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LFI: Laser Fault Injection
• Induces bit flips in digital circuits using a laser
• Advantage: Great spatial resolution for precise & stealthy attacks

• Precise control over individual bits in memory
• Impact is limited to a small region and detection-based countermeasure is challenging
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Selectively flipping bits 
in an SRAM 
(Roscian et al., FDTC 2013)

Red dots: bit-set faults
Blue dots: bit-reset faults



LFI: Laser Fault Injection cont.
• Successful bit flip needs a high peak power

• A bit flip occurs only when a photocurrent exceeds a certain threshold 
• Commercial laser stations use high-power and short-pulse lasers, the state-of-the-art 

in optical engineering

• Drawback: expensive attack cost, typically >$100,000
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Riscure Laser Station
https://www.riscure.com
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Light Commands: Extension of LFI to Microphones

• MEMS microphones receive 
fake audio when illuminated 
with amplitude-modulated 
laser

• Silent voice-command 
injection attack on smart 
speakers

• Extreme sensitivity
• A laser pointer was sufficient

3Background: Light Commands

T. Sugawara, B. Cyr, S. Rampazzi, D. Genkin, and K. Fu, “Light Commands: Laser-Based Audio Injection on Voice-
Controllable Systems,” USENIX Security Symposium 2020.



Motivation and Contribution
• The gap

• Conventional LFI needs an optimized high-power and short-pulse laser: ~5000 mW
• A weak continuous-wave laser was sufficient for the microphone attack: ~5 mW

• Conjecture
• Analog circuits can be more sensitive to light because 

they handle tiny voltage/current signals 

• Contribution
• Redshift: Manipulating Signal Propagation Delay 

via Continuous-Wave Lasers

4Motivation & Research Questions

CW laser 
~5mW

Pulse laser 
~5000 mW



Outline
• Intro
• Oscillator Frequency Shift

• Cheap laser setup
• Frequency-manipulation experiments: ASICs and MCUs
• Advantages

• Application to PUFs
• Background: PUF-based key storage and its previous attack
• State-biasing experiments: ring-oscillator and arbiter PUFs
• State-recovery experiments

• Discussion
• Causality
• Countermeasures

• Conclusion
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Cheap laser setup: a microscope with a laser diode
• A laser module with collimation optics compatible with a C-mount camera port

• Control the laser power through driving DC current, similarly to LED dimming
• We use a laser-current deriver and an FG to programmatically control the laser
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Thorlabs LDH56-P2/M
Collimation Mount

Thorlabs CP33/M
Cage Plate

Thorlabs SM1A10
C-Mount Adapter

Osram PLT5 520B
520-nm Green Laser Diode
in TO56 package

A screw for adjusting
collimation optics

Thorlabs C340TMD-A 
Collimation Lens (f = 4.03 mm)



Experiment: Frequency shifts in ring oscillators in ASICs
• We put a depackaged ASIC chip under the microscope and aim the laser on an oscillator 
• We gradually increase the laser power while measuring the oscillation frequency
• The frequency decreases almost linearly with injected laser power
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Laser power /mW

45-nm ASIC

Stronger light
= slower 

oscillation

Target ring oscillator

Laser power /mW

180-nm ASIC

30 to 5 MHz 
with 1.75 mW
< a laser pointer



Experiment: Frequency shifts in clock oscillators on MCUs
8Oscillator Frequency Shift

• Similar 
frequency shifts 
occur in clock 
oscillators on 
MCUs

NXP Microchip ST

12 to 9 MHz 
w/ 6.5 mW

16 to 4 MHz 
w/ 0.12 mW

16 to 4 MHz 
w/ 0.06 mW



Advantages
• Laser Injection Attack on Delay-Sensitive Circuits

• Redshift extends the target of laser attacks from digital circuits to delay-sensitive 
analog circuits

• Stealthiness
• The required laser power can be less than 1/1000
• It can be below the threshold of 

laser detectors configured for pulse lasers

• Cheaper Setup 
• Our setup is around $5,000, which fits within the Standard equipment in CC
• Cf. conventional laser station with >$100,000, categorized as Specialized
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CW laser 
~5mW

Pulse laser 
~5000 mW



How can an attacker exploit Redshift?

