A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay Functions and Modular Inversion

Kavya Sreedhar, Mark Horowitz, Christopher Torng
Stanford University

skavya@stanford.edu

September 19, 2022

Extended GCD

Computes Bézout coefficients b_a , b_b satisfying Bézout's Identity

$$b_a, b_b : b_a * a_0 + b_b * b_0 = \gcd(a_0, b_0)$$

Extended GCD is widely used in cryptography

Computes Bézout coefficients b_a , b_b satisfying Bézout's Identity

$$b_a, b_b : b_a * a_0 + b_b * b_0 = \gcd(a_0, b_0)$$

Modular Multiplicative Inverse RSA

Elliptic Curve Cryptography
ElGamal Encryption

:

There is an increasing need for faster XGCD

- 1. Modular Inversion for Curve25519 [Ber06]
 - Constant-time XGCD faster than Fermat's Little Theorem [BY19]

$$x^{-1} = x^{p-2} \pmod{p}$$

There is an increasing need for faster XGCD

- 1. Modular Inversion for Curve25519 [Ber06]
 - Constant-time XGCD faster than Fermat's Little Theorem [BY19]

$$x^{-1} = x^{p-2} \pmod{p}$$

- 2. Squaring binary quadratic forms over class groups [Wes19] as a VDF
 - XGCD is the bottleneck

[BBBF18]

$$f(x) = x^{2^T}$$
in a class group

There is an increasing need for faster XGCD

- 1. Modular Inversion for Curve25519 [Ber06]
 - Constant-time XGCD faster than Fermat's Little Theorem [BY19]

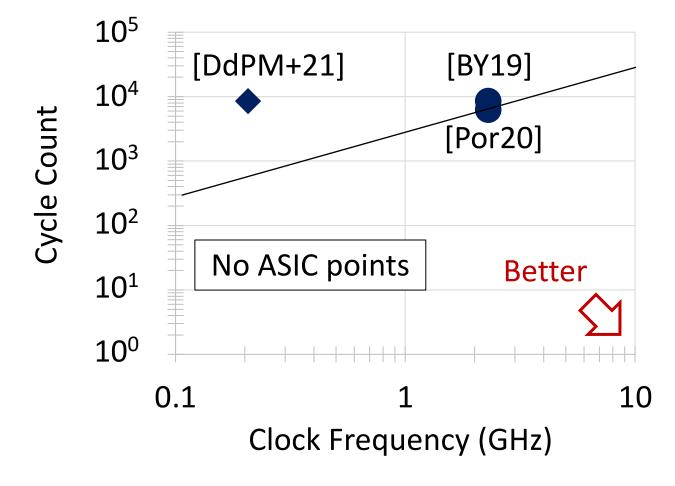
$$x^{-1} = x^{p-2} \pmod{p}$$

- 2. Squaring binary quadratic forms over class groups [Wes19] as a VDF
 - XGCD is the bottleneck

[BBBF18]

