# **ECDSA White-Box Implementations** Attacks and Designs from WhibOx 2021 Contest

G. Barbu, W. Beullens, E. Dottax, C. Giraud, <u>A. Houzelot</u>, <u>C. Li</u>, M. Mahzoun, A. Ranea and J. Xie

September 20, 2022



# Black-Box, Grey-Box, White-Box



# Designers

 Post C codes computing ECDSA
 Challenges gain strawberries (depending on performances and time until break)

### Attackers

Try to extract the secret key
Receive bananas (number of strawberries of the challenge)



# **Our Contributions**

### zerokey

- Posted the 2 winning challenges
- Described the implementations

## TheRealIdefix

- Broke the most challenges
- Described attacks, showing which ones succeeded for each candidate



- Let G be a point of order n on an elliptic curve E
- Let d be a 256-bit key
- Let m be a message and e = H(m) its hash value

```
1 k \stackrel{\$}{\leftarrow} \llbracket 1, n-1 \rrbracket

2 R \leftarrow kG

3 r \leftarrow x_R \mod n

4 s \leftarrow k^{-1}(e+rd) \mod n

5 if r == 0 or s == 0 then

6 \mid Go to step 1

7 end

8 Return (r,s)
```

- Let G be a point of order n on an elliptic curve E
- Let d be a 256-bit key
- Let m be a message and e = H(m) its hash value

```
1 k \stackrel{\$}{\leftarrow} \llbracket 1, n-1 \rrbracket

2 R \leftarrow kG

3 r \leftarrow x_R \mod n

4 s \leftarrow k^{-1}(e+rd) \mod n

5 if r == 0 or s == 0 then

6 \mid Go to step 1

7 end

8 Return (r,s)
```

- Let G be a point of order n on an elliptic curve E
- Let d be a 256-bit key
- Let m be a message and e = H(m) its hash value

```
1 k \stackrel{\$}{\leftarrow} \llbracket 1, n-1 \rrbracket

2 R \stackrel{\checkmark}{\leftarrow} kG

3 r \stackrel{\checkmark}{\leftarrow} x_R \mod n

4 s \stackrel{\longleftarrow}{\leftarrow} k^{-1}(e+rd) \mod n

5 if r == 0 or s == 0 then

6 \mid Go to step 1

7 end

8 Return (r,s)
```

- Let G be a point of order n on an elliptic curve E
- Let d be a 256-bit key
- Let *m* be a message and e = H(m) its hash value

 $k \stackrel{\$}{\leftarrow} \llbracket 1, n - 1 \rrbracket$  WB model ⇒ No reliable source of randomness!  $R \leftarrow kG$  $r \leftarrow x_R \mod n$  $s \leftarrow k^{-1}(e + rd) \mod n$ **if** r == 0 or s == 0 **then** 6 | Go to step 1 7 **end** 8 Return (r,s)

- Let G be a point of order n on an elliptic curve E
- Let d be a 256-bit key
- Let *m* be a message and e = H(m) its hash value

```
1 k \leftarrow f(e) WB model \Rightarrow No reliable source of randomness!

2 R \leftarrow kG

3 r \leftarrow x_R \mod n

4 s \leftarrow k^{-1}(e + rd) \mod n

5 if r == 0 or s == 0 then

6 \mid Go to step 1

7 end

8 Return (r,s)
```

# Section 1

# Breaking the Candidates



#### Idea

Find some secret values that could be manipulated in the clear

- Use of the GMP library suggested by the contest rules
- Hook the calls to GMP functions (LD\_PRELOAD)
- Update a log of the given parameters
- Search for d, k or related values in the log

# **Biased Nonce**

#### First possibility

Find collisions: signatures generated with the same nonce

- Find  $(r_1, s_1)$  and  $(r_2, s_2)$  such that  $r_1 = r_2$  (so  $k_1 = k_2$ )
- Solve the following system in  $k_1, d$ :

$$\begin{array}{ll} s_1 &= k_1^{-1}(e_1 + r_1 d) \\ s_2 &= k_1^{-1}(e_2 + r_1 d) \end{array}$$

# **Biased Nonce**

#### First possibility

Find collisions: signatures generated with the same nonce

- Find  $(r_1, s_1)$  and  $(r_2, s_2)$  such that  $r_1 = r_2$  (so  $k_1 = k_2$ )
- Solve the following system in  $k_1, d$ :

$$s_1 = k_1^{-1}(e_1 + r_1 d) s_2 = k_1^{-1}(e_2 + r_1 d)$$

#### Second possibility

Exploit biases in the nonce generation

- Use lattice-based attacks
- Allows to recover *d* from a few bits of *k* for several signatures.

