GM vs GE 00000 Full key evaluation tools 000000

GE vs GM: Efficient side-channel security evaluations on full cryptographic keys CHES 2022

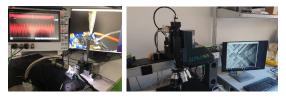
Anca Rădulescu, PG Popescu and Marios Choudary

Leuven, 21 September 2022

GM vs GE

Full key evaluation tools

Thanks Christ, the UPB team and Virgil Gligor from CMU



(The UPB campus – left: our Church; right: the rector offices)

GM vs GE

Full key evaluation tools

Side-channel attack security evaluations

Images from https://medium.com/@charles.guillemet/ledger-donjon-3e04e0ce49a9 SCA evaluations necessary:

- During product manufacturing to assess security of products
- For governments, to establish some required standards
- For security industry (e.g. automotive, banking) to ensure that third-party products (e.g. smartcards) have a sufficient level of security
- To obtain a uniform level of security certification (e.g. Common Criteria EAL4+)

Introduction	GM vs GE	Full key evaluation tools
00000		

SCA security evaluation tools for short data (e.g. key byte)

- Commonly used security level estimation metrics: Success Rate (SR), Guessing Entropy (GE) aka Rank
- Less common (yet...): Massey's Guessing Entropy (GM)
- A mess of guessing entropy measures and notations
 - 1994: James Massey proposes *E*[*G*]
 - 1997: Christian Cachin terms it 'Guessing Entropy' E[G(X)]and present conditional version E[G(X|y)]
 - 2007: Köpf and Basin use the conditional guessing entropy in the context of side-channel attacks
 - 2009: FX Standaert et al. present (empirical) Guessing Entropy in framework for SCA evaluations
- Bigger problem: GE and GM both run in $O(N \log N)$
 - Do not directly scale for large keys (impractical for $N>2^{16}$)
 - We need special methods for full-key security evaluations

GM vs GE 00000 Full key evaluation tools 000000

SCA security evaluation tools for full keys (e.g. 128-bit AES key, 4096-bit RSA key)

Two main approaches for full-key security evaluations:

- Key enumeration for large keys ([Charvillon et al. 2012, Poussier et al. 2016])
- Security level estimation for large keys:
 - Empirical Guessing Entropy (Rank) estimation ([Charvillon et al. 2013, Glowacz et al. 2015, Zhang et al. 2020])
 - Massey's Guessing Entropy (GM) bounds ([Choudary and Popescu 2017])

SCA security evaluation tools for full keys (e.g. 128-bit AES key, 4096-bit RSA key)

Our main goal - comparing full-key SCA evaluation tools:

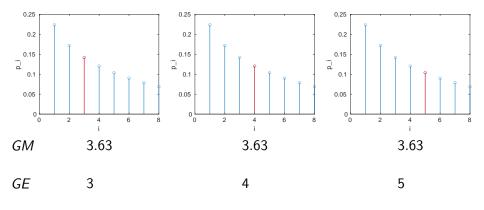
- FSE'15 rank estimation [Glowacz et al. 2015]
 - One of the fastest GE estimation methods to date
 - Works well up to 256 key bytes, with good precision
- GM bounds [Choudary and Popescu 2017]
 - Mathematical, rigurous bounds for GM
 - Fastest and most scalable full-key evaluation method to date
 - Works with 1024-byte keys and beyond
- GEEA rank estimation [Zhang et al. 2020]
 - One of the newest methods for GE estimation on large keys
 - Lower STD than FSE'15

GM vs GE

Full key evaluation tools 000000

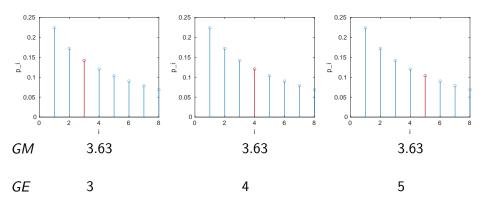
GM vs GE computation

$$(\text{Massey's})\text{GM} = \frac{1}{N} \sum_{q=1}^{N} \sum_{i=1}^{|S|} i \cdot P(k_i | X = \mathbf{X}_q)$$
$$(\text{Empirical})\text{GE} = \frac{1}{N} \sum_{q=1}^{N} \{\text{rank of } k \star \text{ in experiment } q\}$$


 $(P(k_1|\mathbf{X}_q) \ge \ldots \ge P(k_i|\mathbf{X}_q) = P(k \star |\mathbf{X}_q) \ge \ldots \ge P(k_{|\mathcal{S}|}|\mathbf{X}_q))$

Observations:

- Same complexity (need to sort all the list of probabilities)
- Both dependent on acquired datasets (X_q)
- Different use of probabilities
- GE requires knowledge of correct key, GM does not


GM vs GE o●ooo Full key evaluation tools

GM vs GE simple example

GM vs GE oo●oo Full key evaluation tools 000000

GM vs GE simple example

 \rightarrow GE provides actual (empirical) estimation of rank

 \rightarrow GM is generally a lower bound for GE [KB'07]

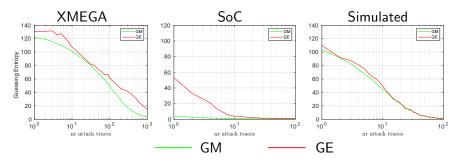
	GM vs	GE
	0000	С

Experimental datasets

Introduction

- We used three different datasets:
 - Simulated dataset (Hamming weight of AES S-box output mixed with Gaussian noise): x_i = HW(S-box(k ⊕ p_i)) + r_i
 - XMEGA dataset (AVR XMEGA AES engine)