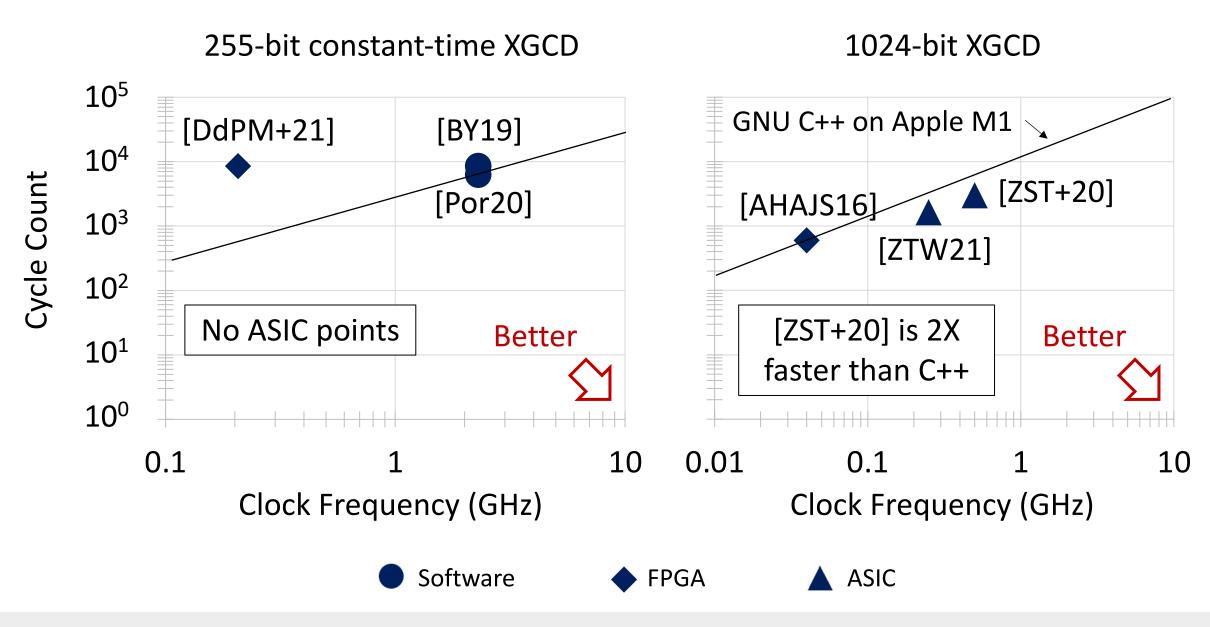
$$f(x) = x^{2^T}$$
in a class group

1024-bits, not constant-time



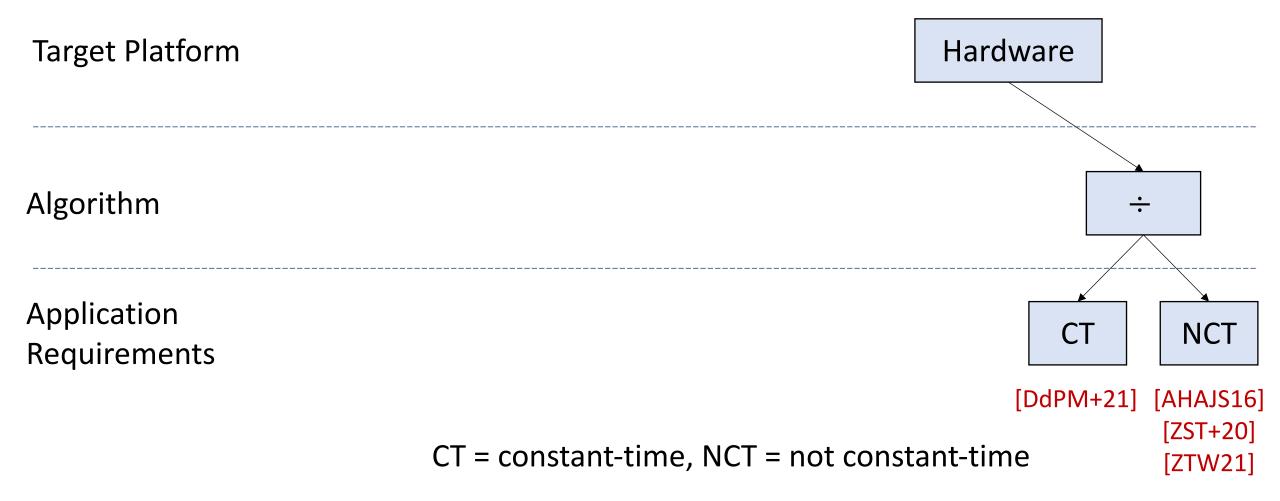
ASIC

FPGA

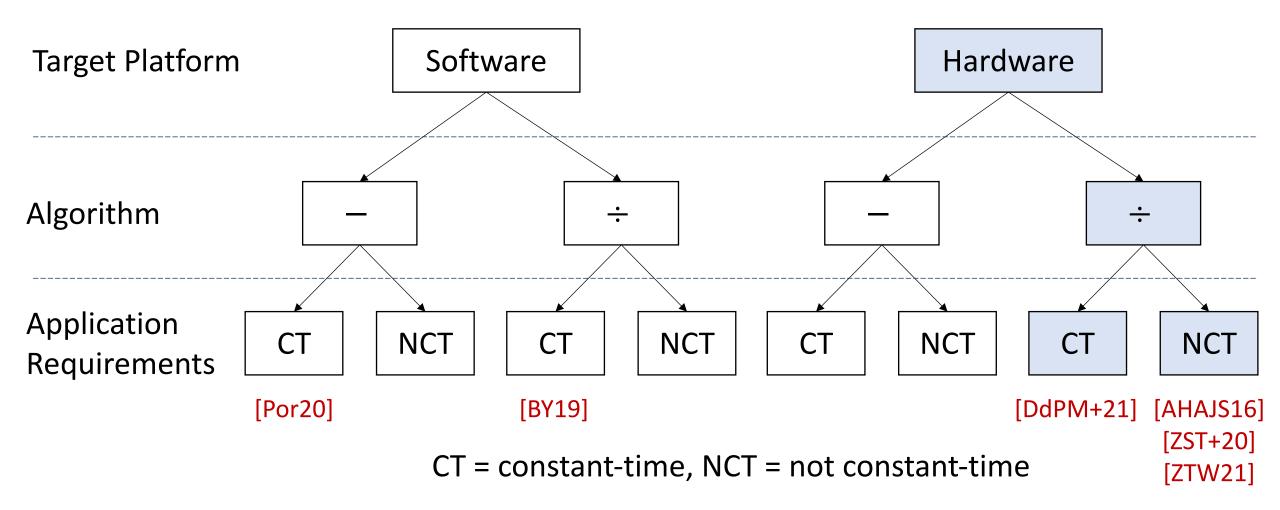


Current view of XGCD design space

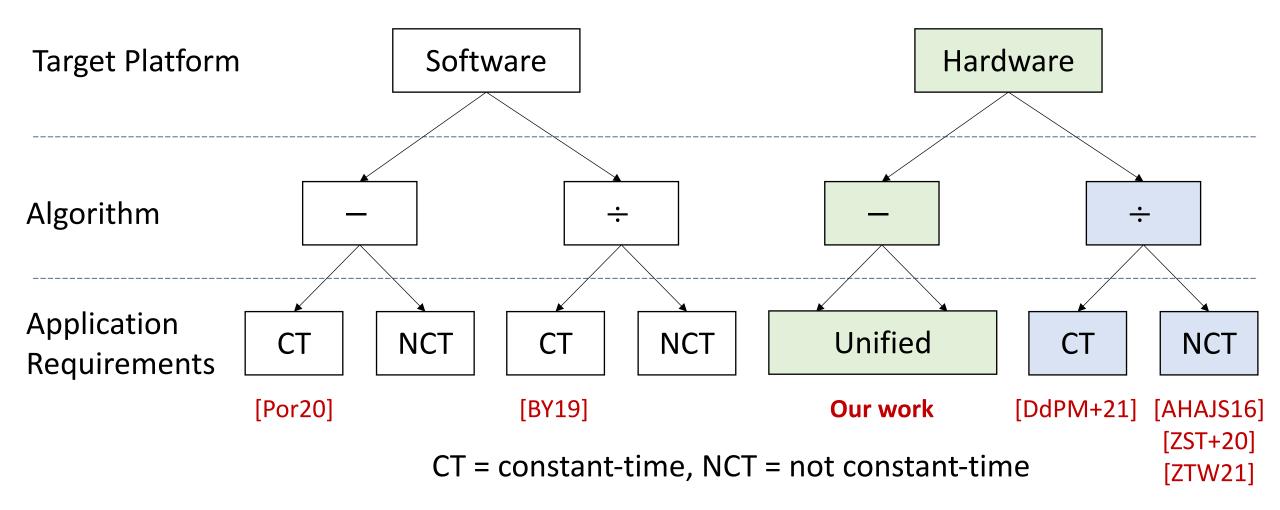
Design Space



We explore the broader design space



We explore the broader design space



Hardware allows for short iteration times

Target Platform	Software	VS	Hardware	
Number of Iterations	From algorithm		From algorithm	
Constrained to ISA	Yes		No	

Execution time = number of iterations * iteration time

The control over iteration time in hardware opens the opportunity to accelerate simpler algorithms that require more iterations.