#### Side-channel attacks

- ≻ Difficult to apply (huge size of the traces)
- Fault injections
  - ≻ Modify the binary, use debugging tools
  - $\succ$  Many fault attacks on deterministic ECDSA, for example:

#### Side-channel attacks

 $\succ$  Difficult to apply (huge size of the traces)

#### Fault injections

- $\succ$  Modify the binary, use debugging tools
- $\succ$  Many fault attacks on deterministic ECDSA, for example:

#### Valid signature

$$r = x_R \mod n$$
  
 $s = k^{-1}(e + rd) \mod n$ 

Side-channel attacks

 $\succ$  Difficult to apply (huge size of the traces)

Fault injections

- $\succ$  Modify the binary, use debugging tools
- > Many fault attacks on deterministic ECDSA, for example:

Valid signatureFaulty signature
$$r = x_R \mod n$$
 $r' = x_{R^{\pm}} \mod n$  $= k^{-1}(e + rd) \mod n$  $s' = k^{-1}(e + r'd) \mod n$ 

S

Side-channel attacks

- $\succ$  Difficult to apply (huge size of the traces)
- Fault injections
  - $\succ$  Modify the binary, use debugging tools
  - > Many fault attacks on deterministic ECDSA, for example:

Valid signature  

$$r = x_R \mod n$$
  $r' = x_{R^{\acute{x}}} \mod n$   
 $s = k^{-1}(e + rd) \mod n$   $s' = k^{-1}(e + r'd) \mod n$   
 $d = (s(r - r')(s - s')^{-1} - r)^{-1}e \mod n$ 

# Percentage of Challenges Broken by Each Attack



# Section 2

# Design of the Winning Challenges



# How to Win the Strawberries

- The implicit framework for white-box implementation
  - A novel encoding method



# How to Win the Strawberries

- The implicit framework for white-box implementation - A novel encoding method
- Techniques from multivariate public key crypto
  - Additional countermeasures



# How to Win the Strawberries

- The implicit framework for white-box implementation - A novel encoding method
- Techniques from multivariate public key crypto - Additional countermeasures
- C obfuscator
  - Use Tigress to obfuscate the source codes



Implicit Function and Implicit Evaluation

$$F(\mathbf{x}) = \mathbf{y} \iff T(\mathbf{x}, \mathbf{y}) = 0$$

Evaluate F(a) by substituting x = a and solving T(a, y) = 0

Implicit Function and Implicit Evaluation

$$F(\mathbf{x}) = \mathbf{y} \iff T(\mathbf{x}, \mathbf{y}) = 0$$

Evaluate F(a) by substituting x = a and solving T(a, y) = 0

Quasilinear Implicit Function (QIF)

 $\forall \mathbf{x}$ , function  $\mathbf{y} \mapsto T(\mathbf{x}, \mathbf{y})$  is affine

This enables fast solving of **y** 

# Implicit Implementation

$$F = F^{(t)} \circ F^{(t-1)} \circ \cdots \circ F^{(1)}$$

Encoded implementation

$$\overline{F} = \overline{F^{(t)}} \circ \cdots \circ \overline{F^{(1)}} = (B^{(t)} \circ F^{(t)} \circ A^{(t)}) \circ \cdots \circ (B^{(1)} \circ F^{(1)} \circ A^{(1)})$$

• T is a QIF of  $F^{(i)} \implies T' = M \circ T \circ (A, B^{-1})$  is a QIF of  $F^{(i)'} = B \circ F^{(i)} \circ A$ , for any linear permutation M

