

## Attacks Against White-Box ECDSA and Discussion of Countermeasures

Sven Bauer<sup>1</sup> Hermann Drexler<sup>2</sup> Maximilian Gebhardt<sup>3</sup> Dominik Klein<sup>3</sup> Friederike Laus<sup>3</sup> Johannes Mittmann<sup>3</sup>

<sup>1</sup>Siemens AG

<sup>2</sup>G+D Mobile Security

<sup>3</sup>Federal Office for Information Security (BSI)

September, 20th 2022

# WhibOx Contest 2021



#### **Rules & Setting**

- designers submit ECDSA in C source code
- full source code available to attackers
- attackers extract private key d
- scores depend on execution time, RAM usage and time to break

#### **ECDSA**

**INPUT** hash *h* 

- **OUTPUT** signature (*r*, *s*)
  - **1** set  $k \leftarrow rand32()$
  - **2** set  $r \leftarrow ((k G)_x \mod p) \mod q$
  - **3** set  $s \leftarrow k^{-1}(rd + h) \mod q$
  - 4 if r = 0 or s = 0, go to step 1, otherwise return (r, s)

#### **ECDSA**

**INPUT** hash *h* 

**OUTPUT** signature (r, s)

**1** set  $k \leftarrow rand32()$  **>** no source of randomness!

**2** set  $r \leftarrow ((k G)_x \mod p) \mod q$ 

- **3** set  $s \leftarrow k^{-1}(rd + h) \mod q$
- **4** if r = 0 or s = 0, go to step 1, otherwise return (r, s)

### **Deterministic ECDSA**

- **INPUT** hash *h*
- **OUTPUT** signature (*r*, *s*)
  - **1** set  $z \leftarrow \text{seed}(h)$
  - **2** set  $(k, z) \leftarrow \operatorname{rand}(z)$  **b** deterministic RNG seeded with *h*
  - **3** set  $r \leftarrow ((k G)_x \mod p) \mod q$
  - 4 set  $s \leftarrow k^{-1}(rd + h) \mod q$
  - **s** if r = 0 or s = 0, go to step 2, otherwise return (r, s)

#### Signature Equational System

signature computation

Federal Office for Information Security

$$s = k^{-1}(rd + h)$$
  
 $\Leftrightarrow rd - sk = -h$ 

• suppose 
$$(r_1, s_1), \ldots, (r_m, s_m)$$
 for  $h_1, \ldots, h_m$ 

$$r_1 d - s_1 k_1 = -h_1$$

$$\vdots$$

$$r_m d - s_m k_m = -h_m$$

• *m* equations, but m + 1 unknowns:  $k_1, \ldots, k_m$  and *d* 

Bauer et al. | Attacks against Whitebox ECDSA and Countermeasures | 20.09.2022 | Page 7

# **Key Collision Attacks**



### **Ephemeral Key Collision**

- two hashes  $h_1 \neq h_2$  with same k
- aka Playstation3-ECDSA

$$r_1 d - s_1 k = -h_1,$$
  
 $r_2 d - s_2 k = -h_2,$ 

- two equations, solve for d, k
- broken challenges: 33 / 97

### **Ephemeral Key Differential Collision**

- some bits of k only depend on small part of h
- **•** suppose  $h_1, h_2, h_3, h_4$  with  $h_i \neq h_j$
- ▶ e.g.  $h_2 = h_1 + \Delta$  and  $h_4 = h_3 + \Delta$
- with  $k_1$  and  $k_2 = k_1 + t$ , and  $k_3$  and  $k_4 = k_3 + t$

| $r_1  d - s_1  k_1$            | -                  | - | $-h_1$ |
|--------------------------------|--------------------|---|--------|
| $r_2 d - s_2 k_1$              | $-s_2 t$ :         | _ | $-h_2$ |
| <b>r</b> <sub>3</sub> <b>d</b> | $-s_3 k_3 =$       | _ | $-h_3$ |
| $r_4 d$                        | $-s_4 k_3 - s_4 t$ | _ | $-h_4$ |

solve for *d* and  $k_1, k_3, t$ 

for Information Security

broken challenges: 49 / 97

# **Collision Fault Analysis**



### **Fault Model**

#### **Crucial Steps**

- **2** set  $(k, z) \leftarrow \operatorname{rand}(z)$
- 3 set  $r \leftarrow (k G)_x$
- 4 set  $s \leftarrow k^{-1}(rd + h)$