GCD Algorithms Comparison

Algorithm

Stein [Ste67]

VS

Euclid (300 BC)

•

GCD-preserving Transformation

$$\gcd(a,b)$$
$$=\gcd(a-b,b)$$

$$\gcd(a,b) = \gcd(a \bmod b, b)$$

GCD Algorithms Comparison

* Two-bit PM [YZ86]

Algorithm

Stein [Ste67]

VS

Euclid (300 BC)

•

GCD-preserving Transformation

$$\gcd(a,b) = \gcd(a-b,b)$$

$$\gcd(a,b) = \gcd(a \bmod b, b)$$

Worst-Case Iterations

387 ***** 1548 *****

1X difference for 255 bits 384
1X difference for 1024 bits 1542

GCD Algorithms Comparison

* Two-bit PM [YZ86]

Algorithm

Stein [Ste67]

VS

Euclid (300 BC)

·

GCD-preserving Transformation

$$\gcd(a,b)$$
$$=\gcd(a-b,b)$$

$$\gcd(a,b) = \gcd(a \bmod b, b)$$

Worst-Case Iterations

Average Iterations

From GCD to Extended GCD (XGCD)

Design Space

• Compute Bézout coefficients satisfying Bézout Identity

$$b_a, b_b : b_a * a_0 + b_b * b_0 = \gcd(a_0, b_0)$$

• Maintain these relations each cycle, where $gcd(a_0,b_0)=gcd(a,b)$

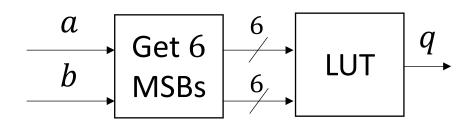
$$u * a_0 + m * b_0 = a$$

 $y * a_0 + n * b_0 = b$

Two-bit PM Critical Path

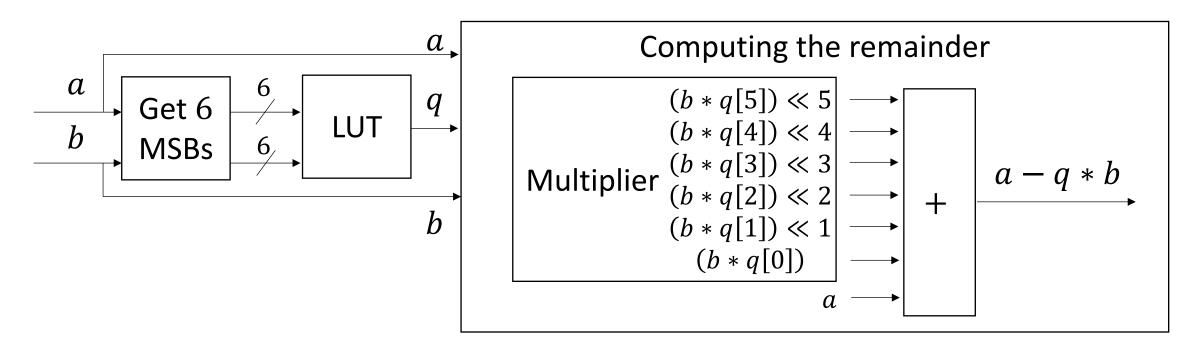
XGCD update:
$$m = \frac{m-n-1}{4}$$

Compute
$$q \le \lfloor \frac{a}{b} \rfloor$$
 — Compute $q * b$ — Compute $a - q * b$

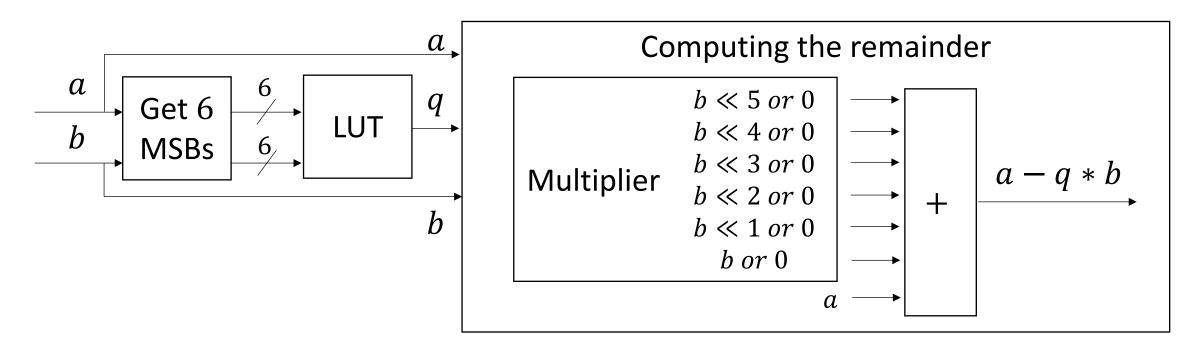


Results

Compute
$$q \le \lfloor \frac{a}{b} \rfloor$$
 — Compute $q * b$ — Compute $a - q * b$



