On the application of Two-Photon Absorption for Laser Fault Injection attacks

Pushing the physical boundaries of Laser-based Fault Injection

Bodo Selmke, Maximilian Pollanka, Andreas Duensing, Emanuele Strieder, Hayden Wen, Michael Mittermair, Reinhard Kienberger, Georg Sigl, September 18, 2022
Introduction

Laser Fault Injection (LFI)

- Laser-systems are the most precise method for fault injection
 - High temporal precision (pulse lengths of a few nano-seconds allow targeting individual clock cycles)
 - High spatial precision (spot-sizes of approx. 1 µm)
 - High repeatability (diode-lasers offer pulse repetition rates of in the MHz-range)
 - Multi-beam fault injections (attacking redundant implementations)
Introduction

Limitations and challenges in LFI

Device access

- Backside (silicon substrate) access required
- Fault injection from frontside hardly possible due to reflection from the metal layers
- However, in practice backside not always easily accessible (e.g. BGA package)
Introduction

Limitations and challenges in LFI

Device preparation

- Package removal required
- Thinning of silicon substrate may be required to reduce device stress and loss of energy
 - Requires specialized equipment
 - Time consuming
 - Bears risk of cracking the die
 - Might be detected by countermeasures
Introduction

Limitations and challenges in LFI

Spot size physically limited

- $d_{\text{spot}} \propto \lambda \frac{f}{d}$
- Wavelength fixed in the near infrared range for sufficient penetration depth
- Ratio of focus distance to objective diameter f/d limited due to practical reasons
- Typically, for 1064 nm lasers, spot sizes down to 1 μm achievable
- However feature sizes of modern technology nodes still decreasing...
 - On a 90 nm technology node, precise control over single bit faults feasible
 - Not at 10 nm...
Introduction

Pushing the physical boundaries of LFI

Can laser-based fault injection be further improved?

- Better precision?
- Lower requirements for device preparation?
- Harder to detect?
Introduction

Pushing the physical boundaries of LFI

Can laser-based fault injection be further improved?

- Better precision?
- Lower requirements for device preparation?
- Harder to detect?

... actually yes!
Laser silicon interaction

Single Photon Absorption (SPA)

Energy [eV]

Single-Photon Absorption (SPA)

Electron

Hole

λ < 1110nm

1.12 eV

Electron hole pair is generated

Not possible for λ > 1110 nm
Laser silicon interaction

Single Photon Absorption (SPA)

- Bandgap at room temperature ≈ 1.12 eV
Laser silicon interaction

Single Photon Absorption (SPA)

- Bandgap at room temperature \(\approx 1.12 \text{ eV} \)
- \(E_{ph} \geq 1.12 \text{ eV} (\lambda \leq 1110 \text{ nm}) \) excitation of electron from VB into CB
- Electron hole pair is generated
Laser silicon interaction

Single Photon Absorption (SPA)

- Bandgap at room temperature ≈ 1.12 eV
- $E_{ph} \geq 1.12$ eV ($\lambda \leq 1110$ nm) excitation of electron from VB into CB
- Electron hole pair is generated
- Not possible for $\lambda > 1110$ nm

![Diagram showing single-photon absorption (SPA) with energy levels and absorption coefficient vs. wavelength.]

TPA-LFI | BS, MP, AD, ES, HW, MM, RK, GS | September 18, 2022 | PUBLIC
© Fraunhofer
Laser silicon interaction

Single Photon Absorption (SPA)

- Bandgap at room temperature ≈ 1.12 eV

$E_{ph} \geq 1.12$ eV ($\lambda \leq 1110$ nm) excitation of electron from VB into CB

- Electron hole pair is generated

- Not possible for $\lambda > 1110$ nm

Trade-off problem

Solution:

Two Photon Absorption
Laser silicon interaction

Two-Photon Absorption (TPA)

- **Single-Photon Absorption (SPA)**

 - **Energy [eV]**
 - **CB**
 - **VB**
 - **+**
 - **-**
 - **< 1110nm**
 - **Hole**
 - **Electron**
 - **0**
 - **1.12**

- **Two-Photon Absorption (TPA)**

 - **Energy [eV]**
 - **CB**
 - **VB**
 - **+**
 - **-**
 - **< 2220nm**
 - **Hole**
 - **Electron**
 - **Virtual**
 - **Intermediate State**
 - **0**
 - **1.12**

Explanation:

- **First photon:** Elevates electron from VB into a virtual intermediate state.
- **Second photon:** Elevates electron further into CB.
- **Electron hole pair is formed.**

Lifetime virtual intermediate state:

\[\Delta t \geq \frac{\hbar^4}{4 \pi \Delta E} \] (silicon: \(\sim 10^{-15} \text{ s} \))

- Low probability increased by high peak laser intensities.
- Increasing amount of photons.

