
ECDSA White-Box Implementations
Attacks and Designs from WhibOx 2021 Contest

G. Barbu, W. Beullens, E. Dottax, C. Giraud, A. Houzelot,
C. Li, M. Mahzoun, A. Ranea and J. Xie

September 20, 2022

ECDSA White-Box Implementations September 20, 2022 1 / 21



Black-Box, Grey-Box, White-Box

Plaintext

Ciphertext

Cryptanalysis

Plaintext

Ciphertext

Side-channels/Faults

Plaintext

Ciphertext

Read/modify binary

ECDSA White-Box Implementations September 20, 2022 2 / 21



CHES 2021 Challenge - the WhibOx Contest

Designers

- Post C codes computing ECDSA

- Challenges gain strawberries

(depending on performances and

time until break)

Attackers

- Try to extract the secret key

- Receive bananas (number of

strawberries of the challenge)

ECDSA White-Box Implementations September 20, 2022 3 / 21



Our Contributions

zerokey

- Posted the 2 winning challenges

- Described the implementations

TheRealIdefix

- Broke the most challenges

- Described attacks, showing which

ones succeeded for each candidate

ECDSA White-Box Implementations September 20, 2022 4 / 21



ECDSA

Let G be a point of order n on an elliptic curve E

Let d be a 256-bit key

Let m be a message and e = H(m) its hash value

Algorithm 1: ECDSA signature

1 k
$←− J1, n − 1K

2 R ← kG
3 r ← xR mod n
4 s ← k−1(e + rd) mod n
5 if r == 0 or s == 0 then
6 Go to step 1
7 end
8 Return (r,s)

ECDSA White-Box Implementations September 20, 2022 5 / 21



ECDSA Sensitive Values

Let G be a point of order n on an elliptic curve E

Let d be a 256-bit key

Let m be a message and e = H(m) its hash value

Algorithm 1: ECDSA signature

1 k
$←− J1, n − 1K

2 R ← kG
3 r ← xR mod n
4 s ← k−1(e + rd) mod n
5 if r == 0 or s == 0 then
6 Go to step 1
7 end
8 Return (r,s)

ECDSA White-Box Implementations September 20, 2022 5 / 21



ECDSA Sensitive Values

Let G be a point of order n on an elliptic curve E

Let d be a 256-bit key

Let m be a message and e = H(m) its hash value

Algorithm 1: ECDSA signature

1 k
$←− J1, n − 1K

2 R ← kG
3 r ← xR mod n
4 s ← k−1(e + rd) mod n
5 if r == 0 or s == 0 then
6 Go to step 1
7 end
8 Return (r,s)

ECDSA White-Box Implementations September 20, 2022 5 / 21



Deterministic ECDSA

Let G be a point of order n on an elliptic curve E

Let d be a 256-bit key

Let m be a message and e = H(m) its hash value

Algorithm 1: ECDSA signature

1 k
$←− J1, n− 1K WB model ⇒ No reliable source of randomness!

2 R ← kG
3 r ← xR mod n
4 s ← k−1(e + rd) mod n
5 if r == 0 or s == 0 then
6 Go to step 1
7 end
8 Return (r,s)

ECDSA White-Box Implementations September 20, 2022 5 / 21



Deterministic ECDSA

Let G be a point of order n on an elliptic curve E

Let d be a 256-bit key

Let m be a message and e = H(m) its hash value

Algorithm 1: ECDSA signature

1 k ←− f (e) WB model ⇒ No reliable source of randomness!
2 R ← kG
3 r ← xR mod n
4 s ← k−1(e + rd) mod n
5 if r == 0 or s == 0 then
6 Go to step 1
7 end
8 Return (r,s)

ECDSA White-Box Implementations September 20, 2022 5 / 21



Section 1

Breaking the Candidates

ECDSA White-Box Implementations September 20, 2022 6 / 21



Hooking Shared Libraries

Idea

Find some secret values that could be manipulated in the clear

Use of the GMP library suggested by the contest rules

Hook the calls to GMP functions (LD PRELOAD)

Update a log of the given parameters

Search for d , k or related values in the log

ECDSA White-Box Implementations September 20, 2022 7 / 21



Biased Nonce

First possibility

Find collisions: signatures generated with the same nonce

Find (r1, s1) and (r2, s2) such that r1 = r2 (so k1 = k2)

Solve the following system in k1, d :

s1 = k−1
1 (e1 + r1d)

s2 = k−1
1 (e2 + r1d)

Second possibility

Exploit biases in the nonce generation

Use lattice-based attacks

Allows to recover d from a few bits of k for several signatures.