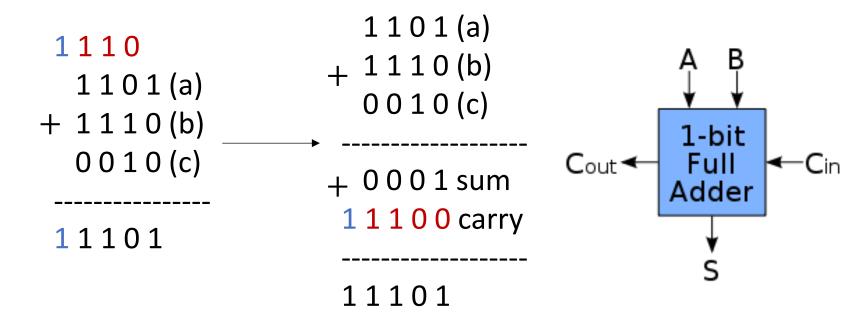
Compute
$$q \le \lfloor \frac{a}{b} \rfloor$$
 — Compute $q * b$ — Compute $a - q * b$



- The fastest adder is a carry-save adder (CSA)
 - Eliminates carry propagation, requiring O(1) delay

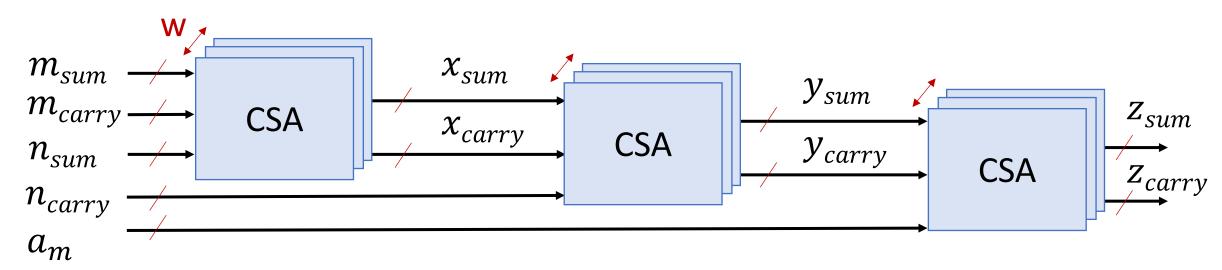
Design Space

• Stores numbers in CSA form or redundant binary form



Two-bit PM critical path: 3 CSA delays

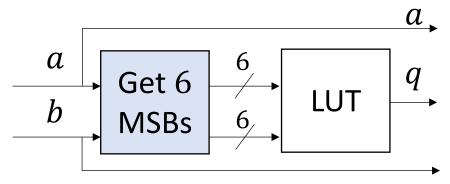
$$\frac{m-n-a_m}{4}$$



Data with bitwidth w

Compute
$$q \le \lfloor \frac{a}{b} \rfloor$$
 — Compute $q * b$ — Compute $a - q * b$

