
One Truth Prevails:
A Deep-learning Based Single-Trace Power Analysis

on RSA–CRT with Windowed Exponentiation

Kotaro Saito, Akira Ito, Rei Ueno, and Naofumi Homma
Tohoku University

Cryptographic Hardware and Embedded Systems
21st September, 2022

Side-channel attack (SCA) on RSA

nSCA on modular exponentiation to estimate secret exponent
pTraditional attacks distinguish squaring and multiplication to estimate exponent
pMany studies have been devoted to how to accurately estimate exponent

nPartial key exposure attack
pSecret keys estimated by SCA

is not always correct/complete
pEstimate full RSA–CRT secret key

from partial/noisy leakage 2

Power/EM trace from
RSA module

Secret key leakage

S: Squaring, M: Multiplication

𝑝 =1XX1, 𝑞 =1XX1, 𝑑! =XXX1, 𝑑" =XXX1

𝑝 =1001
𝑞 =1111
𝑑! =X111
𝑑" =X011

𝑝 =1101
𝑞 =1011
𝑑! =X111
𝑑" =X011

𝑝 =1011
𝑞 =1101
𝑑! =X111
𝑑" =X111

𝑝 =1111
𝑞 =1001
𝑑! =X111
𝑑" =X111

𝑝 =1X01
𝑞 =1X11
𝑑! =XX11
𝑑" =XX11

𝑝 =1X11
𝑞 =1X01
𝑑! =XX11
𝑑" =XX11

M S MMS S SSSS

10 1 0 0 1 0

Deep-learning based SCA (DL-SCA)

nStrongest profiled SCA which requires detailed assumption about
leakage (compared to, for example, template attack)

nDL is very strong tool for SCAs, but researchers should still
consider “what-to-learn” for key recovery
pFor symmetric cipher, it would be well established
pBut for public key decryption/signing, it varies depending on PKE

3

Profiling phase

Profiling device Training dataset DL model

Attack phase

Target device Test dataset,
NN inference

Secret key

This work

nWe present new deep-learning based single-trace power/EM
analysis on state-of-the-art RSA–CRT implementations
pNew attack methodology for windowed exponentiation with dummy load
pLeverage DL technique to estimate window values accurately
pNew partial key exposure attack algorithm designed for our situation

nProposed attack achieves full-key recovery of 1,024-bit and 2,048
RSA–CRT implementations
pExperimentally demonstrated on GMP implementation

l Major multiprecision arithmetic library, used in cryptographic libraries
• OpenSSL has option to adopt it in back-end

l Can be used on embedded microcontroller
pApplicable to (stand-alone) OpenSSL, Botan, and ligcrypt

4

RSA cryptosystem

nEncryption:
c = me mod N

nDecryption:
m = cd mod N

Nice math!
But how to implement it efficiently and securely?

5

Plaintext: m, Ciphertext: c,
Public key: (e, N), Secret key: (p, q, d),

N = pq, ed = 1 mod N

Open-source RSA implementations

nChinese remainder theorem (CRT) is used in decryption/signing

pYields 2–4 times faster computation
nExponentiation algorithm mainly determines the performance

pOpen-source software (OSS) usually employ windowed exponentiation

6

Exponentiation algorithm Relation to S–M seq. Execution time Examples of OSS adoption

Left-to-right binary Exponent-dependent,
and bijective to exponent.

Non-constant,
slow

None

Square–multiply always
Montgomery ladder

Exponent-independent Constant, slow None

Fixed window Exponent-independent Constant, fast GMP, OpenSSL, WolfCrypt, etc.

Sliding window Exponent-dependent, but
not bijective to exponent

Non-constant,
fast

libgcrypt, Gnu TLS, Bouncy Castle, etc.