TPA-LFI

| BS, MP, AD, ES, HW, MM, RK, GS | September 18, 2022 | PUBLIC | 7 |

© Fraunhofer
Laser silicon interaction

Two-Photon Absorption (TPA)

- \(E_{ph,1} + E_{ph,2} \geq 1.12 \text{ eV} \)
- \(\rightarrow \) simultaneous absorption of two photons

\[\text{Virtual Intermediate State} \]

\[\lambda < 2220 \text{nm} \]

\[\text{Hole} \]

\[\text{Electron} \]

\[\text{CB} \]

\[\text{VB} \]
Laser silicon interaction

Two-Photon Absorption (TPA)

- \(E_{ph,1} + E_{ph,2} \geq 1.12 \text{ eV} \)
 → simultaneous absorption of two photons
- **first photon**: elevates electron from VB into virtual intermediate state
- **second photon**: elevates electron further into CB
- Electron hole pair is formed

\(\lambda < 2220 \text{nm} \)
Laser silicon interaction

Two-Photon Absorption (TPA)

- $E_{ph,1} + E_{ph,2} \geq 1.12$ eV
 - \rightarrow simultaneous absorption of two photons
- **first photon**: elevates electron from VB into virtual intermediate state
- **second photon**: elevates electron further into CB
- Electron hole pair is formed
- Lifetime virtual intermediate state: $\Delta t \geq \frac{h}{4\pi \Delta E}$
 (silicon: $\sim 10^{-15}$ s)

TPA-LFI | BS, MP, AD, ES, HW, MM, RK, GS | September 18, 2022 | 7 | PUBLIC
Laser silicon interaction

Two-Photon Absorption (TPA)

- $E_{ph,1} + E_{ph,2} \geq 1.12 \text{ eV}$
 - simultaneous absorption of two photons
- **first photon**: elevates electron from VB into virtual intermediate state
- **second photon**: elevates electron further into CB
- Electron hole pair is formed
- Lifetime virtual intermediate state: $\Delta t \geq \frac{h}{4\pi\Delta E}$
 (silicon: $\sim 10^{-15}$ s)
- Low probability increased by high peak laser intensities
 → increasing amount of photons
Laser silicon interaction

Theoretical background: SPA vs TPA

SPA
- $I < 1 \times 10^6 \text{ W cm}^{-2}$ → linear relation (Beer's law)
- $dI(z) \, dz = -\alpha \lambda I(z)$
- Absorption rate prop. to $I(z)$
- $I(z) = I_0 e^{-\alpha \lambda z}$
- Exp. decay of intensity

TPA
- $I > 1 \times 10^6 \text{ W cm}^{-2}$ → nonlinear relation
- $dI(z) \, dz = -\beta I(z)^2$
- Absorption rate prop. to $I(z)^2$
- $I(z) = I_0 \left[1 + I_0 \beta z\right]$
Laser silicon interaction

Theoretical background: SPA vs TPA

SPA

- $I < 1 \times 10^6 \text{ W cm}^{-2}$
 - \rightarrow linear relation (Beer’s law)

- $\frac{dl(z)}{dz} = -\alpha \lambda l(z)$

- Absorption rate prop. to $l(z)$

TPA

- $I > 1 \times 10^6 \text{ W cm}^{-2}$
 - \rightarrow nonlinear relation

- $\frac{dl(z)}{dz} = -\beta I(z)^2$

- Intensity dependence of z
Laser silicon interaction

Theoretical background: SPA vs TPA

SPA

- \(I < 1 \times 10^6 \, \text{W cm}^{-2} \)
 - \(\rightarrow \) linear relation (Beer’s law)
- \(\frac{dl(z)}{dz} = -\alpha \lambda I(z) \)
- Absorption rate prop. to \(I(z) \)
- \(I(z) = I_0 e^{-\alpha \lambda z} \)
- Exp. decay of intensity