Design Space

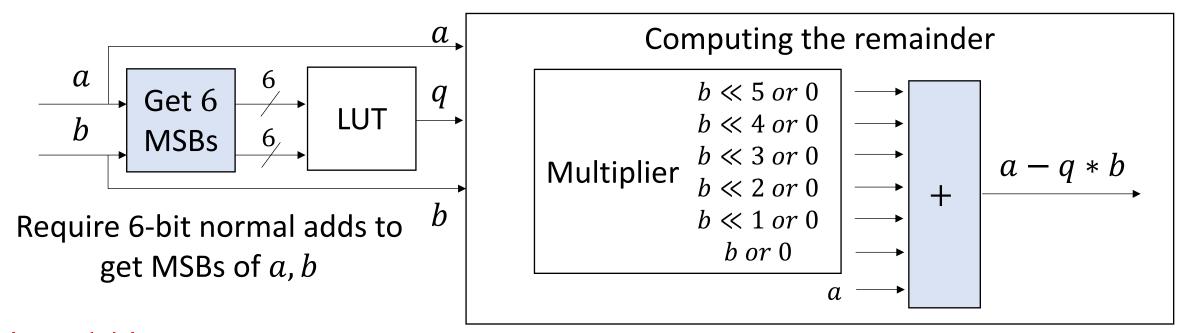


Require 6-bit normal adds to get MSBs of a, b

$$\lfloor \log_2(6) \rfloor + 1 = 3$$
 CSA delays

Euclid critical path: at least 9 CSA delays

Compute
$$q \le \lfloor \frac{a}{b} \rfloor$$
 — Compute $q * b$ — Compute $a - q * b$



 $\lfloor \log_2(6) \rfloor + 1 = 3$ CSA delays

Add 14 values with CSAs $\approx \lfloor \log_{3/2}(14) \rfloor = 6$ CSA delays

Two-bit PM is a faster starting point

- Two-bit PM critical path is at least 3X shorter than Euclid's
- Two-bit PM iteration counts are at most 2X higher than Euclid's

Two-bit PM with carry-save adders is the more promising starting point for hardware in the average and the worst-case.

Our unified design with constant-time config

Application Requirements

CT

VS

NCT

Approach

Termination Condition

Pad to worst-case cycle count

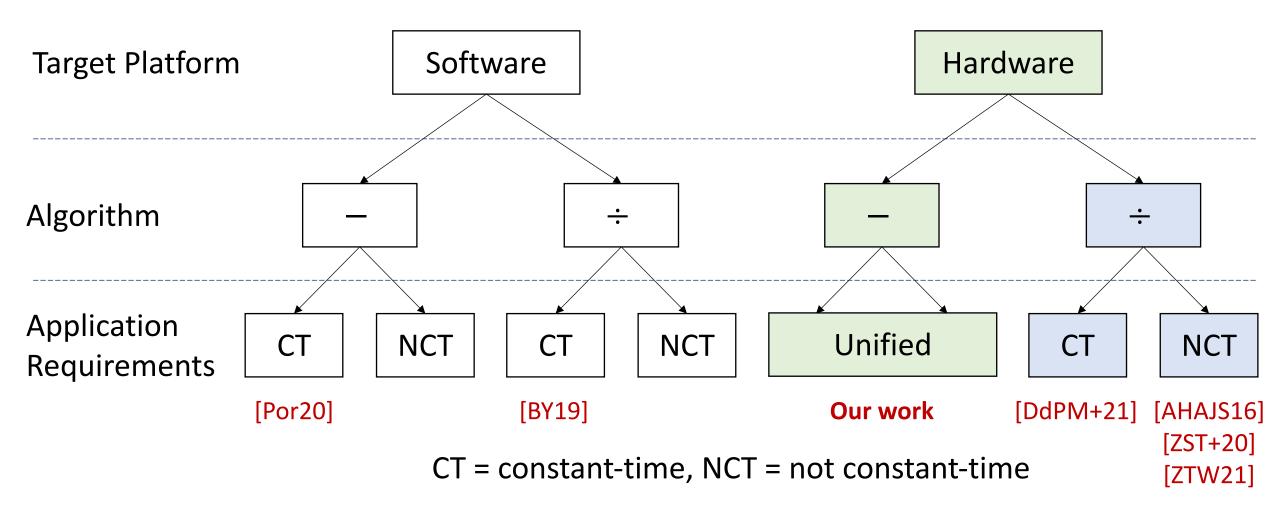
Cycle count equal to worst case

Reduce inputs until GCD

a == 0 or b == 0

Note that since a, b are in CSA form, we do not know when they become 0

We focus on the optimal design space



Execution Time

Preprocessing Iterations Loop (until termination condition is satisfied)

Postprocessing

4 cycles

Worst-case 1548 cycles for 1024-bit inputs and 387 cycles for 255-bit inputs

Execution Time

Preprocessing Iterations Loop (until termination condition is satisfied)