#### Fault Attack

Federal Office for Information Security

- let v be intermediate value ( $k, k^{-1}, r, d, rd, rd + h$ )
- fault v to e (value fault)
- fault v to v + e (differential fault)
- ▶ find collisions, i.e. same *e* for different *h*

## Differential Fault in r

- **INPUT** hash *h*
- **OUTPUT** signature (*r*, *s*)
  - **1** set  $z \leftarrow \text{seed}(h)$
  - **2** set  $(k, z) \leftarrow \operatorname{rand}(z)$
  - 3 set  $r \leftarrow (k G)_x$
  - 4 set  $s \leftarrow k^{-1}(rd + h)$
  - **s** if r = 0 or s = 0, go to step 2, otherwise return (r, s)

## Differential Fault in r

- **INPUT** hash *h*
- **OUTPUT** signature (*r*, *s*)
  - **1** set  $z \leftarrow \text{seed}(h)$
  - **2** set  $(k, z) \leftarrow \operatorname{rand}(z)$
  - 3 set  $r \leftarrow (k G)_x$
  - 4 set  $s \leftarrow k^{-1}((r+e)d+h)$  Fault r to r+e
  - **s** if r = 0 or s = 0, go to step 2, otherwise return (r, s)

### Differential Fault in r

#### **Obtain Equations**

Federal Office for Information Security

$$r_{\mathsf{c},i} \, \mathbf{d} - s_{\mathsf{c},i} \, k_i = -h_i \,,$$
  
$$r_{\mathsf{f},i} \, \mathbf{d} - s_{\mathsf{f},i} \, k_i + \mathbf{e}_i \mathbf{d} = -h_i$$

with unknowns  $d, k_i, e_i d$ 

- ▶ find  $h_i \neq h_j$  with  $e_i = e_j$  (fault collision)
- ► solve for  $(d, k_i, k_j, e_i d) = (d, k_i, k_j, e_j d)$ .
- broken challenges: 39 / 97 (includes faults in rd, h or rd + h)

# **Experimental Results**



### **Experimental Setup**

- automated faults by NOPing out instructions
- static faults only (patching binary)
- few fixed input hash values
- small number of generated signatures
- all designs broken by faults or key collisions

This round goes to the attackers!

## **Key Collision Attacks: Summary**

| Ephemeral Key Collision (constant key)  | 12/97 |
|-----------------------------------------|-------|
| Ephemeral Key Collision (chosen hashes) | 21/97 |
| Cross-Challenge Ephemeral Key Collision | 40/97 |
| Ephemeral Key Differential Collision    | 49/97 |



### Simple & Collision Fault Attacks: Summary

| uncontrolled Fault in <i>r</i>                                    | 88/97 |
|-------------------------------------------------------------------|-------|
| Value Fault in r (correct r returned) or rd                       | 51/97 |
| Value/Differential Fault in d                                     | 53/97 |
| Value Fault in <i>h</i>                                           | 57/97 |
| Value Fault in $rd + h$                                           | 11/97 |
| Value Fault in $k$ or $k^{-1}$                                    | 75/97 |
| Differential Fault in <i>r</i> , <i>rd</i> , <i>h</i> or $rd + h$ | 39/97 |
| Differential Fault in <i>k</i>                                    | 34/97 |
| Differential Fault in $k^{-1}$                                    | 0/97  |

## **Countermeasures**



#### **Countermeasures**

#### **Motivation & Idea**

- prevent described (single) fault attacks
- infective computation by Romailler and Pelissier
- protects against uncontrolled fault in r
- but: additive blinding not effective against differential faults
- here: combine with infective computation w/ multiplicative blinding



### Conclusion

#### Conclusion

- various computational and fault attacks apply to WBC
- all challenges broken by automated, static faults or key collisions, in particular
  - uncontrolled fault in r
  - ephemeral key differential collision
- difficult to prevent by program obfuscation

#### **Future Work**

for Information Security

- countermeasures?
- differential computational analysis for asymmetric WBC?

### Thanks for your attention!

#### Contact

Dominik Klein Head of Section Section TK11 - Chip Security

firstname.lastname@bsi.bund.de Tel. +49 (0) 228 9582 0 Fax +49 (0) 228 10 9582 5400

Federal Office for Information Security (BSI) Godesberger Allee 185-189 53175 Bonn www.bsi.bund.de BSI as the Federal Cyber Security Authority shapes information security in digitalization through prevention, detection and response for government, business and society.