Secret key: (p, q, dp, dq, p-1),
N = pq, ed = 1 mod N, dp = d mod p, dq= d mod q

Fixed window exponentiation m = cd mod N

nFastest constant-time exponentiation (let w be window size)
pPrecomputation: Calculate ci for i = 0 to 2w–1 and make table where table[i] = ci
pMain loop: Perform squaring w times and then multiplication with table[i]

l i is temporal window value

nSCA security?
pSecure against SPA (square–multiply sequence is independent of exponent)
pLeakage of temporal window values (loaded table address) yields key recovery

l Prime+Probe, address bit DPA, collision analysis, etc.
l Leakage/security of operand loading should be considered

7

Temporal window value 1101 1110 0111
Square-Multiply sequence SSSSM SSSSM SSSSM

𝑚 ← (((1!)!)!)!×𝑐"# 𝑚 ← (((𝑚!)!)!)!×𝑐"$ 𝑚 ← (((𝑚!)!)!)!×𝑐%

Example of d = (110111100111)2 and w = 4

Dummy load for hiding temporal window value

nMany windowed exponentiation in OSS employ dummy load
pAll operands in precomputation table are accessed in every multiplication

nWindowed exponentiation + dummy load seems sufficient to
counter known remote timing/cache attacks

But how about power/EM analyses?
8

Function LoadOperand(addr);
s← 0;
for i← 0 to 2w – 1 do

mask ← – (i = addr);
s← or(and(s, ¬mask), and(table[i], mask));

return s

Operand loading in GMP
(addr is temporal window value)

s
table[i]

Equivalent circuit representation
true?

0
1

Output
(after 2w iterations)

Overview of proposed attack

9

Step 1: Profiling (DL training phase)

Step 3: Partial key exposure attack

Step 2: Temporal window value
estimation (DL attack phase)

DL-SCA Step 1: Acquire traces for NN training
and training NN

Step 2: Temporal value inference from
attack traces by NN inference

・We develop very efficient methodology
(specify what to learn) via in-depth analyses
on implementation

Step 3： Full-key recovery via secret key
leakage obtained in Step 2
・Estimated secret exponents may not be
completely correct
・New partial key exposure attack dedicated
to our methodology

nAn operand loading consists of one true load and 2w–1 dummy loads
pValue of register s is changed only when true load

l Possibility of distinguishing true/dummy
load by its physical side-channels

pOrder of true and dummy loads fully
depends on temporal window value
l True/dummy load sequence is one-hot

coding of temporal window value

Proposed methodology: One truth prevails

10

Function LoadOperand(addr);
s← 0;
for i← 0 to 2w – 1 do

mask ← – (i = addr);
s← or(and(s, ¬mask), and(table[i], mask));

return s

Temporal window value 1101 1110 0111
Square-multiply sequence SSSSM SSSSM SSSSM

True/dummy load sequence DDDDDDDDDTDD DDDDDDDDDTD DDDDDDDTDDDD

Example of d = (110111100111)2 and w = 4

Distinguishing true/dummy load yields temporal window value recovery

How to distinguish true/dummy load: DL-SCA

nEmploy two-classification NN to distinguish true/dummy load
Training phase:
pTrain NN using traces labeled

as true or dummy load (from
profiling device)

Attack phase:
pPerform 2w two-classifications

to distinguish true/dummy load
pEstimate load operation with

highest probability of true load
as the true load
(Take argmax of NN outputs)

nNN inference is reduced to two-classification from 2w-classification
pImprove NN accuracy and reduce learning cost, which yields efficient attack 11

���$FTXLUH�RSHUDQG�ORDGLQJ�WUDFHV

��'XPP\�ORDGLQJ

���2EWDLQ�FRQILGHQFH�UDWH
IURP�11�LQIHUHQFH� ���5HFRYHU�SULYDWH�H[SRQHQWV

DUJPD[

)RU�� �GR�

UHWXUQ�

6LGH�FKDQQHO
WUDFHV��[�����

��'XPP\�ORDGLQJ

��'XPP\�ORDGLQJ

��7UXH�ORDGLQJ

��'XPP\�ORDGLQJ

5HFRYHU�WHPSRUDO�ZLQGRZ�YDOXH�

[

[

[

[

[

[

New partial key exposure attack

12

𝑝 =X…XX1, 𝑞 =X…XX1, 𝑑&, 𝑑'