TPA

- \(I > 1 \times 10^6 \, \text{W cm}^{-2} \)
- \(\rightarrow \) nonlinear relation
- \(\frac{dl(z)}{dz} = -\beta I(z)^2 \)
- Absorption rate prop. to \(I(z)^2 \)
- \(I(z) = I_0 \left(1 + \beta z I_0\right)^{-1/\beta} \)
- Intensity dependence of \(z \)
Laser silicon interaction

Theoretical background: SPA vs TPA

SPA
- $I < 1 \times 10^6 \text{ W cm}^{-2}$
 - \rightarrow linear relation (Beer’s law)
- $\frac{dl(z)}{dz} = -\alpha \lambda I(z)$
- Absorption rate prop. to $I(z)$
- $I(z) = I_0 e^{-\alpha \lambda z}$
- Exp. decay of intensity

TPA
- $I > 1 \times 10^6 \text{ W cm}^{-2}$
 - \rightarrow nonlinear relation
- $\frac{dl(z)}{dz} = -\beta I(z)^2$
- Absorption rate prop. to $I(z)^2$
Laser silicon interaction

Theoretical background: SPA vs TPA

SPA

- \(I < 1 \times 10^6 \text{ W cm}^{-2} \)
 - \(\rightarrow \) linear relation (Beer’s law)
 - \(\frac{dl(z)}{dz} = -\alpha \lambda I(z) \)
 - Absorption rate prop. to \(I(z) \)
 - \(I(z) = I_0 e^{-\alpha \lambda z} \)
 - Exp. decay of intensity

TPA

- \(I > 1 \times 10^6 \text{ W cm}^{-2} \)
 - \(\rightarrow \) nonlinear relation
 - \(\frac{dl(z)}{dz} = -\beta I(z)^2 \)
 - Absorption rate prop. to \(I(z)^2 \)
 - \(I(z) = \frac{I_0}{1 + I_0 \beta z} \)
 - Intensity dependence of \(z \)
Laser silicon interaction

Theoretical background: Generation of electron hole pairs

Total absorption:

\[
\frac{dl(z)}{dz} = -\alpha l(z) - \beta l(z)^2
\]

where \(\alpha\) is the linear absorption coefficient, \(\beta\) is the nonlinear absorption coefficient, and \(l(z)\) is the intensity of the laser beam at position \(z\).

Electron hole pair generation rate:

\[
G(z) = \frac{dN(z)}{dt} = \alpha l(z) h\nu + \beta l(z)^2 h\nu
\]

for high peak intensities and \(\lambda > 1110\) nm, \(\text{SPA can be neglected}\).

Generated electron hole pairs:

\[
N_{2P}(z) = \beta^2 h\nu \int_{-\infty}^{\infty} I(z, t) dt
\]

Nonlinear model only valid for high intensities achieved by ultrashort laser pulses.
Laser silicon interaction

Theoretical background: Generation of electron hole pairs

Total absorption:

\[
\frac{dl(z)}{dz} = -\alpha l(z) - \beta l(z)^2
\]

Electron hole pair generation rate:

\[
G(z) = \frac{dN(z)}{dt} = \frac{\alpha l(z)}{h\nu} + \frac{\beta l(z)^2}{2h\nu}
\]
Laser silicon interaction

Theoretical background: Generation of electron hole pairs

Total absorption:

\[
\frac{dl(z)}{dz} = -\alpha l(z) - \beta l(z)^2
\]

- SPA
- TPA

Electron hole pair generation rate:

\[
G(z) = \frac{dN(z)}{dt} = \frac{\alpha l(z)}{h\nu} + \frac{\beta l(z)^2}{2h\nu}
\]

- SPA
- TPA

- High peak intensities and \(\lambda > 1110 \text{ nm} \)
 \(\rightarrow \) SPA can be neglected
Laser silicon interaction

Theoretical background: Generation of electron hole pairs

Total absorption:

\[
\frac{dl(z)}{dz} = -\alpha l(z) - \beta l(z)^2
\]

- SPA
- TPA

**High peak intensities and \(\lambda > 1110 \text{ nm} \)
→ SPA can be neglected

Generated electron hole pairs:

\[
N_{2P}(z) = \frac{\beta}{2h\nu} \int_{-\infty}^{\infty} l(z, t)^2 \, dt
\]