ECDSA White-Box Implementations September 20, 2022 8 / 21



Biased Nonce

First possibility

Find collisions: signatures generated with the same nonce

Find (r1, s1) and (r2, s2) such that r1 = r2 (so k1 = k2)

Solve the following system in k1, d :

s1 = k−1
1 (e1 + r1d)

s2 = k−1
1 (e2 + r1d)

Second possibility

Exploit biases in the nonce generation

Use lattice-based attacks

Allows to recover d from a few bits of k for several signatures.

ECDSA White-Box Implementations September 20, 2022 8 / 21



Grey-box Attacks in the White-Box Model

Side-channel attacks

≻ Difficult to apply (huge size of the traces)

Fault injections

≻ Modify the binary, use debugging tools
≻ Many fault attacks on deterministic ECDSA, for example:

Valid signature

r = xR mod n

s = k−1(e + rd) mod n

Faulty signature

r ′ = xR mod n

s ′ = k−1(e + r ′d) mod n

d = (s(r − r ′)(s − s ′)−1 − r)−1e mod n

ECDSA White-Box Implementations September 20, 2022 9 / 21



Grey-box Attacks in the White-Box Model

Side-channel attacks

≻ Difficult to apply (huge size of the traces)

Fault injections

≻ Modify the binary, use debugging tools
≻ Many fault attacks on deterministic ECDSA, for example:

Valid signature

r = xR mod n

s = k−1(e + rd) mod n

Faulty signature

r ′ = xR mod n

s ′ = k−1(e + r ′d) mod n

d = (s(r − r ′)(s − s ′)−1 − r)−1e mod n

ECDSA White-Box Implementations September 20, 2022 9 / 21



Grey-box Attacks in the White-Box Model

Side-channel attacks

≻ Difficult to apply (huge size of the traces)

Fault injections

≻ Modify the binary, use debugging tools
≻ Many fault attacks on deterministic ECDSA, for example:

Valid signature

r = xR mod n

s = k−1(e + rd) mod n

Faulty signature

r ′ = xR mod n

s ′ = k−1(e + r ′d) mod n

d = (s(r − r ′)(s − s ′)−1 − r)−1e mod n

ECDSA White-Box Implementations September 20, 2022 9 / 21



Grey-box Attacks in the White-Box Model

Side-channel attacks

≻ Difficult to apply (huge size of the traces)

Fault injections

≻ Modify the binary, use debugging tools
≻ Many fault attacks on deterministic ECDSA, for example:

Valid signature

r = xR mod n

s = k−1(e + rd) mod n

Faulty signature

r ′ = xR mod n

s ′ = k−1(e + r ′d) mod n

d = (s(r − r ′)(s − s ′)−1 − r)−1e mod n

ECDSA White-Box Implementations September 20, 2022 9 / 21



Percentage of Challenges Broken by Each Attack

1
2 3

Bad nonce
74 %

Faults
78 %

Hooking
33 %

ECDSA White-Box Implementations September 20, 2022 10 / 21



Section 2

Design of the Winning
Challenges

ECDSA White-Box Implementations September 20, 2022 11 / 21



How to Win the Strawberries

The implicit framework for white-box implementation
- A novel encoding method

Techniques from multivariate public key crypto
- Additional countermeasures

C obfuscator
- Use Tigress to obfuscate the source codes

ECDSA White-Box Implementations September 20, 2022 12 / 21



How to Win the Strawberries

The implicit framework for white-box implementation
- A novel encoding method

Techniques from multivariate public key crypto
- Additional countermeasures

C obfuscator
- Use Tigress to obfuscate the source codes

ECDSA White-Box Implementations September 20, 2022 12 / 21



How to Win the Strawberries

The implicit framework for white-box implementation
- A novel encoding method

Techniques from multivariate public key crypto
- Additional countermeasures

C obfuscator
- Use Tigress to obfuscate the source codes

ECDSA White-Box Implementations September 20, 2022 12 / 21



Implicit Framework

Implicit Function and Implicit Evaluation

F (x) = y ⇐⇒ T (x , y) = 0

Evaluate F (a) by substituting x = a and solving T (a, y) = 0

Quasilinear Implicit Function (QIF)

∀x , function y 7→ T (x , y) is affine

This enables fast solving of y

ECDSA White-Box Implementations September 20, 2022 13 / 21



Implicit Framework

Implicit Function and Implicit Evaluation

F (x) = y ⇐⇒ T (x , y) = 0

Evaluate F (a) by substituting x = a and solving T (a, y) = 0

Quasilinear Implicit Function (QIF)