• *SoC* dataset (ChipWhisperer-Lite with STM32F303 32-bit ARM)



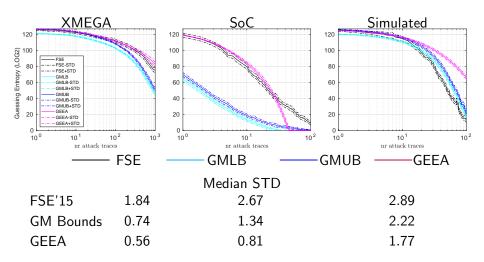
• We used Template Attacks to obtain lists of probabilities for each AES key byte (*p*₁, *p*₂, ..., *p*₂₅₆)

GM vs GE

Full key evaluation tools 000000

On the utility of GM

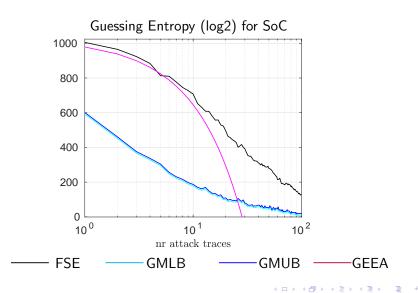
Observation 1: GM is generally a lower bound for GE \rightarrow Can be used to confirm security is above a certain treshold Observation 2: we may combine both measures to determine the quality of a leakage model


 $\begin{array}{l} \mathsf{GM} \text{ close to } \mathsf{GE} \rightarrow \mathsf{good} \mbox{ model (e.g. in } \textit{Simulated dataset)} \\ \mathsf{GM} \mbox{ departs from } \mathsf{GE} \rightarrow \mbox{ bad model (e.g. in } \textit{SoC dataset)} \end{array}$

Analysis of full-key evaluation tools

- We focus on the three representative methods
 - FSE'15 (Glowacz et al. 2015)
 - GM Bounds (Choudary and Popescu 2017)
 - GEEA (Zhang et al. 2020).

Full key evaluation tools $0 \bullet 0000$


Precision analysis on 128-bit data (16-byte results)

Anca Rădulescu, PG Popescu and Marios Choudary GE vs GM: Efficient side-channel security evaluations on full cryptog Slide 13

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Introduction
00000GM vs GE
00000Full key evaluation tools
000000Scalability and usability analysis on larger data (128 bytes)

Anca Rădulescu, PG Popescu and Marios Choudary GE vs GM: Efficient side-channel security evaluations on full cryptog Slide 14

GM vs GE 00000 Full key evaluation tools

Scalability and computation analysis on large data (16/128/1024-byte results)

Computation time (s) for $\rm XMEGA/SoC/simulated$

	16 bytes	128 bytes	1024 bytes
FSE'15	29/60/172	1027/5336/4689	Not practical
GM Bounds	1/1/1	2/6/6	40
GEEA	17/18/26	432/415/473	Not practical
$(M = 10^4, 10^6)$			

• FSE'15:

- Good approximation of GE
- Works well for up to 256 key bytes
- Slow computation for large keys

• FSE'15:

- Good approximation of GE
- Works well for up to 256 key bytes
- Slow computation for large keys
- GM Bounds:
 - Guaranteed, tight bounds for GM
 - (Typically) Lower bound for GE/FSE
 - Can be used with very large keys

• FSE'15:

- Good approximation of GE
- Works well for up to 256 key bytes
- Slow computation for large keys
- GM Bounds:
 - Guaranteed, tight bounds for GM
 - (Typically) Lower bound for GE/FSE
 - Can be used with very large keys
- GEEA:
 - High accuracy (low STD)
 - $\bullet\,$ Deviates from GE/FSE within similar computation time
 - Needs more analysis to provide some guarantees

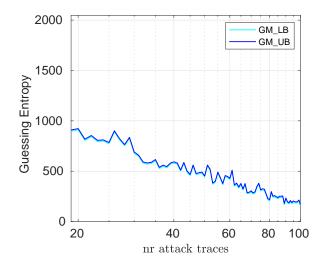
Introduction	

- Conclusions:
 - Use GM Bounds for a very fast security evaluation (lower bound) – works with very large keys https://gitlab.cs.pub.ro/marios.choudary/gmbounds
 - Use FSE'15 or other GE estimation algorithm for accurate estimate of key rank
 - (Optionally) Use a key enumeration algorithm to output list of keys in decresing probability

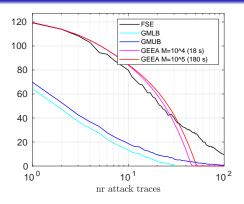
Greetings from the UPB (GM Bounds) Team

Introduct	ion

GM vs GE 00000



Appendix


Anca Rădulescu, PG Popescu and Marios Choudary GE vs GM: Efficient side-channel security evaluations on full cryptog Slide 18

Full key evaluation tools

GM Bounds (log2) on 1024-byte key (SoC data)

GEEA with varying amount of data (SoC, 16 bytes)

- GEEA computation on large keys uses random selection of subkey computations (comparison vectors)
- Needs very large M (large computation) to approach GE/FSE
- May not be able to follow GE within given computing power