Electron hole pair generation rate:

\[
G(z) = \frac{dN(z)}{dt} = \frac{\alpha l(z)}{h\nu} + \frac{\beta l(z)^2}{2h\nu}
\]

- SPA
- TPA

High peak intensities and \(\lambda > 1110 \text{ nm} \)
→ SPA can be neglected
Laser silicon interaction

Theoretical background: Generation of electron hole pairs

Total absorption:

\[
\frac{dl(z)}{dz} = -\alpha l(z) - \beta l(z)^2
\]

SPA \quad TPA

Generated electron hole pairs:

\[
N_{2P}(z) = \frac{\beta}{2h\nu} \int_{-\infty}^{\infty} l(z, t)^2 \, dt
\]

Electron hole pair generation rate:

\[
G(z) = \frac{dN(z)}{dt} = \frac{\alpha l(z)}{h\nu} + \frac{\beta l(z)^2}{2h\nu}
\]

SPA \quad TPA

- High peak intensities and \(\lambda > 1110 \text{ nm} \)
 \(\rightarrow \) SPA can be neglected

- Nonlinear model only valid for high intensities achieved by ultrashort laser pulses
Two-Photon Absorption
Application and advantages

Three major advantages of TPA in comparison to SPA:

- Transparency of silicon within wavelength region of TPA
- Focal width: Nonlinear response below Abbe defraction limit
- Selective excitation referred to material depth
Two-Photon Absorption

Application and advantages

Simulation of generated charge carriers

- Focal plane set inside the DUT at $z = 70 \, \mu m$
- Focal parameters and power chosen equally for all three wavelengths
- Different wavelengths and pulse durations
- Pulses described by gaussian beam shape
- Generated charge carrier density N dependant on wavelength and material depth z
1. Transparency

- 800 nm: High intensity losses near air-silicon interface
- 2000 nm: Perfectly located spot at target depth
- No need for substrate thinning, no risk of loss or damage due to thermal effects or thinning
Two-Photon Absorption
Application and advantages

1. Transparency

- 800 nm: High intensity losses near air-silicon interface
- 2000 nm: Perfectly located spot at target depth
Two-Photon Absorption

Application and advantages

1. Transparency

- 800 nm: High intensity losses near air-silicon interface
- 2000 nm: Perfectly located spot at target depth
- No need for substrate thinning, no risk of loss or damage due to thermal effects or thinning
Two-Photon Absorption

Application and advantages

1. Transparency ($\alpha \to 0$) ✓

2. Focal width/nonlinear response
 - 1064 nm: $N_{SPA} \sim 6N_{TPA}$
 → Charge carriers all along beam path
 - 2000 nm: $w_{TPA} = \frac{1}{\sqrt{2}} w_{SPA}$
 → Symmetric focal spot and localized excitation
Two-Photon Absorption

Application and advantages

1. Transparency \((\alpha \rightarrow 0) \checkmark\)

2. Focal width \((w_{TPA} = \frac{1}{\sqrt{2}} w_{SPA}) \checkmark\)

3. Precise excitation
 - 1064 nm: Broadened, uneven gaussian distribution of \(N\) (FWHM \(\approx 40 \, \mu m\))
 - 2000 nm: \(N \sim I^2\)
 \(\rightarrow\) Sharp excitation, evenly gaussian distribution (FWHM \(\approx 15 \, \mu m\))
Two-Photon Absorption

Application and advantages

1. Transparency ($\alpha \to 0$) ✓

2. Focal width ($w_{TPA} = \frac{1}{\sqrt{2}} w_{SPA}$) ✓

3. Precise excitation ($N \sim I^2$) ✓
Experimental Setup

Two Photon Absorption – Nonlinear laser fault injection

- FS: fused silica wedges
- A: aperture
- CM: focusing mirror
- CW, S: chopper wheel, shutter
- BBO: nonlinear crystal
- Ge: Germanium filter
- FS: fused silica plate
- RO: reflective focusing objective
- DUT: device under test

\[\lambda_c = 690 \text{ nm} \quad \Delta \tau = 5 \text{ fs} \]

\[\lambda_c = 2000 \text{ nm} \quad \Delta \tau = 10 \text{ fs} \]
Experimental Setup

Two Photon Absorption – Nonlinear laser fault injection

- FS: fused silica wedges

\[\lambda_c = 690 \text{ nm} \]
\[\Delta \tau = 5 \text{ fs} \]

\[\lambda_c = 2000 \text{ nm} \]
\[\Delta \tau = 10 \text{ fs} \]
Experimental Setup