∀x , function y 7→ T (x , y) is affine

This enables fast solving of y

ECDSA White-Box Implementations September 20, 2022 13 / 21



Implicit Implementation

F = F (t) ◦ F (t−1) ◦ · · · ◦ F (1)

Encoded implementation

F = F (t)◦· · ·◦F (1) = (B(t)◦F (t)◦A(t))◦· · ·◦(B(1)◦F (1)◦A(1))

T is a QIF of F (i) =⇒ T ′ = M ◦ T ◦ (A,B−1) is a QIF of
F (i)′ = B ◦ F (i) ◦ A, for any linear permutation M

Implicit implementation = Encoded implementation + QIF

ECDSA White-Box Implementations September 20, 2022 14 / 21



Implicit Implementation

F = F (t) ◦ F (t−1) ◦ · · · ◦ F (1)

Encoded implementation

F = F (t)◦· · ·◦F (1) = (B(t)◦F (t)◦A(t))◦· · ·◦(B(1)◦F (1)◦A(1))

T is a QIF of F (i) =⇒ T ′ = M ◦ T ◦ (A,B−1) is a QIF of
F (i)′ = B ◦ F (i) ◦ A, for any linear permutation M

Implicit implementation = Encoded implementation + QIF

ECDSA White-Box Implementations September 20, 2022 14 / 21



White-box implementation of ECDSA

Algorithm 2: White-box ECDSA for winning challenges

1 e ← e mod p

2 (v1, v2, v3)← E (1)(e) // implicit evaluation of kG
3 for o in L do
4 (u1, u2, u3)← (v1, v2, v3) + p · o
5 (r , s)← E (2)(u1, u2, u3) // implicit evaluation of (r , s)
6 if VerifySignature(r , s, e) = valid then
7 return (r , s)
8 end

9 end

A round-based implementation of scalar multiplication

Precompute L to deal with overflows when converting modp
to modn

ECDSA White-Box Implementations September 20, 2022 15 / 21



Additional Countermeasures

Tricks from the multivariate public-key crypto

Obfuscation by multiplying random polynomials

Implicit evaluation can be preserved w.h.p.

R(a)T (a, y) = 0 =⇒ T (a, y) = 0

Set an initial value to prevent failures

Masking of the nonce

Avoid bias of the most significant part of the nonce k

ECDSA White-Box Implementations September 20, 2022 16 / 21



keen ptolemy (Challenge 227)

Implicit implementation + Multiplying random polynomials

T (1) {T (2), . . . ,T (t−1)} T (t) T (t+1)

input variables 2+4 5+4 5+3 3+2
number of components 4 4 3 2

degree 3 3 4 2
number of coefficients 27× 4 130× 4 255× 3 18× 2

Compiled binary: 4.42 MB

Average running time: 0.04s

Average RAM consumed: 6.14 MB

Code obfuscation did not impact the running time but
increased the binary size by 8% and the average RAM by 3%

ECDSA White-Box Implementations September 20, 2022 17 / 21



clever kare (Challenge 226)

Implicit implementation + Multiplying random polynomials + Masking

T (1) {T (2), . . . ,T (t−1)} T (t) T (t+1)

input variables 2+6 7+6 7+5 5+2
number of components 6 6 5 2

degree 3 3 4 5
number of coefficients 37× 6 322× 6 854× 5 504× 2

Compiled binary: 15.44 MB

Average running time: 0.15s

Average RAM consumed: 17.27 MB

Impact of code obfuscation < 1%

ECDSA White-Box Implementations September 20, 2022 18 / 21



Security Analysis

Automated attacks do not work

✗ Hooking shared libraries

✗ Biased nonces

✓ Fault attacks [BDG+22]

remove only one line of code for each challenge

induce uncontrolled fault in r

defeat the verification steps

ECDSA White-Box Implementations September 20, 2022 19 / 21



Summary

We present automated attacks breaking a large number of
challenges

Fault attacks are the most efficient and effective

We apply implicit implementation framework to ECDSA

The best implementations were broken by fault attacks

Securing white-box ECDSA is still an open problem

ECDSA White-Box Implementations September 20, 2022 20 / 21



Thank you for
your attention!

Any questions?

ECDSA White-Box Implementations September 20, 2022 21 / 21


	Breaking the Candidates
	Design of the Winning Challenges