Postprocessing

4 cycles

Worst-case 1548 cycles for 1024-bit inputs and 387 cycles for 255-bit inputs

8 cycles

Preserve results when shifting in CSA form

Execution Time

Preprocessing Iterations Loop (until termination condition is satisfied)

Postprocessing

4 cycles

Worst-case 1548 cycles for 1024-bit inputs and 387 cycles for 255-bit inputs

- Preserve results when shifting in CSA form
- Allocate multiple cycles for processing steps

Execution Time

Preprocessing Iterations Loop (until termination condition is satisfied)

Postprocessing

4 cycles

Worst-case 1548 cycles for 1024-bit inputs and 387 cycles for 255-bit inputs

- Preserve results when shifting in CSA form
- Allocate multiple cycles for processing steps
- Subsample a, b for termination condition

Execution Time

Preprocessing Iterations Loop (until termination condition is satisfied)

Postprocessing

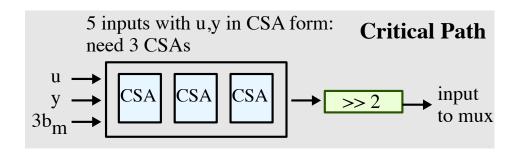
4 cycles

Worst-case 1548 cycles for 1024-bit inputs and 387 cycles for 255-bit inputs

- Preserve results when shifting in CSA form
- Allocate multiple cycles for processing steps
- Subsample a, b for termination condition
- Minimize control overhead

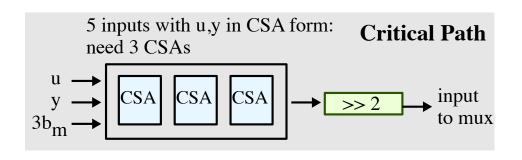
Critical Path for ASIC in 16nm

	255-bit XGCD	1024-bit XGCD
DFF clk to Q	45	40
Inverter	7	0
CSA	18	39
CSA	31	39
Buffer	13	0
CSA	30	34
Shift in CSA form	15	18
Late select muxes	18	18
Precomputing control	27	22
Setup Time	2	5
Total	204	215



Critical Path for ASIC in 16nm

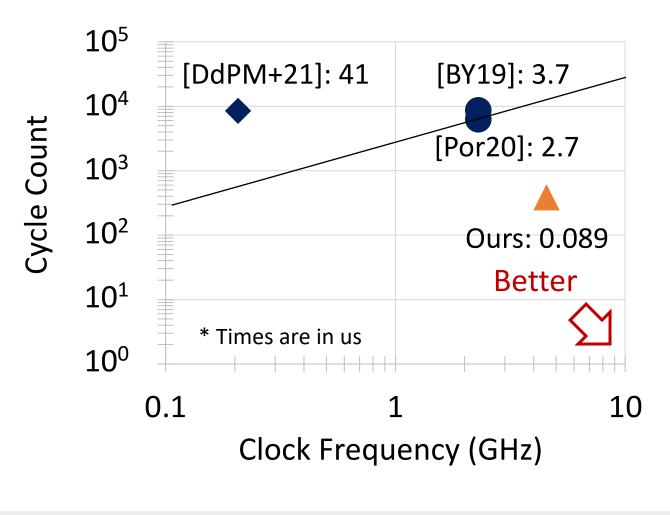
	255-bit XGCD	1024-bit XGCD
DFF clk to Q	45	40
Inverter	7	0
CSA	18	39
CSA	31	39
Buffer	13	0
CSA	30	34
Shift in CSA form	15	18
Late select muxes	18	18
Precomputing control	27	22
Setup Time	2	5
Clock Skew	16	41
Total	220	257