Two Photon Absorption – Nonlinear laser fault injection

- FS: fused silica wedges
- A: aperture

![Experimental Setup Diagram]

\[\lambda_c = 690 \text{ nm} \quad \Delta T = 5 \text{ fs} \]

\[\lambda_c = 2000 \text{ nm} \quad \Delta T = 10 \text{ fs} \]
Experimental Setup

Two Photon Absorption – Nonlinear laser fault injection

- FS: fused silica wedges
- A: aperture
- CM: focusing mirror
- CW, S: chopper wheel, shutter

\[\lambda_c = 690 \text{ nm} \quad \Delta \tau = 5 \text{ fs} \]

- FS: fused silica plate
- RO: reflective focusing objective
- DUT: device under test

\[\lambda_c = 2000 \text{ nm} \quad \Delta \tau = 10 \text{ fs} \]
Experimental Setup

Two Photon Absorption – Nonlinear laser fault injection

- FS: fused silica wedges
- A: aperture
- CM: focusing mirror
- CW, S: chopper wheel, shutter
- BBO: nonlinear crystal
- Ge: Germanium filter
- FS: fused silica plate

![Diagram of experimental setup]

Key components:
- Laser source
- Aperture (A)
- Fused silica wedges (FS)
- Focusing mirror (CM)
- Chopper wheel (CW)
- Shutter (S)
- Nonlinear crystal (BBO)
- Germanium filter (Ge)
- Reflective focusing objective (RO)
- Device under test (DUT)

Wavelengths and Durations:
- Laser wavelength (λ_c) = 690 nm
- Duration ($\Delta\tau$) = 5 fs
- Laser wavelength (λ_c) = 2000 nm
- Duration ($\Delta\tau$) = 10 fs

Graph:
- Intensity vs. Wavelength
- Intensity [arb. u.]
- Wavelength [nm]

Notes:
- TPA-LFI
- BS, MP, AD, ES, HW, MM, RK, GS
- September 18, 2022
- PUBLIC

© Fraunhofer
Experimental Setup

Two Photon Absorption – Nonlinear laser fault injection

- FS: fused silica wedges
- A: aperture
- CM: focusing mirror
- CW, S: chopper wheel, shutter
- BBO: nonlinear crystal
- Ge: Germanium filter
- FS: fused silica plate
- RO: reflective focusing objective

\[\lambda_c = 690 \text{ nm} \]
\[\Delta \tau = 5 \text{ fs} \]

\[\lambda_c = 2000 \text{ nm} \]
\[\Delta \tau = 10 \text{ fs} \]
Experimental Setup

Two Photon Absorption – Nonlinear laser fault injection

- FS: fused silica wedges
- A: aperture
- CM: focusing mirror
- CW, S: chopper wheel, shutter
- BBO: nonlinear crystal
- Ge: Germanium filter
- FS: fused silica plate
- RO: reflective focusing objective
- DUT: device under test

\[\lambda_c = 690 \text{ nm} \]
\[\Delta T = 5 \text{ fs} \]

\[\lambda_c = 2000 \text{ nm} \]
\[\Delta T = 10 \text{ fs} \]
Experimental Setup

TwoPhoton Absorption – Nonlinear laser fault injection

<table>
<thead>
<tr>
<th>Parameter on DUT</th>
<th>TPA</th>
<th>SPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center wavelength</td>
<td>2000 nm</td>
<td>1064 nm</td>
</tr>
<tr>
<td>Average Power</td>
<td>30 µW</td>
<td>1 µW</td>
</tr>
<tr>
<td>Single pulse energy</td>
<td>7.5 nJ</td>
<td>1 nJ</td>
</tr>
<tr>
<td>Focal width</td>
<td>10 µm</td>
<td>4 µm</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>10 fs</td>
<td>800 ps</td>
</tr>
</tbody>
</table>
Practical experiments

1. Demonstration of general functioning and investigation of precision
 - Infineon XMC1401 (Arm Cortex M0)
 - 65 nm technology node

2. Investigation of latch-up susceptible microcontroller
 - NXP LPC11E14 (Arm Cortex M0)
 - 140 nm technology node
Practical experiments

Precision test on Infineon XMC1401

- Scanning of a part of the on-chip SRAM with fixed step size

 For technical reasons differing step sizes: 350 nm (TPA) and 200 nm (SPA)

- 20 shots per location
Practical experiments

Precision test on Infineon XMC1401

- Scanning of a part of the on-chip SRAM with fixed step size

 For technical reasons differing step sizes: 350 nm (TPA) and 200 nm (SPA)

- 20 shots per location

- TPA performs significantly better than SPA, despite larger spot size!

