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Background of this work

◼ DL-SCA is one of the most powerful attacks.

• Many studies on DL-SCA have been conducted recently.

◼ Training an NN model requires a performance metric.

◼ Major metrics (e.g., CE loss, acc.) are not suitable for SCA.

• Accuracy of 0% does not mean DL-SCA will fail.
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However, computation cost of success rate (SR) is too high!
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Contributions

◼ Analysis of relation between cross entropy (CE) loss 

function and SR

• Explain why CE loss is not suitable to measure the performance of 

DL-SCA.

◼ Effective CE/PI (ECE/EPI), new metrics for DL-SCA

• ECE/EPI are more useful metrics than CE/PI for SCAs.

• EPI can enable us to estimate (the upper-bound of) SR.
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Relation between NLL and MI

◼ Negative log likelihood (NLL) is used as loss function.

• NLL minimization is equivalent to maximum likelihood estimation.

◼ NLL can be regarded as approximation of CE.

• If the number of traces 𝑚 is sufficiently large, then 

◼ Relation between mutual information (MI) and CE

Perceived information (PI)                                        denotes how much 

information NN can extract.
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Relation between MI and SR

◼ de Chérisey et al. prove the following theorem.

• Side-channel can be seen as communication channel.

Theorem (Relation between MI and SR)
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Relation between MI and SR

◼ de Chérisey et al. prove the following theorem.

• Side-channel can be seen as communication channel.
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𝜉 SR = 0 if SR = 0.25

→ We need no key information to achieve SR of 0.25.
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Relation between MI and SR

◼ de Chérisey et al. prove the following theorem.

• Side-channel can be seen as communication channel.

Theorem (Relation between MI and SR)
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𝜉 SR = 2 if SR = 1

→ We need all the key information (i.e., 2 bits) to 

achieve SR of 1.



7Copyright NTT CORPORATION

Relation between MI and SR

◼ de Chérisey et al. prove the following theorem.

• Side-channel can be seen as communication channel.

Theorem (Relation between MI and SR)
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Extension for DL-SCAs

◼ Intuitively, we expect the following inequality holds:

• If this holds, we can estimate SR by using PI (i.e., CE)

› Masure et al. experimentally showed that this inequality would hold.

◼ Unfortunately, this does not hold.

Let 𝑞 be a model. Define a following conversion of 𝑞 with an inverse temperature 𝛽 > 0:

For any 𝜷 > 𝟎, the success rate using 𝒒 is equivalent to that using 𝒒𝜷.

Theorem (probability distribution conversion which retains SR)
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Results of conversion using 𝜷

◼ NLL (CE) value and distribution shape change with 𝛽.

◼ But, SR/GE does not change with 𝛽.

• There is counterexample 𝑞𝛽 of following inequality:

𝛽 0.1 1 10

NLL 0.7933 0.7789 1.565

Attack 

result
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Effective CE/PI (ECE/EPI)

◼ SR is invariant, but CE/PI varies with the value of 𝛽.

• CE/PI are not appropriate metrics for DL-SCA.

◼ Proposed metrics: ECE and EPI (effective PI)

• Basic idea: remove the uncertainty of CE/PI in terms of SR

◼ Conject following inequality holds using EPI.
Conjecture
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DL-SCAs on masked software/hardware implementations
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Processing time of each method

• SR is evaluated by bootstrapping.

› Use 100 bootstrap samples to estimate SR value.

Empirical SR evaluation Proposed method Ratio

ASCAD 14.1 0.0378 373

TI 145 0.531 273

Processing time per one epoch [s]

Proposed method is several hundreds faster than empirical evaluation.
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Concluding remarks

◼ Analysis of relation between CE loss and SR

• Conversion changes CE loss but not SR

• CE/PI has uncertainty in terms of SR

◼ Effective CE/PI (ECE/EPI), new metrics for DL-SCA

• Can easily estimate the attack performance (e.g., SR and GE)

◼ Future work

• Formal proof of our conjecture (inequality of SR and EPI)
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Settings of experiments

Training Test

ASCAD 50,000 10,000

TI 4,000,000 4,000,000
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Model comparison

◼ Compare four pretrained models for ASCAD dataset

• MLP and CNN models proposed in original ASCAD paper

• CNN models proposed by Zaid et al. and Wouters et al.

◼ Lack of bins means # of required traces is greater than 10,000.

1

10

100

1000

10000

SR PI EPI SR PI EPI SR PI EPI

Nmax = 0 Nmax = 50 Nmax = 100

#
 o

f 
tr

ac
es

ASCAD MLP ASCAD CNN Zaid et al. Wouters et al.

Nmax is amount of desynchronization.
Our metric accurately estimates model performances.
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How to calculate ECE/EPI

has the following properties:

•

•

• is a strictly convex 

function of   .

◼ Newton method can find the minimum value of          .

• The local minimum of             is its global minimum.
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How to use NN for key recovery

◼ Negative log likelihood (NLL)

is used as a score of each key

• NLL is inversely proportional to 

the product of probability.

◼ Attack Procedure:

1. Calculate NLL for each key

using traces

2. Get     whose the minimum 

NLL value among all candidates
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Attack example when #keys = 2

𝑘1 is regarded as correct key.
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Inference using NNs
◼ NN is used to estimate intermediate value from a trace.

• Image classification

• DL-SCA

• In profiling phase, NN trains plausible probability distribution.

• In attack phase, trained NN estimates secret information.
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