[1]
・・・[w]

[1]
・・・[w]

・・・[2w] ・・・[2w]

・・・[3w] ・・・[3w]

・・・[2w] ・・・[2w]

・・・[3w] ・・・[3w]

・・・[4w] ・・・[4w]

2 1

1 3

3 3

42

4 2

1 4

nHeninger–Shacham attack: Random bit leak
pInapplicable to our scenario

nHenecka et al.’s attack: Random bit flip
pComputational cost grows exponentially by

maximum length of consecutive bit errors
nOur attack: w-bit wise error

pUtilize heuristics and priority deque to
correct errors in w-bit wise manner

pHeuristics determine cost of each key
candidate due to inconsistent bit obtained
from side-channels
l Unlikely candidates are efficiently prone

EM trace of true load

EM trace of dummy load

Experimental evaluation

nEvaluate accuracy of temporal window value estimation on 1,024-bit
RSA–CRT implementation with GMP
p1,024-bit RSA–CRT = 128×2 temporal window value estimations (w = 4)
pTraining trace dataset: 61,440,000 EM traces for true and dummy loads
pProfiling and target device: ARM Cortex-M4 with 168 MHz frequency

13

Convolutional NN used in experiment
（6 convolutional layer followed by 2 fully connected layers）

Result (without partial key exposure attack)

14

nEvaluate test phase accuracy (attack success rate) using 24 different secret keys
pWe estimated 48 exponents, 48×128 temporal window values, and

48×128×16 true/dummy loads (w = 4)
pSuccess rate is sufficient to break exponent-blinded RSA–CRT if multiple

traces are available

nNumber of estimation errors
is at most two

Estimation accuracy

Frequency of # estimation errors in proposed DL-SCA

True/dummy load Temporal window
value

Exponent

Proposed DL-SCA 99.94% 99.82% 79.17%
Template attack 79.17% 4.16% 0.00%

2w-classification NN N/A 11.53% 0.00%

Errors 0 1 2 3 >
Frequency 38 8 2 0

nGenerate 100 random RSA–CRT secret keys with w-bit-wise errors
and apply proposed partial key exposure attack
pSimulate errors included in secret keys estimated by proposed DL-SCA

nProposed attack can recover full key with 100% success rate
pA few seconds when # errors is 2
pA dozen of seconds when it is 10
pSuccess rate of Henecka et al.’s

attack was at most 80%
l Our attack is well-calibrated for

our DL-SCA (w-bit-wise error)

Overall success rate evaluation with partial key exposure attack

15

Worst-case in
our experiment

Concluding remarks

n New DL-SCA and partial key exposure attack on RSA–CRT
pApplicable to practical implementations with windowed exponentiation and

dummy load as hiding countermeasure
l Utilized in, for example, GMP, OpenSSL, libgcrypt, and Botan

pExperimentally confirmed full-key recovery of 1,024- and 2,048-bit RSA–CRT
pCountermeasure: randomizations of initial register value and loading order

(See our paper for concrete algorithm)
nDL can offer strong attacks even if detail of implementation is not

known, but can achieve stronger attack if it is available

16

17

Existing DL-SCA on RSA/discrete log

nMany existing DL-SCAs focus on binary exponentiation
pLeft-to-right, Montgomery ladder, square–multiply always, etc.
pTwo-classification NN is used to directly estimate secret exponent

l Its feasibility and accuracy have been studied
nNatural extension to windowed exponentiation: 2w-classification NN

pBut its feasibility is unclear in general
l 2w-classification NN would be more difficult task than two-classification
l Hiding countermeasure would make classification more difficult

• 2w-classification on WolfSSL EdDSA implementation in [WCBP20], but it
neither employs hiding countermeasure nor protects operand loading

l In our experiment, 2w-classification NN achieved only 11.52% accuracy on
Gnu MP implementation, which would be insufficient for key recovery

18