# Implicit Implementation

$$F = F^{(t)} \circ F^{(t-1)} \circ \cdots \circ F^{(1)}$$

Encoded implementation

$$\overline{F} = \overline{F^{(t)}} \circ \cdots \circ \overline{F^{(1)}} = (B^{(t)} \circ F^{(t)} \circ A^{(t)}) \circ \cdots \circ (B^{(1)} \circ F^{(1)} \circ A^{(1)})$$

• T is a QIF of  $F^{(i)} \implies T' = M \circ T \circ (A, B^{-1})$  is a QIF of  $F^{(i)'} = B \circ F^{(i)} \circ A$ , for any linear permutation M

#### Implicit implementation = Encoded implementation + QIF

# White-box implementation of ECDSA

Algorithm 2: White-box ECDSA for winning challenges

 $1 e \leftarrow e \mod p$ 2  $(v_1, v_2, v_3) \leftarrow \overline{E^{(1)}}(e)$ // implicit evaluation of kG3 for o in  $\mathcal{L}$  do  $(u_1, u_2, u_3) \leftarrow (v_1, v_2, v_3) + p \cdot \mathbf{0}$ 4  $(r,s) \leftarrow \overline{E^{(2)}}(u_1, u_2, u_3)$  // implicit evaluation of (r,s)5 if VerifySignature(r, s, e) = valid then 6 return (r, s)7 8 end end 9

- A round-based implementation of scalar multiplication
- Precompute L to deal with overflows when converting mod p to mod n

Tricks from the multivariate public-key crypto

Obfuscation by multiplying random polynomials

• Implicit evaluation can be preserved w.h.p.

$$R(\boldsymbol{a})T(\boldsymbol{a},\boldsymbol{y})=0 \implies T(\boldsymbol{a},\boldsymbol{y})=0$$

• Set an initial value to prevent failures

#### Masking of the nonce

Avoid bias of the most significant part of the nonce k

# keen\_ptolemy (Challenge 227)

#### Implicit implementation + Multiplying random polynomials

|                        | $\overline{T^{(1)}}$ | $\{\overline{T^{(2)}},\ldots,\overline{T^{(t-1)}}\}$ | $\overline{T^{(t)}}$ | $\overline{T^{(t+1)}}$ |
|------------------------|----------------------|------------------------------------------------------|----------------------|------------------------|
| input variables        | 2+4                  | 5+4                                                  | 5+3                  | 3+2                    |
| number of components   | 4                    | 4                                                    | 3                    | 2                      |
| degree                 | 3                    | 3                                                    | 4                    | 2                      |
| number of coefficients | 27 	imes 4           | 130 	imes 4                                          | 255 	imes 3          | 18 	imes 2             |

- Compiled binary: 4.42 MB
- Average running time: 0.04s
- Average RAM consumed: 6.14 MB





# clever\_kare (Challenge 226)

Implicit implementation + Multiplying random polynomials + Masking

|                        | $\overline{T^{(1)}}$ | $\{\overline{T^{(2)}},\ldots,\overline{T^{(t-1)}}\}$ | $\overline{T^{(t)}}$ | $\overline{T^{(t+1)}}$ |
|------------------------|----------------------|------------------------------------------------------|----------------------|------------------------|
| input variables        | 2+6                  | 7+6                                                  | 7+5                  | 5+2                    |
| number of components   | 6                    | 6                                                    | 5                    | 2                      |
| degree                 | 3                    | 3                                                    | 4                    | 5                      |
| number of coefficients | 37 	imes 6           | 322 	imes 6                                          | $854 \times 5$       | 504 	imes 2            |

- Compiled binary: 15.44 MB
- Average running time: 0.15s
- Average RAM consumed: 17.27 MB
- Impact of code obfuscation < 1%



Automated attacks do not work

- X Hooking shared libraries
- X Biased nonces
- ✓ Fault attacks [BDG+22]
  - remove only one line of code for each challenge
  - induce uncontrolled fault in r
  - defeat the verification steps

- We present automated attacks breaking a large number of challenges
- Fault attacks are the most efficient and effective
- We apply implicit implementation framework to ECDSA
- The best implementations were broken by fault attacks
- Securing white-box ECDSA is still an open problem