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPA</td>
<td>5 %</td>
<td>30 %</td>
<td>8 %</td>
</tr>
<tr>
<td>TPA</td>
<td>10 %</td>
<td>50 %</td>
<td>15.4 %</td>
</tr>
</tbody>
</table>

Table: Summary of overall single-bit fault probabilities XMC chip
Practical experiments

Conventional 1064 nm laser system

- Experiment with the conventional 1064 nm laser setup
- Target: *NXP LPC11E14* ARM Cortex M0 microcontroller
- Laser scan and evaluation for faults in on-chip SRAM
Practical experiments

Conventional 1064 nm laser system

- **Experiment with the conventional 1064 nm laser setup**
- **Target:** *NXP LPC11E14* ARM Cortex M0 microcontroller
- **Laser scan and evaluation for faults in on-chip SRAM**
- **No fault injection feasible**
 - Chip reacts with hard reset once SRAM area is targeted
 - Brown-out detection reacts on induced latch-up
Practical experiments

Latch-up mechanism in CMOS inverter

![CMOS Inverter Diagram]
Practical experiments

Femtosecond 2000 nm laser system

- Testing the same chip with the femtosecond laser
- Detailed scan at locations 1 and 2
Practical experiments

Femtosecond 2000 nm laser system

- Testing the same chip with the femtosecond laser
- Detailed scan at locations 1 and 2
- **Fault injection feasible**
 - Charges localized at the relevant pn-junction for fault injection
 - Drastically reduced charge carrier density in substrate
Impact on countermeasures

- Redundancy-based countermeasures are agnostic about the fault injection technique
- Sensor-based countermeasures try to detect the fault injection itself

<table>
<thead>
<tr>
<th>Countermeasure</th>
<th>SPA</th>
<th>TPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light detectors</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Latch-Up sensitive design</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Bulk-builtin current sensors</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Ring Oscillators (RO)</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Backside shielding</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Thinning prevention</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Backside coating</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
Conclusion

- Advantages of Two Photon Absorption in comparison to regular LFI:
 - Charge carrier generation only in the focal point
 - Substrate thickness irrelevant
 - Improved spot size by approx. $\frac{1}{\sqrt{2}}$

- Improves circumventing certain sensor-based countermeasures

- Further research potential concerning the effectiveness on various countermeasures
Thank you for your attention
Contact Information

Bodo Selmke

Department Hardware Security
Fraunhofer-Institute for
Applied and Integrated Security
Address: Lichtenbergstraße 11
85748 Garching (near Munich)
Germany
Internet: https://www.aisec.fraunhofer.de
Phone: +49 89 3229986-132
E-Mail: bodo.selmke@aisec.fraunhofer.de

Maximilian Pollanka

Chair for Laser and X-Ray Physics
TUM School of Natural Sciences
Technical University of Munich
Address: James-Franck-Str. 1
85748 Garching (near Munich)
Germany
Internet: https://www.ph.nat.tum.de/e11
Phone: +49 (89) 289 - 12865
E-Mail: maximilian.pollanka@tum.de
1. Transparency:

- low absorption coefficient α at $\lambda > 1110 \text{ nm} \rightarrow$ no intensity loss
- no need for substrate thinning
- minimizes risk of loss or damage due to thermal effects or thinning
Application and advantages of TPA-LFI

1. Transparency ($\alpha \rightarrow 0$) ✓

2. Focal width/nonlinear response:
 - focal spot size below the theoretical resolution limit ($w_{TPA} = \sqrt{2} w_{SPA}$)
 - $\lambda < 1500 \text{ nm}$: smaller focal width via TPA compared to SPA at $\lambda = 1064 \text{ nm}$
Backup Slides

Application and advantages of TPA-LFI

1. Transparency ($\alpha \rightarrow 0$) ✓

2. Focal width ($w_{TPA} = \frac{w_{SPA}}{\sqrt{2}}$) ✓
Fault injection mechanism in CMOS inverter