimation could lead to false entropy claim
 - Measurement errors give positive bias
- On-chip and differential to avoid external influences
- Reuse existing TRNG hardware

On-chip jitter measurement, results

9

Design parameter selection criteria

Four design parameters can be freely chosen: μ_{DC_0} , μ_{DC_1} , μ_{TDC_0} and μ_{TDC_1}

- Represent DC, TDC oscillation frequencies
- Selection criteria:
 - Pipeline balance
 - Entropy density
 - Throughput

Design parameter selection criteria

Resolution versus accumulation time bounded by:

- Entropy density (1)
- Pipeline balance (2)
- Throughput (colour gradient)
- TRNG throughput improved by:
 - Larger jitter strength (shifts (1))
 - Faster TDC oscillation speed (shifts (2))

Experimental results

- IID claim verification
 - Correlation analysis
 - 4096 consecutively generated counter values

- No correlation observed
- NIST SP 800-90B IID test
 - **5** devices, 1 Mbit consecutively generated random bits per device
 - All devices pass

Experimental results

Entropy validation

- Standards require minimally 0.91 bit/bit min-entropy density
- ES design parameters have been optimised to output at least the required entropy density
- Higher entropy density levels possible at lower throughput
- 5 devices, 1 Mbit consecutively generated random bits per device
- All devices reach required entropy density

Chip	0	1	2	3	4
Model estimate	0.99988	0.99861	0.99811	0.99895	0.99963
Test estimate	0.93341	0.94475	0.94722	0.95255	0.96221
Minimum	0.93341	0.94475	0.94722	0.95255	0.96221

Experimental results

Power and throughput

- All devices have a throughput higher than 250 Mbit/s (highest for jitter-based)
- Output min-entropy density above 0.91 bit/bit over all voltage levels tested
- Best energy efficiency at 0.8 V supply: 1.46 pJ/bit

Conclusion

- ES architecture design, verification, and fabrication in a 28 nm technology compatible with modern standards
- Jitter pipelining allows for efficient entropy generation
- All-digital structure benefits scaling and design integration
- Stochastic model estimating generated output entropy
- On-chip jitter measurements
- Optimisation scheme guides parameter selection

Thank you for your attention

Design parameter selection criteria

Four design parameters can be freely chosen: μ_{DC_0} , μ_{DC_1} , μ_{TDC_0} and μ_{TDC_1}

- Represent DC, TDC oscillation frequencies
- Selection criteria:
 - Pipeline balance

$$res > \frac{P_{TDC_0} P_{TDC_1}}{2 \max(T_0^n, T_1^n)}.$$
 (1)

• Entropy density

$$res < \alpha \sqrt{F_{noise} \max(T_0^n, T_1^n)},$$
(2)

• Throughput

$$throughput = \frac{1}{\max(T_0^n, T_1^n)}.$$
(3)