These are post-layout numbers for a fabrication-ready design

Introduction

255-bit Constant-time XGCD Comparison



Our ASIC

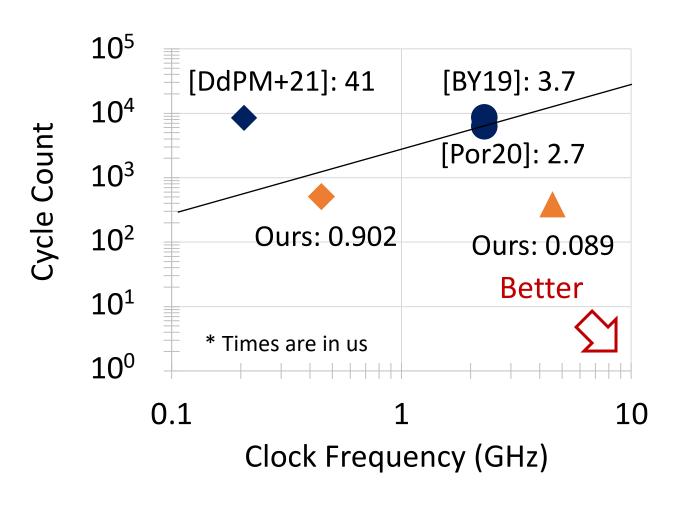
• 31X faster than [Por20]

Software

First for constant-time 255-bit XGCD

FPGA

255-bit Constant-time XGCD Comparison



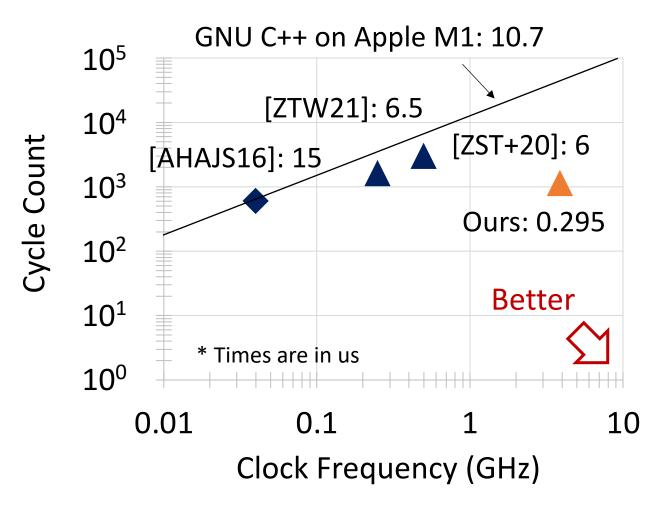
Our ASIC

- 31X faster than [Por20]
- First for constant-time 255-bit XGCD

Direct FPGA Comparison

Our design is 45X faster

1024-bit XGCD Comparison



Our ASIC

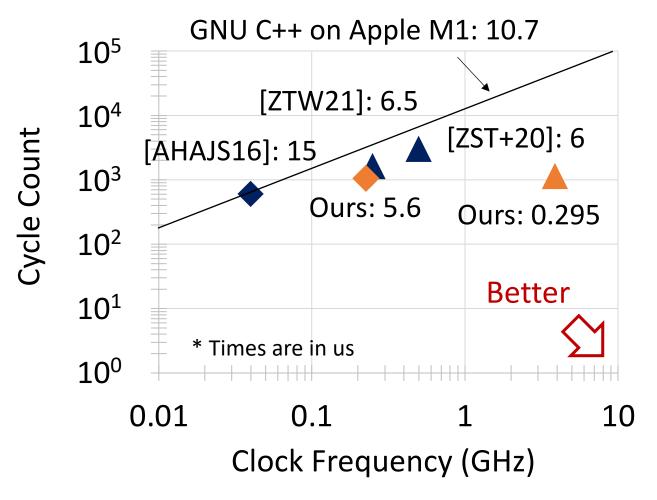
- 36X faster than software
- 8X faster than state-of-the-art ASIC

Software

FPGA

ASIC

1024-bit XGCD Comparison



Our ASIC

- 36X faster than software
- 8X faster than state-of-the-art ASIC

Direct FPGA Comparison

Our design is 2.7X faster

— Software

1. Supports progression in state of the art for Curve 25519

- 1. Supports progression in state of the art for Curve25519
- 2. Informs reasonable security levels for this type of VDF

- 1. Supports progression in state of the art for Curve25519
- 2. Informs reasonable security levels for this type of VDF
- 3. May be useful for other applications

- 1. Supports progression in state of the art for Curve25519
- 2. Informs reasonable security levels for this type of VDF
- 3. May be useful for other applications

https://github.com/kavyasreedhar/sreedhar-xgcd-hardware-ches2022