• PUFs
• The latter part of this talk

• Other possible extensions
• RNG: disrupt entropy-source oscillators
• Clock glitching: underclocking can cause synchronization errors
• Evading sensor-based countermeasures

• Laser illumination can cause false positives and/or negatives
• On-chip sensors (e.g., an EM-probe detector) use oscillation frequency as a sensing principle

10Oscillator Frequency Shift



PUF and PUF-based key storage
• PUF state

• A device-unique ID generated by a PUF 
from manufacturing variation

• PUF key
• A cryptographic key from a PUF state with 

error correction

• PUF-based key storage
• Encapsulation a pre-shared key with a 

PUF key
• The keys appear only after the chip is 

turned on, providing the protection 
against reverse engineering
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Zeitouni et al.’s SRAM-PUF attack exploiting remanence effect*

• Bias SRAM PUF states by gradually increasing the widths of reset pulses 

• Recursively recover intermediate states with neighbor search while checking the 
guesses with the query & response pairs

12Application to PUFs

*S. Zeitouni, Y. Oren, C. Wachsmann, P. Koeberl, and A.-R. Sadeghi, “Remanence decay side-channel: The PUF case,” IEEE Trans. IFS 2016.
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Extension with Redshift
• Idea: use Redshift to induce similar biases in delay PUFs

• Simple target: RO-PUF with a fixed reference oscillator
• Outputs 0 if a target oscillator is faster than the reference oscillator and 1 otherwise

• Slowing down the reference oscillator results in the bias in 0/1 population

13Application to PUFs

Osc. frequency

1 0 1 0 1 0

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

Higher laser power & slower reference oscillator
Ref. Ref. Ref.

Osc. frequency Osc. frequency



Experiment: biasing RO-PUF state
• Target: RO-PUFs in our ASIC chips that use the the previous ring oscillators
• Illuminate the reference oscillator while the PUFs generate 256-bit states
• HW decreases as we increase laser power
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Experiment: biasing A-PUF state

• Redshift causes similar HW bias in A-PUF
• Laser on an arbiter circuit makes one path slower than another
• HW decreases as we increase laser power
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State-recovery experiments

• Verifies state-recovery attack with error correction & crypto
• Simple error-correction scheme for generating a 128-bit key 

• Stable-bit selection & bitwise majority voting 
• Crypto service

• AES-128 challenge & response

• Measurement
• Illuminate the target PUF with a laser and query the crypto service 5 times for each 

laser power
• Increment the laser power and repeat
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State-recovery experiments cont.
• Search finishes within 1sec in all the cases

• The distance in neighbor search is the computational bottleneck: 𝟏𝟐𝟖
𝒅𝒎𝒂𝒙

• The next states is always found within 1- or 2-bit distances 
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Target Exec time 
[msec]

Max distance to 
next states 
𝒅𝒎𝒂𝒙 [bits]

180-nm RO-PUF 931 2
40-nm RO-PUF 22 1
180-nm A-PUF 39 1
40-nm A-PUF 233 1
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Physical Causality

• Conventional model with a current source
• A part of the driving current is wasted as 

photocurrent, increasing the time needed to charge 
the load capacitance

• Laser-Assisted Device Alteration (LADA)
• Changes the transistor property with continuous-

wave laser illumination for LSI failure analysis
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Countermeasures
• On-Chip sensors for continuous-wave lasers

• Integration over time

• Avoid a fixed reference oscillator in RO-PUF
• Pair-wise comparison, e.g., chaining*

• Detecting a wrong PUF Keys
• Detect unsuccessful key generation and suspend crypto services

• Hardware obfuscation
• Hide the PUF key-generations details needed for running the attack
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*D. Merli, F. Stumpf, and C. Eckert, “Improving the quality of ring oscillator PUFs on FPGAs.” WESS 2010



Conclusion

• Summary
• A new laser attack that slows down delay-sensitive circuits using continuous-wave 

laser
• Its application to PUF state-recovery attack

• Future works
• Extending Redshift to other applications and analog circuits
• Further verification of the causality through experiments and simulation
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Questions?

Thank you for listening!


