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Fault Attacks

Active, physical attacks

Manipulation of device or its environment

Local or remote attacks

Clock Temperature Voltage EM Laser
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Fault E�ects

E�ects are the electrical level aremanifold

Timing violations

Transient voltage and current changes

...

Interested in higher levels of abstractions

Transient e�ects (bit flips)

Permanent e�ects (stuck-at)
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Fault Exploitation

Manipulate control- or data-flow

Generic:

Finite-state machines

Handshake signals

CPU:

Manipulate PC, interrupt vectors

Manipulate and skip instructions

4 / 30



Fault Exploitation

Manipulate control- or data-flow

Generic:

Finite-state machines

Handshake signals

CPU:

Manipulate PC, interrupt vectors

Manipulate and skip instructions

4 / 30



Fault Exploitation

Manipulate control- or data-flow

Generic:

Finite-state machines

Handshake signals

CPU:

Manipulate PC, interrupt vectors

Manipulate and skip instructions

4 / 30



Fault Countermeasures

Spatial Redundancy

Temporal Redundancy

Encoding

Needed for security-critical devices
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OpenTitan

Open-source1 RTL, design verification, firmware, so�ware, and tooling

Acts as root-of-trust

Dedicated HW-based SCA & fault countermeasures

1https://github.com/lowRISC/opentitan
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SYNFI
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SYNFI Motivation

→ We need to assure that the countermeasures work

Testing at RTL model

Verification results only valid at this level of abstraction
Synthesis consists of several optimization phases

redundancy-based countermeasures

Experimental verification

FPGA: di�erent technology
ASIC: costly and time-consuming

FI countermeasure
verification at
the netlist
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Why SYNFI?

Manual FI in testbench

Gate/wire names are mangled

Related work

Limited set of cells supported

No support for common design patterns (cycles)

Only fully flattened netlists

→ Impose requirements to netlist
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Design Flow Adaptions

Design flows need to work

Interface for di�erent stakeholders

Responsible for the success of the project

→ Use design flows that are provably working!

→ Tool that imposes requirements to netlist cannot be used!
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SYNFI

Imposes no requirements to netlist:

Open or proprietary synthesis tools & standard cell libraries

Support common design patterns

Analysis:

Fault countermeasures provide expected security
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SYNFI Overview
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Fault Specification

Fault Target

Attacker Model:

Number of simultaneous faults

Fault locations

Fault e�ects

14 / 30



Phase 0: Preparation
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Phase 1: Injection & Evaluation

Target graph extraction

Fault injection

Di�erential graph

Transformation & evaluation
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Evaluation

Arbitrary Fault E�ects:

Change in output & countermeasure not triggered

Specific Fault E�ects:

Target state reached & countermeasure not triggered
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Analysis of OpenTitan
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OpenTitan Analysis

→ Check whether fault countermeasures work

Dedicated threat model for eachmodule

Analyzed AES, Life Cycle Controller, Ibex, Generic Primitives

Synthesized with proprietary & open-source hardware design flow
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AES: Handshake Signals

Overview:

Internal signals driven by FSMs

Attacker goal:

Manipulate handshake signals
Influence data- and control-flow of the encryption

Attacker target:

Next-state logic, state registers, output logic
Control signals
Output signal
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AES: Handshake Signals

Multi-Rail FSM

Encode input & output signals

1→ 011, 0→ 100

Redundantly instantiate FSMs

Operate on positive and negative rail

Combine output signals & check encoding
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AES: Handshake Signals

SYNFI evaluation:

3 simultaneous faults
Manipulate handshake signal
Expected protection level: 3

SYNFI result:

Verified protection level: 2
Synthesis tool reduced 3-bit encoded signal to 2-bits

→ Attribute register

→ Expected protection level confirmed
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AES: FSM State Encoding

Overview:

Encode states with Hamming distance of 3

Attacker goal:

Enter a di�erent state

Attacker target:

State registers
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AES: FSM State Encoding

SYNFI evaluation:

3 simultaneous faults
Enter a di�erent state
Expected protection level: 3

SYNFI result:

Verified protection level: 2
Yosys FSM optimizations

→ Disable FSM optimizations

→ Area vs. security trade-o�
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Life Cycle Controller

Overview:

Transfers OpenTitan into di�erent operational states

Attacker goal:

Enter security-sensitive state

Attacker target:

Bypass token check

Hijack FSM
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Life Cycle Controller

SYNFI evaluation:

7 simultaneous faults
Enter debug state from production state
Expected protection level: at least 3

SYNFI result:

Faulting token comparisons
Faulting state registers to hijack FSM
Verified protection level: ≥ 3
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Ibex: Program Counter

Overview:

32-bit RISC-V CPU

Attacker goal:

Manipulate program counter

Redirect control-flow

Attacker target:

Instruction fetch pipeline stage
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Ibex: Program Counter

SYNFI evaluation:

Single core
Dual core lockstep

Expected protection level: 2

SYNFI result:

→ Expected protection level confirmed
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Conclusion

SYNFI:

Analyze resilience of fault countermeasures
Netlists synthesized with open & proprietary synthesis tools

Evaluation:

Identified several weaknesses in the AES IP
Confirmed security of other modules

Improved Designs:

New countermeasures
Reassessed security, contributed to OpenTitan project
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